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Abstract: Precise estimation of total organic carbon (TOC) is extremely important for the successful
characterization of an unconventional shale reservoir. Indirect traditional continuous TOC prediction
methods from well-logs fail to provide accurate TOC in complex and heterogeneous shale reservoirs.
A workflow is proposed to predict a continuous TOC profile from well-logs through various ensemble
learning regression models in the Goldwyer shale formation of the Canning Basin, WA. A total of
283 TOC data points from ten wells is available from the Rock-Eval analysis of the core specimen
where each sample point contains three to five petrophysical logs. The core TOC varies largely,
ranging from 0.16 wt % to 4.47 wt % with an average of 1.20 wt %. In addition to the conventional
MLR method, four supervised machine learning methods, i.e., ANN, RF, SVM, and GB are trained,
validated, and tested for continuous TOC prediction using the ensemble learning approach. To
ensure robust TOC prediction, an aggregated model predictor is designed by combining the four
ensemble-based models. The model achieved estimation accuracy with R? value of 87%. Careful
data preparation and feature selection, reconstruction of corrupted or missing logs, and the ensemble
learning implementation and optimization have improved TOC prediction accuracy significantly
compared to a single model approach.

Keywords: TOC; Goldwyer shale; well-logs; ensemble learning; canning basin

1. Introduction

Three-fourth of global sedimentary rock are composed of shale, which plays a major
role in hydrocarbon generation, migration, and then trapping the hydrocarbon either in
other rock types (e.g., sandstone, or reservoir rock) or within the shale rock (acting as
both source and reservoir rock). This self-produced and self-accumulated source-reservoir
system is the unconventional rock. However, over the last twenty years significant interest
has built-up on exploring unconventional shale gas reservoirs because of the massive
demand for exploring more sustainable environmentally friendly gas-prone energy [1-3].
In general, unconventional shale is constituted as having clay-sized fine-grained detrital,
being organic-rich, and with low porosity and ultralow permeability (in order of nano-
Darcy) [4-6]. Rapid progress in technology, notably hydraulic fracturing and drilling in the
horizontal direction, has made shale gas economically producible [3,7,8]. Productive shale
gas reservoirs have higher organic richness (for example USA’s Barnett, Eagle Ford shale).
Organic richness is evaluated by total organic carbon (TOC) in the weight percentage
(wt %) unit. TOC is one of the key parameters in assessing prospectively shale plays
as well as identifying suitable sweet spots and estimation of in-place volumetric total
hydrocarbon [2,9-11]. Holmes, et al. [12] proposes another approach with triple combo
logs to compute total in-place volumes of the unconventional shale reservoir. Organic
matter within the rock matrix directly controls organic porosity and adsorbed gas [2,13,14].
Additionally, TOC affects mechanical anisotropy (Sone and Zoback, 2013a), geomechanical
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properties [15-19], and brittleness [3,4,20]. In the global perspective, better gross estimation
of shale reservoir requires the importance of a more precisely defined TOC model for future
development activity. Despite the huge reserves, short production life cycle and lower
recovery factor imply the reserve calculation, through total porosity with the inclusion
of organic porosity, is being questionable [21]. Therefore, accurate TOC estimations are
essential for the development and production of an unconventional reservoir [11,13,22,23].

TOC is routinely measured on core cuttings, chips, or side-wall cores by a Rock-Eval
pyrolysis analyzer in the laboratory (i.e., core TOC/laboratory TOC). This is the most
reliable method as of now; however, because of the limitations of the core specimen,
continuous TOC measurement is not possible. Schmoker [24,25] and Passey [26] methods
are industry standard, and they are routinely used to compute continuous TOC profiles
from specific borehole-measured physical properties such as bulk density (RHOB), deep
resistivity (LLD), and compressional sonic travel time (DT). Both traditional methods have
limitations. Schmoker’s method solely depends upon the linear relationship of TOC with
the inverse of density, which may not be always unique for different geological regimes.
Passey’s method computes TOC from the combination of the porosity and resistivity log
after the baseline curve has been identified. The uniformity of the method is questionable
as baseline value varies from well to well and across the formations. Besides baseline
identification, maturity is another constraint of this approach. Especially at higher maturity,
the technique struggles to provide reliable TOC because the resistivity log does not increase
with maturity level [10].

In the case of an unconventional shale reservoir, the heterogeneity of the reservoir
further adds more complexity [22,27]. Artificial intelligence (AI) techniques have overcome
all the above-mentioned issues of the traditional process of TOC estimation. For exam-
ple, Zhao, Verma, Devegowda, and Jayaram [23] used support vector machine (SVM) to
calculate TOC in Barnett Shale form commonly acquired well logs; Verma, Zhao, Mar-
furt, and Devegowda [22] approached the probabilistic neural network to predict the
TOC on Barnett Shale of the Fortworth Basin; Emelyanova, Pervukhina, Clennell, and
Dewhurst [27] carried out TOC prediction of the McArthur and Georgina basins of Aus-
tralia by two non-parametric machine learning (ML) methods (an ensemble of Multi-layer
Perceptrons—MLPs, and an ensemble of SVMs). Yu, Rezaee, Wang, Han, Zhang, Arif,
and Johnson [11] derived TOC with an ensemble of Gaussian Process Regressors (GPRs)
through different kernel functions on an unconventional shale reservoir of the Ordos Basin;
Johnson, et al. [28] implemented the Levenberg-Marquardt ANN algorithm to predict
geochemical logs of the unconventional reservoir at the Canning Basin; and Ritzer and
Sperling [29] tried to compute TOC from geochemical trace elements using the Random
Forest (RF) method, an ensemble learning technique. These studies demonstrate the value
of various Al methods in predicting TOC, but they do not advise how to choose a particular
algorithm to perform best on a data set with different geology from another basin. In this
study, we propose an ensemble learning approach that can integrate multiple models to
build a predictive TOC model and improve the prediction performance of TOC.

Our study area is located inside the Canning Basin, which is a massive, intra-cratonic
Paleozoic sedimentary basin with limited exploration activity because it is relatively less
well drilled than the prospective Ordovician Goldwyer shale formation [5,28,30]. The
organic richness of Goldwyer shale is highly variable across the basin [28,31]. There is no
guarantee that any of the above single ML methods are suitable for building the optimum
TOC profile across the basin. This reflects our strategy of different ensemble learning
considerations to provide an improved solution.

Due to the robustness, complex data handlining capacity, and consideration of bias-
variance trade-off, we propose four ensemble learning methods [32,33] to obtain a gener-
alized predictive TOC model from input well-logs in the heterogeneous Goldwyer shale
reservoir such as: (i) running one algorithm many times with different initialization—Multi-
layer Perceptron (MLP) an ANN algorithm [34]; (ii) using different samples of the data set
(sub-sampling) and feature selection, bootstrapping method—RF [29,35]; (iii) projection
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onto a higher dimension space with different kernel —SVM [23,27]; and (iv) handling of
data heterogeneity and feature selection, bagging method—Gradient boosting regressor
(GBR) [35]. The standard multi-linear regression (MLR) statistical method is also considered
for modelling a linear relationship between the log response and the core TOC. This study
focused on the development of a workflow for generating a robust TOC prediction model
using the ensemble learning approach so that the potential of the Goldwyer shale can
be identified.

Python programming language and the scikit-learn machine learning platform [33] are
used to implement the workflow and build the predictive model. The workflow consists of
two stages: (i) data preparation that includes data sanitation (QA /QC), input data accu-
mulation, and synthetic well-log generation; (ii) model generation by ensemble learning
and TOC prediction. We tested two different input attribute groups for optimization of
the prediction. The champion model comes from the relative comparison of mean squared
error (MSE) function and R? (the squared correlation coefficient) value of each ensemble
learning model trough leave-one-out cross-validation (LOOCV). The obtained TOC from
the ensemble learning approach is finally compared with traditional methods to show
its effectiveness.

2. Background
2.1. Empirical Neutron Porosity and Bulk Density Estimation Technique

Neutron porosity (NPHI) and RHOB are the most useful combination to discriminate
lithology and compute total porosity. They are regularly run-in combination with a caliper
(CAL) and gamma ray (GR) log as a basic petrophysical measurement. Often, these well-
logs, which we would like to use for petrophysical evaluation, are not available Whether
the missing curves are due to tool malfunction, or the tool did not record the curve, it is not
feasible to do the acquisition again because of several factors (cost, casing, etc.). Empirical
relationships are routinely used to generate synthetic well-log from other log curves like
RHOB from DT, or shear wave velocity from DT. Similarly, any linear combination of the
pre-existing well-logs can be used to derive a NPHI log. For bulk density log, several
approaches can be considered, such as (i) regional trend of density versus depth [36] and
(if) velocity-density transforms [37,38]. When check shot data or compressional sonic travel
time (DT) are available, transform based technique is useful [39].

Gardner, Gardner, and Gregory [37] provided an empirical transform function (Equation (1))
between P-wave velocity (inverse of DT) and bulk density that is representative of average
over many rock types.

RHOB = 1.741Vp> 1)

where RHOB and V;, are bulk density (g/ cm?®) and P-wave velocity (km/s), respectively.
They also suggested the lithology specific empirical formula. Castagna, et al. [40] supplied
polynomial velocity-density transform function for a specific rock type. However, the
observed improvement of a polynomial function is very minimal compared to Gardner
velocity-density transform.

2.2. Conventional TOC Technique

Schmoker [24] and Schmoker and Hester [25] laid down an empirical relation of TOC
with bulk density. The relation is a linear correlation of TOC with the inverse of bulk
density as follows

a
TOC = prmr +b @)

The constants “a” and “b” are derived from specific North America shale using the
density of matrix, organic matter, and the ratio of weight percentages of organic matter to
TOC which made the Equation (2) more specific as:

154.497

TOC = vHOoB

—57.261 3)
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Passey, Moretti, Kulla, Creaney, and Stroud [26] developed a practical technique by
overlaying a properly scaled sonic and deep resistivity log to calculate TOC. The scaling
process needs to be adjusted in such a way that both log curves are overlain in the water-
saturated organic-lean interval and the baseline is defined within that interval. When there
is a presence of organic matter, a separation is observed. The separation between two log
curves (AlogR) is computed from Equation (4) given as:

AlogR = 10g 10( ) - O-OZ(At - Atbaselirle) (4)

baseline

where R and At are the resistivity (Ohm.m) and compressional sonic travel time (us/ft),
respectively. Their baseline values (Rpaselines Atbaseline) are determined from an organic-lean
interval of the studied well. After the computation of AlogR, TOC can be calculated using
Equation (5).

TOC = AIOgR 10(2.297 — 0.1688 x LOM) (5)

LOM is the level of organic metamorphism usually determined from maturity infor-
mation such as maximum hydrocarbon generation temperature (Tmax), vitrinite reflectance
(Ro). Passey, Bohacs, Esch, Klimentidis, and Sinha [13] redefined calibration lines for TOC
from AlogR technique as a function of LOM for over-mature shale as in original Passey’s
method [26], the calibration lines underestimate TOC values of rocks with LOM greater
than 10.5 (or Ry > 0.9). This modified calibration method is very similar to the correction
factor approach [41] to obtain precise TOC using the AlogR technique.

2.3. Artificial Intelligence Technique

Cost-effective and efficient computing power has made artificial intelligence tech-
niques more applicable and popular across the globe (e.g., Ng [42]). Nowadays ML algo-
rithms are used regularly in the oil and gas industry for different applications. To mention
a few of them, data gap filling [43], synthetic well-log generation [35,44,45], litho-facies
classification [46,47], porosity and permeability prediction [48,49], geomechanical property
estimation [50,51], drilling forecast [52], etc.

Al techniques are a group of regression, classification, and clustering ML algorithms,
broadly subdivided into a supervised and an unsupervised method [47,53]. For a super-
vised regression method, we need (i) input features (for example well-logs—GR, DT, RHOB,
and NPHI) and (ii) target feature (core TOC in wt %). On the other hand, the unsupervised
regression method depends only on input features.

The application of ensemble learning methodology has received huge attention in Al
communities over the past decades. Several of the successful application of ML problems
are feature selection, confidence estimation, missing feature, incremental learning, error
correction, class imbalanced data, learning concept drift from non-stationary distributions,
among others [54]. Supervised ensemble learning can be applied for regression or classifica-
tion tasks. It combines the prediction of several base estimators built with a given learning
algorithm to improve robustness over a single estimator. Boosting and averaging are the
two main categories of supervised ensemble methods. The methodology section (Section 4)
described the algorithms applied for ensemble learning in this study.

3. Study Area and Data Compilation
3.1. Input Data and Study Location

A limited number of wells penetrate through prospective Goldwyer formation in the
Canning Basin. The location of the studied basin and its general stratigraphy column are
shown in Figure 1. Most prospective sub-divisions are Broome platforms [31] and the
maximum organic richness observed in Theia-1 well (DMIRS unpublished report, 2019),
which lies inside this platform (Figure 1a). Ten wells are chosen (see Table 1 about the well
information) where core TOC is available within the formation. Vitrinite Reflectance (Rg)
varies from 0.72% to 1.1% with an average value of 0.92%, which indicates the organic
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matter type is a mixture of oil and gas [28]. The input data set contains five wireline logs
over seven wells that include GR, RHOB, deep resistivity (LLD), DT, and NPHI. NPHI,
and RHOB are missing in three wells. Supervised ML regression workflow (Figure 2) are
implemented to create synthetic logs for the three studied wells (Edgar Range-1, Mclarty-1,
and Matches Spring-1) from available other three log responses (GR, DT, and LLD).

modifed after | modified aher

Kennard Kennard
ot al. (1994) otal (1994)

Age (Ma)

1

]

m Canning Basin (Phanerozoic) ® Oil producer :

]

|:| Adjacent Phanerozoic basins ¢ Excellentigood olf show H

# Gas producer "

(a) D Archaean-Palaeoproterozoic basins ¢ Excellent/good gas show (b)‘

Figure 1. (a) Location of the prospective Canning Basin along with its tectonic elements and proven
major oil and gas occurrence. The main area of interest of unconventional shale reservoir is within
the onshore Broome Platform are shown in red colors (modified from [55]). (b) Generalized stratig-
raphy map of Canning Basin where the study unit is highlighted by a black dotted rectangle in the
Ordovician (modified from [56]).

Table 1. The list of well log curves of the selected ten wells. Y indicates the log curve is present where
N is non-existence of that curve. Edgar Range-1, Mclarty-1, and Matches Spring-1 do not have RHOB

and NPHI curve.
Available Well Log Curves
Well GR DT LLD RHOB NPHI
Edgar Range-1 Y Y Y N N
Mclarty-1 Y Y Y N N
Missing-1 Y Y Y Y Y
Pictor East-1 Y Y Y Y Y
Hilltop-1 Y Y Y Y Y
Hedonia-1 Y Y Y Y Y
Aquila-1 Y Y Y Y Y
Canopus-1 Y Y Y Y Y
Matches Spring-1 Y Y Y N N
Theia-1 Y Y Y Y Y
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for 7 wells

Inputs: GR, DT and LLD Outputs: NPHI, RHOB

for 7 wells

Training, calibration and validation with ML models

for 3 wells

Inputs: GR, DTand LLD | APPY

Data Predict
driven

model

Outputs: NPHI, RHOB
for 3 wells

Figure 2. Workflow of a data-driven model for synthetic NPHI and RHOB log prediction with
supervised ML regression algorithms. One linear and three non-linear ML algorithms are considered
to choose the optimum prediction model.

The caliper log is used for each well to recognize borehole washout zone, and thereafter
removed those zones from the present study. For optimum model selection, identification
of anomalous values from well-logs have paramount significance. In wireline logging
operations, anomalous data are recorded because of tool malfunction, recording error,
digitization issues, tool positioning, etc. To obtain a clean database, the process starts with
the generation of a matrix plot in which well-logs are plotted on the rows and columns
(Figure 3), this is known as pair plot. From the pair plot and histogram (diagonal of the
pair plot), it can be seen that several logs consist of outliers that could impact modelling.
In addition, we separately create box plot to observe the statistical distribution of the
data set visually. Using the interquartile rule (IQR), the following process was adopted
to identify outliers. Multiply IQR with 1.5 and then add with third quartile. Any values
greater than this are flagged as outliers. Similarly, 1.5 times IQR subtracted from the first
quartile and any values less than this are suspected as outliers. Finally, a petrophysical
expert point of view is also taken into consideration to define the usable ranges of each
measured parameter, such as GR, RHOB, NPHI, and DT, expected in an unconventional
shale formation given its mineralogical composition and geological history. Following
these, we compare histogram of raw and outlier removed data set (Figure 4), which were
matched with expected petrophysical ranges of log curves in the studied formation. The
statistical description of these data sets is presented in Table 2. The number of data samples
from core TOC is very limited compared to that of synthetic log input variables. Table 3
summaries 283 TOC prediction data sets accumulated from the DMIRS database.
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Ensemble learning
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Data: : . .

Welldogs || Multiplemodel | | Modelparameter | || wo4evalidation |—| MOde!integration | f roc yrediction

Core TOC generation optimisation Iselection
Figure 3. Workflow for TOC prediction with the ensemble learning approach. The process starts with
the accumulation of input data sets and their QA /QC followed by ensemble learning implementation
in several steps as shown by a red dotted arrow.

Low Variance High Variance

Low Bias
ptimum model

complexity

‘ ‘ A E VY
(a) I

Figure 4. (a) Graphical illustration of bias and variance. The aim is to obtain a model that has low
bias and low variance. (b) Contribution of bias and variance to the total error of the machine learning
model (reproduced from the reference [57]). With increasing model complexity, error function reduced
significantly for training data set but perform poorly in validation dataset, i.e., higher variance. The
task to define a model in such a way that the bias and variance can tackle in validation and blind test

Error

High Bias

(b) < : >
Model Complexity

data set.

Table 2. Statistical description of input well log curves for synthetic NPHI and RHOB generation.

GR LLD DT

Unit API Ohm.m us/ft
Data Count 34,821 34,821 34,818
Mean 135.39 10.21 78.89
Standard Dev. 51.77 10.19 14.97
Minimum 21.50 0.46 17.19
25% 95.38 4.07 66.97

50% 134.91 7.30 77.10
75% 177.88 12.49 89.47

Maximum 353.39 177.51 161.56
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Table 3. Complete statistical analysis of input and output variables for TOC predictive modelling
exercise. AlogR is computed from Passey’s overlay technique [26] described in Section 2.1.

GR DT RHOB NPHI log10_LLD Core TOC AlogR
Unit API us/ft g/cm® % Ohm.m wt % Frac
Count 283 283 283 283 283 283 283
Mean 145 83 2.63 20.25 0.93 1.20 0.42
Standard Dev. 36 12 0.08 7.70 0.32 1.00 0.37
Minimum 74 58 2.44 2.70 0.08 0.16 —0.28
Maximum 235 108 2.83 43.02 1.74 4.47 1.46

3.2. Data Preparation

The successful completion of a ML project workflow heavily relies upon the number
of input datasets, quality of data, limited data gaps/null values, statistical behavior of data
samples, and the relationship between input and output variables [43,47]. The authors
in [43] studied data gap problems on a North Sea big data project and measured the
impact by implementing several machine learning algorithms such as generalized linear
regression, Bayesian regression, RF, and ANN. The study confirmed that data gaps create a
large impact on the output of the predictive model. The complete absence of any specific
input data sets is also a crucial factor. For example, when we perform formation evaluation
using petrophysical logs, we always run into the data availability problem [35]. It is likely
that some of the well-log curves that we would like to use to complete the analysis are
missing. To overcome this, several studies have been conducted where machine learning
algorithms are applied to generate synthetic well logs [35,44,51]. Presently, three of the
wells do not have the RHOB and NPHI logs that are necessary input features when we
want to generate continuous TOC profile from other standard logs (DT, GR, LLD, RHOB,
and NPHI). Therefore, the workflow in Figure 2 is implemented for synthetic NPHI and
RHOB generation prior to TOC modelling.

3.3. Data Transformation and Partition

The data set (Tables 2 and 3) consists of different input features with varying scale
such as GR, DT, and LLD logs. They have values ranging from 0 to 353 API, 40-140 us/ft,
and 0 to 178 Ohm.m, respectively. In machine learning applications, it is necessary to have a
uniform scale of the input features, while few of the algorithms require data to be Gaussian
distributed. Feature scaling helps in faster converge of the algorithm and is less time-
consuming in modelling [35,42,47]. Considering the advantage of data transformation,
input features are converted with any of the mathematical operators like logarithmic,
square-root, and mean normalization. In this work, the mean normalization operator is
used to convert every input feature and confine their ranges between —1 and +1 before
doing any training and validation.

The most common approach of supervised machine learning applications is to ran-
domly separate the data into three sets, namely, training, validation, and test. Frequently,
the data is split into a 60:20:20 ratio for training, validation, and testing, respectively
(e.g., [42]). However, data partitioning can be modified depending upon the data ana-
lyzer’s objective. The training set is used to train the model based on pre-defined model
parameters, whereas validation guides in tuning the model parameters so that the accuracy
of the predictor model can be optimized in an unknown data set. Moreover, the validation
set is useful when we compare multiple predictors to choose the efficient ML model. Once
the evaluation process is complete, the testing set is used to evaluate the performance of the
predictor on unknown data sets. We split the data set into a 70:30 ratio to perform training
and validation of synthetic log generation. One blind well (Looma-1) is reserved to evaluate
the performance of the best predictor. A specialized version of the K-fold cross-validation
strategy, i.e., LOOCV [11] is applied for the TOC prediction model building (See Section 4).
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4. Methodology

A workflow is proposed to predict TOC from well-logs by ensemble learning. Conven-
tional multi linear regression is also part of the workflow implementation to make a fair
comparison with the non-linear ensemble learning approaches. The workflow is divided
into three steps which are:

i Data.

ii ~ Ensemble learning.

Multiple model generation;
Model parameter optimization;
Model validation;

Model integration/selection.

iii ~ TOC prediction.
The ensemble learning is further sub-divided into four stages. The graphical view of
ensemble learning workflow is presented in Figure 3.

4.1. Data

Accumulation of input data, core TOC, filling log value by synthetic, quality control,
data normalization, and data splitting are already covered in Section 3. The quality of input
features has a significant effect on the performance of a learning algorithm when doing
regression tasks. Irrelevant or redundant input features degrade the prediction accuracy
of the ML model. Therefore, we adopted different attribute groups to obtain the most
appropriate sub-set of well-logs for model generation.

4.2. Ensemble Learning

The main idea of ensemble learning is to combine several models either for regression
or classification on same data, each performing the same task, to obtain an improved
composite global model, with more robust and reliable estimation or decision than can be
obtained from a single model [54,58]. Considering the heterogeneity of shale reservoirs
within a basin, as well as other basins, the ensemble learning approach is suggested to be
effective due to its previous successful application in various industries, such as finance,
bioinformatics, healthcare, manufacturing, geography, etc. [58].

ML modelling determines the mapping function between input features (well-logs)
and the target (core TOC). Thereafter, this mapping function can forecast output when a new
set of input features is supplied. The two most probable sources of error of ML modelling
are an error due to bias and an error due to variance (see graphical illustration in Figure 4a).
Minimization of these two types of error helps avoiding an under- or over-fitting problem
of the model. In a supervised problem, our expectation of a real relationship between input
features and the target and the aim is to estimate that relationship with a model. When
assuming a simple linear relationship between input features and target, we are forcing a
bias on the model, while variance comes into effect as the variability of model prediction
with a given data set. There is always a trade-off between bias and variance [54,57] because
a low bias model is indicative of high variance, and vice-versa (Figure 4b). Therefore,
an ensemble learning approach is a better solution to tackle bias—variance trade-off by
including boosting and bagging methods. A demonstration of variability reduction by
ensemble learning is postulated through a graphical explanation in Figure 5.
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Figure 5. Variability reduction by application of three ensemble learning models (modified from [54]).

4.2.1. Multiple Model Generation

In this paper, we applied conventional linear regression and four non-linear ensemble
learning regression models (see Appendix A for more details of each applied ensemble
learning models). The basic advantages and disadvantages of each of the algorithms are
presented in a tabular format in Table 4. It is clear that non-linear ML algorithms have
several benefits compared to a linear regression technique. RF and GB approach have
capacity to handle bias and variance effectively and are not a black-box type approach
compared to remaining two non-linear algorithms. The implementation overview of each
of the ensemble learning model are presented in Appendix A.

Table 4. Basic overview of all implemented algorithms where each of them are compared to under-
stand their advantage and disadvantage (personal communication Irina Emelyanova, 2020).

Feature MLRs ANNs SVMs RFs GBs

Black box No Yes Yes No No

Data flexibility (different types) Yes Yes No Yes Yes
Unique solution Yes No Yes No No
Overfitting Yes Yes No No No

Efficient training time No Yes No Yes No
Performance No Yes Yes Yes Yes

4.2.2. Model Parameter Optimization

Optimization of the model parameter is the necessary step to achieve the most ac-
curate predictor. We choose the optimum value of the most effective parameter using
the grid-search cross-validation technique (scikit-learn package, [33]). The most suitable
parameters for each studied ensemble learning model were finalized prior to model vali-
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dation. This was demonstrated for each of the implemented algorithms mentioned in the
Appendix A section.

4.2.3. Model Validation

Cross-validation is used to train and validate any of the models selected for the
application. Two different ways of model validation are performed. In synthetic log
prediction, where validation data sets are used for selecting the best model while in TOC
forecasting, we implement a special case of k-fold cross-validation (LOOCV). When the
database contains a very small amount of data, LOOCYV is a preferable choice [11]. For n
data points, LOOCYV uses (n — 1) data points in building the model and remaining one
to test. The process is repeated 7 times; therefore, the model can learn # times from the
different training data points to improve the accuracy of the model (Figure 6).

Total number of data points

K=0 _ Train | Train I Train I Train |Eo -
K=1 Train | Train | Train |E1

| Train _ Train | Train |E2 m*Sum( )
—E = 1/n*Sum(E,, E,...E,

000

K=2 |Train
K= n-1| Train
K=n I Train

I Train | Train ‘ Train _ E, -

Figure 6. Leave-one-out cross-validation implementation procedure. # is the number of data sample,
E, is the MSE value of n times iteration of cross-validation. E is the summation over all # iterations
MSE value.

After the model has passed through a training data set, each ensemble learner gener-
ates a prediction model for target output. These prediction models run across the validation
data set and then two regression metrics are computed MSE and R? for each of them.

The MSE is defined as the mean squared error of the original and predicted value. The

expression is as follows
1

MSE = " Zinzl (Yo - Yp>2 (6)

where y, and y,, represent original and predicted value, respectively, and 7 is the number
of data points in the validation set.

R2 _ 1 Sum of squared distances between the original and predicted values

@)

~ Sum of squared distances between the original and their mean values

R? value indicates the goodness of fit of the set of predicted and actual values. The
value of 0 and 1 indicate no fit and perfect fit, accordingly. For optimum model selection,
we expect the lowest value of MSE and the highest value of R%.

4.2.4. Model Integration/Selection

In the model finalization step, we select the outperforming model based on its per-
formance accuracy on the validation data set. It is possible to choose the best performing
model from model validation results by comparing MSE and R? values. These two statisti-
cal metrices are best when dealing with a regression problem. While another option is to
take an average of all participating models if their prediction accuracy is similar.
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4.3. TOC Prediction

The last stage of the ensemble learning model building is to prepare the model for
TOC prediction on unknown data.

5. Results
5.1. Synthetic NPHI Generation

From the available wireline log curves, three of them, namely, DT, GR, and Log10_LLD
logs, are used to predict synthetic NPHI with four separate ML models (MLR, MLP, SVM,
and RF). Data sets are divided into 70:30 ratio as training and validation sets, while a
blind well is set aside to test the model’s performance. Parameters of the four regression
algorithms are optimized using the validation data set. Following the optimized model
parameter selection, the comparison of the various model’s performance matrix is created,
which is in Table 5. Random forest outperforms with the least MSE and highest R? value
compared to other models (Table 5). In blind well (Looma-1), the performance of the
random forest model is close to the validation data set’s outcome (MSE of 4.79 and R? of
0.93), which further justifies the validity of the selected model (Figure 7a). The other two
wells Aquila-1 and Theia-1 are part of training and validation where the predicted NPHI
was combined with the original log. Overall, the synthetic ML predicted NPHI has a good
correlation with the original NPHI and achieved an R? value of 0.96 for the full data set,
which is displayed in Figure 7b.

Table 5. Mean squared error (MSE) and R? score of four ML models for synthetic NPHI prediction.
RF model achieved the least MSE and highest R? score on the validation data set highlighted in
the table.

. s 2 . . . . 2
Model Description Training MSE Training R Validation Validation R

Score MSE Score
Multi-linear Regression 9.86 0.86 10.12 0.86
Multi-layer perceptron 6.34 0.92 6.85 091
Support vector machine 3.87 0.95 5.58 0.92
Random forest 1.80 0.98 4.61* 0.93 %

*—The minimum MSE value and highest R? score.

1700 Looma-1 200 Aquila-1 1300 Theia-1
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Depth(m)
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Original NPHI (%)
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10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 b Synthetic ML predicted NPHI (%)
(a) NPHI(%) NPHI(%) NPHI(%) ( )

Figure 7. (a) Comparison of the original NPHI (green) and random forest predicted NPHI log (red)
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for three wells in the Goldwyer formation. Test well Looma-1 achieved a prediction accuracy with
R? value of 0.93. (b) Cross-plot of the original NPHI and estimated NPHI log using random forest
predictor of the full data set. Linear regression trend line (yellow dotted line) shows R? value of 0.96.

5.2. Synthetic RHOB Log Generation

RHOB is completely absent from three drilled wells in our case. Gardner’s average
velocity-density transform (Equation (1)) is applied to estimate bulk density value from
P-wave velocity. However, local calibration is performed to match the average value of the
rock (Figure 8). For ML modelling, a similar workflow as of synthetic NPHI is followed.
The input feature logs are GR, DT, log1l0_LLD, and NPHI. Data preparation is completed
at an early stage of data accumulation. Data set is divided into a 70:30 ratio for training
and validation, and one blind well is in reserve for testing. The training set is learned with
the same ML regressor models as in synthetic NPHI workflow (Section 5.1) and then each
model’s performance is examined with the validation set. Each respective model’s response
for both the training and validation data set are reported in Table 6. Depending upon
the least MSE and highest RZ numerical value, random forest becomes the most effective
model again for synthetic RHOB log generation. The outperforming model’s prediction
statistically reaches near to a perfect value when compared with the original bulk density
data set (Figure 9). The synthetic RHOB log profile in Figure 10 derived from the random
forest predictor closely matches the original density log curve in the blind well, which is
established by the value of the evaluator metrics R2.

3.0 -
o]
o‘..
0®
..
- O
2.8 o
0®
S 2.6 -
d
3
2
%]
c
8 24 -
o 0® ¢ Density data
o. 0°
o] °0 0 Gardner Average
A )
224 o
(¢} Average
oO
T ® Gardner Calibrated
2-0 T T T T T 1
3 4 5 6 7
Vp (km/s)

Figure 8. Gardner’s [37] velocity-density transform plot of studied wells in the Goldwyer formation.
The empirical trend does not fall on mean value (yellow triangle), and so, the curve is shifted to
match (green trend line).
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Table 6. Model comparison for synthetic RHOB prediction with four supervised ML models. RF
model reached the least MSE and highest R? score on the validation data set highlighted in the table.

Training R2 Validation Validation R?

Model Description Training MSE Score MSE Score
Multi-linear regression 0.01 0.51 0.01 0.51
Multi-layer perceptron 0.00 0.72 0.00 0.71
Support vector machine 0.00 0.58 0.00 0.58

Random forest 0.00 0.94 0.00 * 0.85*

*—The minimum MSE value and highest R? score.

¢ Density data

e ¢ ¢ o Linear (Density
data)

28 - R?=0.9039

Density (g/cc)
N
(o))

2.2 I I Ll 1
2.2 24 2.6 2.8 3.0

Synthetic ML predicted density (g/cc)

Figure 9. Cross-plot of the measured bulk density and ML predicted density on the studied wells of
the Goldwyer formation. The linear regression trend line (red) is overlaid on the plot. R? value of
0.90 between measured and predicted density is achieved.
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Figure 10. Comparison of actual bulk density and random forest predicted bulk density log on three
wells. Blind well Looma-1 is showing prediction accuracy index R? of 0.84. The remaining two wells
(Aquila-1 and Theia-1) are part of the training and validation data set. Predicted RHOB (red in color)
are overlaid on the original RHOB log of Aquila-1 and Theia-1.

5.3. Conventional TOC Estimation
5.3.1. TOC Estimation with Schmoker Method

The Schmoker method, Equation (2) is used to calculate TOC of the Goldwyer forma-
tion of the Canning Basin. Correlation of predicted and core derived TOC is plotted in
Figure 11. The estimated TOC differed significantly from the core TOC. Therefore, such an
empirical method may not be suitable for this formation. Possibly, the amount of organic
richness in the formation is not captured by the RHOB log. Moreover, there is limited scope
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left to adjust empirical constant (“a” and “b”) between core TOC and RHOB because of
their poor correlation.

Predicted TOC (wt %) from Schmoker method

Core TOC (wt %)

Figure 11. Cross-plot of core TOC from Rock-Eval pyrolysis of core specimen and Schmoker’s method
derive TOC. The black line is a 1:1 ratio between input and output variables. MSE and R? values are
2.037 and 0.43, respectively.

5.3.2. TOC Estimation with Passey Method

Passey’s method [26] is routinely applied for TOC computation in an unconventional
shale reservoir. The method requires deep resistivity and sonic log. Another requisite of the
method is LOM, which can be obtained from maturity information like vitrinite reflectance
(Rp) or Trax data. Description of the baseline value of resistivity and compressional sonic
travel time, vitrinite reflectance (Ry), and LOM of all ten wells are in Table 7 (Rj information
accumulated from various sources—Lukman pre-thesis, 2019; DMIRS database, 2019).
LOM is computed from a third order polynomial function between Ry and LOM [10] as
expressed by Equation (8) below

LOM = 2.1501R3 — 9.8915R3 + 17.803Rg + 0.9359 (8)
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where LOM and R refers to is level of organic metamorphism and vitrinite reflectance
(wt %), respectively.

Table 7. Vitrinite reflectance, LOM, resistivity, and compressional sonic travel time baseline value of
each studied well in the Goldwyer formation of the Canning Basin.

Well Rp Range LOM Average Rpaseline Atpaseline
Theia-1 1.05-1.15 114 1.5 84
Mclarty-1 0.85-1.08 10.8 2.5 92
Hilltop-1 0.68-0.77 10.0 45 103
Aquila-1 0.74-0.83 9.8 4 95
Canopus-1 09-1.1 11.0 2.8 92
Matches spring-1 0.8-0.9 10.2 3.5 92
Missing-1 0.8-1.2 10.9 2.5 88
Hedonia-1 0.91-1.09 11.0 6 108
Pictor East-1 0.9-1.1 11.0 3.5 92
Edgar Range-1 0.7-0.8 9.6 3 95

An average value of LOM and Ry varies from 9.6 to 11.4 and from 0.75 to 1.1 wt %,
respectively. The cross-plot of core TOC and TOC from Passey’s method in Figure 12 shows
slightly better accuracy with a mean square error value of 0.694 relative to Schmoker’s method.

Predicted TOC (wt%) from Passey method

-2

Core TOC (wt %)

Figure 12. Cross-plot of core TOC from Rock-Eval Pyrolysis and computed TOC from Passey method.
The black line represents a 1:1 ratio between input and output variables. MSE and R? values are 0.694
and 0.44, respectively.
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5.4. TOC Prediction with Ensemble Learning

The following five well-logs, namely, GR, DT, log10_LLD, RHOB, and NPH], are used
along with one additional feature, AlogR for predicting continuous TOC profile with su-
pervised machine learning regression techniques. We checked the reliability of the feature
weight factor by cross-plotting core TOC with each log response (Figure 13). Two input
data groups are created based on observation of the above cross-plot analysis in Figure 13
which are: (i) Group1—GR, DT, NPHI, RHOB, log10_LLD, and AlogR; (ii) Group2—GR, DT,
RHOB, log10_LLD, and AlogR. One linear ML model and four non-parametric ensemble
models are trained and validated with two input attribute groups in predicting continu-
ous TOC by following the workflow in Figure 3 (Section 4). LOOCYV cross-validation is

implemented, and their performance is recorded on the validation set in Table 8.
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Figure 13. Cross-plot of input features (petrophysical logs) and core TOC: (a) gamma-ray (GR),
(b) logarithmic of deep resistivity (log10_LLD), (c) compressional sonic travel time (DT), (d) bulk
density (RHOB), (e) neutron porosity (NPHI), and (f) separation of sonic and resistivity log (AlogR).
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Table 8. Supervised ensemble learning model’s performance of two different attribute groups in

Goldwyer formation for TOC prediction. Every model’s accuracy is represented by MSE and R? on

the validation data set.

Attribute Group Group-1 Group-2
Model Description MSE R? Score MSE R? Score
Multi-linear regression 0.23 0.76 0.21 0.77
Multi-layer perceptron 0.160 0.84 0.142 0.857
Random forest 0.152 0.854 0.132 % 0.862 *
Support vector machine 0.165 0.821 0.164 0.835
Gradient boosting regression 0.168 0.841 0.145 0.855

*—The minimum MSE value and highest R? score.

MLR, MLP, RF, SVM, and GBR model have achieved prediction accuracy with predic-
tion error of 0.21, 0.14, 0.13, 0.16, and 0.15, respectively, whereas R2 scores are 77%, 85%,
86%, 83%, and 85%, respectively, for group-2 attribute set (Figure 14). The result pointed
out that each of the ensemble learning models has a similar estimation capacity, but not the
same output. Hence, we define an aggregated regressor that combines the performance
of four ensemble learning model and returns the average estimate. The average predictor
model was validated on a blind test well (Figure 15). Cross-plot of core TOC is compared

with average ensemble predictor TOC values in Figure 16.
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Figure 14. MSE and R? plot of one linear and four ensemble learning model for predictive TOC

modelling. Four ensemble learning models have equally performed prediction outputs. The left

y-axis scale presents MSE value whereas the right y-axis displays R? score.
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Figure 15. Comparison of different TOC estimation methods on a test well of the Goldwyer shale
formation. Track 1, 2, and 3 are showing GR, logarithmic of deep resistivity, and combination of RHOB
and NPHI, respectively. The last four tracks present Schmoker, Passey, four ensemble learning models,
and an aggregated ensemble model, estimating the TOC profiles, respectively. Core TOC (black triangle)
is also overlaid on each of the last four tracks. In track 6, four ensemble model predicted TOC are
compared, and there is significant variation of prediction capability along the well where the combination
of four ensemble model in track 7 provides much better followed core TOC value.
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Figure 16. Cross-plot of core TOC and average ensemble predictor estimated TOC of all studied
wells in the Goldwyer formation. The black line implies a 1:1 ratio. Prediction is not still perfect but
improved significantly with R? value of 0.86.
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1300

6. Discussion

The Goldwyer formation of the Canning Basin is highly complex in nature, which can
be inferred from the large variety of core TOC value ranges from 0.16 wt % to 4.47 wt %
with standard deviation of 1 wt % (Table 3) and also from previous research publication
on maturity index, lithology, and core description of the drilled wells [5,31,59]. Figure 17
displayed the core plugs extracted from a well in the Goldwyer formation where it is very
clear that the depositional environment is changing rapidly from shallow to deeper section.
Due to the absence of NPHI and RHOB log on three studied wells we could not complete
basic petrophysical evaluation nor estimate traditional TOC using Schmoker’s method. At
the same time, the ensemble learning method with two different attribute groups could
not be performed because of the shortage of those logs in Edgar Range-1, Mclarty-1, and
Matches Spring-1.
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Figure 17. Core images from Theia-1 well at different depths in the Goldwyer formation of the
Canning Basin. Sample depths are shown in GR log by a triangle. Lithological boundaries (black
dashed line) are overlaid to show different Goldwyer units. Goldwyer-I and Goldwyer-III units
are mostly clay-rich, whereas intermediate Goldwyer-II unit is a carbonate-rich interval. The first
core example is mostly calcite rich mudstone and mostly homogeneous in Goldwyer-I unit. The
second core image is a mixture of calcite and mudstone, and is highly heterogeneous. The third and
fourth core are dark-grey color mudstone with lamination and highly complex composition of calcite
and mudstone, respectively. The depth interval of third and fourth core sample is within 15 m, but
a significant change in depositional environment is observed. The organic richness of these core
samples varies from 0.04 to 2.25 wt % (from current ongoing research work of [60]).

NPHI is responsive to the variation of lithology, compaction, and hydrocarbon effect
in the sub-surface. GR, DT, and log10_LLD are the most effective log to reflect the above
variation. Therefore, our methodology of synthetic NPHI from these three input logs
has clear physical significance in a petrophysical point of view. It is very common to
generate a synthetic density log from the check shot or velocity-density transform [39]
function. Bailey and Henson [36] predicted shallow bulk density profile from Gardner’s
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locally calibrated transform function on the Canning Basin but the prediction quality
varies a lot. Here, synthetic RHOB log with Gardner’s transform and ML predictive
modelling are compared on three wells. Lithology-specific velocity-density functions
are not implemented because of the complex depositional history of Goldwyer shale
formation [5,59]. It seems that the locally calibrated Gardner transform function does
not follow the density data trend and was largely under-predicted (R? value of 0.40).
This could be due to the variation in organic matter type and depositional environment,
etc. [30,36]; however, the machine learning model’s prediction accuracy is meaningfully
higher (R? value of 0.90) than Gardner’s empirical formula. The poorer performance of the
Gardner empirical transform defended our decision to consider the ML application. Non-
linearity, higher dimension, and overlapping nature of input-output features are the main
factors of the ML model’s success [22,47,61]. Therefore, the generation of NPHI and RHOB
log with machine learning algorithms become effective in a highly variable depositional
environment such as the Goldwyer formation. For both of their predictions, the random
forest was the best estimator with the squared value of the correlation coefficient being
93% and 85%, respectively, on the validation data set. Synthetic log generation helped to
increase more core TOC samples into our TOC database, which is an advantage for any
machine learning prediction [53].

The formation’s complexity is responsive to poor correlation coefficients from tra-
ditional TOC techniques (Schmoker and Passey) with an R? value of 0.43 and 0.44 [27].
Moreover, the MLR method, which builds TOC log with linear regression algorithm from
wire-line logs can reach an average correlation of 0.77 on the studied wells, but it is difficult
to generalize because of the difference in log response and proven non-linearity across
the Goldwyer formation from previous work in the Canning Basin [28,31]. Due to the
non-unique relationship of wire-line logs and core TOC (laterally as well as spatially) in
shale gas reservoirs, data-driven techniques are more reliable to improve prediction not
only in a well, but also across the reservoir interval. The authors in [22,23] applied a
non-parametric single ML model to organic-rich North America’s Barnett shale (TOC value
reaches a maximum value range from 10 to 15 wt %), whereas Yu et al., 2017, adopted the
GPR ML model with different kernel functions on the organic-rich Ordos Basin and poorly
distributed organic matter content of Goldwyer shale (TOC is confined within 0 to 2 wt %).
So, it is not practicable to obtain a unique predictor with any of the single ML models on
the randomly varying organic matter content of the Goldwyer shale formation covering
low to moderate TOC ranges (See Table 3; Figure 14). At the same time, optimization of the
input feature weighting factor is necessary and is dealt with two different attribute groups.
The effective attribute selection is followed by several researchers in their ML application.
In the final TOC model building stage, neutron porosity log (NPHI) was dropped due to
its poor relationship with core TOC, and it did not improve the model’s performance in
any way (Table 8). So, this justified the selection of group-2 attributes for building the final
TOC model.

In a given scenario of different well-logs (such as basic conventional logs, geochemical
logs, and ECS log), the ensemble learning method automatically chooses the relevant input
features when building more decision trees to improve its prediction power. This makes the
application easier in any geological environment. Because of the capacity of generalizability
in prediction, ensemble learning is relevant in the heterogeneous Goldwyer formation (see
Figure 17) to improve prediction power compared to any single ML model. Each of the
ensemble learning models reveals similar prediction accuracy. Henceforth, an average
regressor is our choice as the final predictor model, which combines four ensemble learning
models. The advantage is such a model balances out the weakness of each equally well-
performing individual model. After a hundred realizations, we can still predict TOC on the
validation data set with the same value of error function relative to each ensemble learning
model. This combined regressor model is able to capture heterogeneity and non-linear
interactions between features better than a single ML model. It also handles smaller data
set size, and under- and overfitting problem by combining many estimators compared to
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any single GPR, SVM, or ANN model. All the above points make the ensemble learning
model a robust predictor compared to either empirical or multi-linear regression, as can be
seen from Figure 15.

7. Conclusions

This study provides an efficient TOC estimation workflow from wire-line log responses
through a robust ensemble learning approach. In this paper we have demonstrated the
importance of missing data samples by generating synthetic NPHI and RHOB logs through
supervised machine learning regressor model when performing unconventional prospect
analysis to understand organic richness of the Goldwyer formation. The random forest
model was the outperforming regressor model for synthetic NPHI and RHOB log genera-
tion compared to the other models and empirical approach. The continuous TOC log was
built with the traditional Schmoker and Passey methods on all the studied wells using
three log responses (RHOB, DT, and LLD). Comparison of Rock-Eval TOC with traditional
methods showed poor correlation, whereas our newly developed ensemble learning ap-
plication improved the correlation from 44% to 80%. The final prediction TOC model is
the average predictor model, which is the aggregate of the four ensemble learning models.
In complex Goldwyer unconventional shale formation, the average predictor model is the
best solution relative to any empirical or single ML model to predict TOC.
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Abbreviations

Acronyms:

Al Artificial Intelligence

ML Machine learning

GR Gamma ray

LLD Deep resistivity

DT Compressional sonic travel time
NPHI Neutron porosity

RHOB Bulk density

ANN Artificial neural network
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MLR Multi linear regression

MLP Multi-layer perceptron

SVM Support vector machine

RF Random Forest

GBR Gradient boosting regressor

TOC Total organic carbon

LOM Level of metamorphism

LOOCV  Leave-one-out cross-validation
GPR Gaussian process regressor

MSE Mean-squared error

Symbols:

Ry Vitrinite reflectance

R Deep resistivity log

At Compressional sonic travel time
Tmax Maximum hydrocarbon generation temperature
Vp Compressional wave velocity

Ob Bulk density

wt % Weight percentage

log10 Logarithmic base 10

R? Squared of correlation coefficient
AlogR Separation of compressional sonic travel time and deep resistivity log

Appendix A. Overview of Ensemble Learning Models Applied in This Study
Appendix A.1. Multi Linear Regression (MLR)

Linear regression is the most widely used technique in building a relationship between
a dependent (output/target) and independent (input) variable. It uses a linear approach to
model the correlation function between the input and output variables (Emelyanova et al.,
2016). In the case of one input variable, it is known as single linear regression, whereas for
multiple input variables, it is called multiple linear regression. The expression between
input (x;) and output (y;) assuming a linear relation can be written as

Vi= 00+ x101+ x002 +... + x40 + ¢, i=1,2,....n (A1)
In matrix notation Equation (A1) can be expressed as
Y =X0T + ¢ (A2)

where Y is a vector of observed values y; of the variable known as the output or dependent
variable, X is the vector form of input or independent variables x;, 0 is the (n + 1) dimen-
sional parameter vector—elements are known as regression coefficient (for example, 6 is
intercept) and ¢ is vector form of the error term e;.

The aim is to minimize error of the cost-function (most used function is mean squared
error function) which is defined as

1 . 2
J(80,81, - 8) = 5= YL (i~ vi) (A3)

where J(09, 01, ...,0,) is the cost-function; y ; and y; represent the predicted and actual output.

Various parameter estimation techniques are available for linear regression. For exam-
ple, least-squares methods, maximum-likelihood methods, etc. In the artificial intelligence
domain, for example, machine learning, linear regression plays a crucial role and is the
most fundamental supervised machine-learning algorithms. It is because of the algorithm’s
simplicity and model interpretability. We have adopted a penalized least-square regression
with an added regularization term (Lasso—L!-norm penalty with a penalty value of 0.01).
This approach is useful to tackle the least-square method’s low bias and high variance



Energies 2022, 15, 216

25 of 30

consideration [35]. It is always a consistent approach to start building any regression model
by including MLR to justify the necessity of complex model generation.

Appendix A.2. Multi-Layer Perceptron (MLP)

An artificial neural network is a computer algorithm that tries to mimic the human
brain [27,61]. A neural network contains three or more layers: an input layer, one or more
hidden layers, and an output layer. A neuron can pick an input vector x and computes its
scalar with an adjustable weight vector W and produces an output vector y utilizing the
non-linear activation function. The activation function, for example, sigmoid, aka logistic
function in the demonstrated example in Figure A1, always restricts output between 0 and
1. Other activation functions can be used like rectified linear unit (RELU), exponential
linear unit (ELU), and hyperbolic tangent (tanh) (e.g., personal communication Montaron,
2019). The algorithm runs through a forward propagation by outputting target values
from known inputs, randomly chosen weights and then calculating the error between
estimated and actual target values. This error is back propagated through the network to
refine the weights of each neuron. Prior to running any experiment, the hyper-parameters
are tuned (number of iterations, number of neurons, damping factor, etc.) by performing
sensitivity analysis on training and validation data sets. In this study, an ensemble of
MLPs is generated by different realizations and their predictions are integrated into a
single solution by bootstrap aggregation (e.g., an average of multiple outputs). The tuned
hyperparameters used in the present application are in Table A1.

/ Input layer: 3 x 1 \ Wi /Hidden layer: 5 x 1\

\ X0

/Output layer: 1 x 1\

5x3

/

The i-th training example a, = o (W, x0 + b,)

§
/
/

The i-th prediction

j 5x 1 k / 1x1 \y"(“:(Wza(“ﬁbz)j

Figure A1. Schematic diagram of neural network architecture combining input layer, hidden layer,
and output layer. In the figure x, y, W, b, and sigma are representing input vector, output vector,
weighting vector, bias unit, and activation function respectively.
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Table A1. Description of final optimized hyperparameters for artificial neural network ensemble.

Neural Network Parameters (MLP) Values
Number of inputs 5
Number of Outputs 1
Number of Neurons 10
Training algorithm LBFGS
Alpha 1
Activation function RELU
Maximum number of iterations 2000

Appendix A.3. Support Vector Machine (SVM)

A support vector machine builds a set of hyperplanes in a high or infinite dimensional
space which can be effectively applied for regression and classification tasks. Maximal
margin hyperplane is the natural choice between input and output [23,42]. The best
advantage of this method is providing a unique solution but could be more time consuming
compared with other ML methods. In Figure A2, the concept of hyperplane is demonstrated
by the visual display. An ensemble of kernel functions (e.g., exponential (RBF), Cauchy
and Gaussian) and model parameters were analyzed using the grid-search approach for
model tuning. The hyperparameters of the tuned model are provided in Table A2 below.

Figure A2. Support vector machine schematic showing the maximal hyperplane design to predict
the best hyperplane to perform the regression.

Table A2. Final optimized hyperparameters for support vector machine ensemble modelling.

Support Vector Machine Parameters Values
Kernel Cauchy
Penalty parameter C 1
Gamma 1

Appendix A.4. Random Forest (RF)

Random Forest is another ensemble learning method where the purpose is to combine
the prediction of several base estimators with a given learning algorithm to improve the
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Tree 1 Tree2

robustness of the prediction capability. It is one of the most successful non-parametric
supervised machine learning models for regression and classification [35]. Among the two
groups of ensemble methods, such as averaging and boosting method, random forest falls
under the averaging group. The algorithm consists of many decision trees from a random-
ized variant of the tree induction algorithm [32]. It injects randomness into the training
phase by bootstrapping (subsampling with replacement) and taking a different subset of
features to split at each tree node. The insertion of randomness helps to tackle the variance
of the estimator and handing of the overfitting problems compared to other methods. We
created several estimators independently and finally averaged their predictions (see in
Figure A3 for example). The two most important parameters that are adjusted (scikit-learn
ensemble methods, [33]) are a number of trees and size of the random subset of features
before producing the output. The RF parameters optimized in this study are presented
in Table A3.

Data sample

Prediction 1

Prediction n
Prediction 2

Average of All Predictions

Random Forest Prediction

Figure A3. Random Forest schematic showing, an ensemble of decision tree predictor and the average
prediction defines the final output model.
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Table A3. Description of final optimized parameters for random forest ensemble learning.

Random Forest Parameters Values
Number of trees 200
Maximum depth 10

Number of features auto

Appendix A.5. Gradient Boosting (GB)

Gradient boosting is an ensemble learning method under the boosting category where
base estimators are generated in a sequential approach and at the same time reduce the
bias of the estimator. It works on the principle of a combination of several weak models to
produce a powerful predictor [62]. The process does not require any scaling of features and
can easily capture non-linearities and feature interactions. The algorithm is applicable for
both regression and classification problems. A few of the advantages of this process are
the handling of heterogeneous features, robustness to outliers, and sequential predictor.
However, the algorithm can cause overfitting during model validation and testing.

Gradient boosting trains a sequence of decision trees to obtain a minimum value of
the loss function. The approach is followed by building a model from the training data set
and then producing another model that tries to reduce the error from the first model. More
models are added until the training data set is predicted near perfection. Model parameters
are optimized in the boosting stage by the number of weak learners and the size of the tree.
The optimized parameters of the gradient boosting regressor model are shown in Table A4.

Table A4. Optimized hyperparameters of gradient boosting regression modelling.

Gradient Boosting Regression Parameters Values
Loss function Least square
Number of boosting stages 100
Number of features auto
Maximum depth 2
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