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Abstract: Oxy-fuel combustion is a promising strategy to minimize the environmental impact of
combustion-based energy conversion. Simple and flexible tools are required to facilitate the successful
integration of such strategies at the industrial level. This study couples measured residence time
distribution with chemical reactor network analysis in a close-to-reality combustor. This provides
detailed knowledge about the various mixing and reactive characteristics arising from the use of the
two different oxidizing streams.
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carbon capture and storage (CCS)

1. Introduction

The combustion of fossil fuels plays an essential role in power generation, owing to its
high power density and flexibility. While its application remains prominent, it is vital to
minimize its negative environmental impacts [1–3]. To this end, new combustion processes
to simultaneously improve fuel consumption and decrease pollutant emissions as well as
smart post-treatment methods must be developed [4]. Carbon Capture and Storage (CCS)
is identified as a key strategy to mitigate combustion-induced climate change [1,2,5–7]. It
allows for exploitation of the benefits of carbon-based energy conversion with minimal
changes and high retrofitting possibilities. Oxy-fuel combustion is a promising technology
that significantly enables CCS by leading to an exhaust gas mainly composed of carbon
dioxide (CO2) and water vapor [8,9]. Such a concept, though exhibiting undeniable advan-
tages, must be carefully studied in order to fully understand the hidden aspects required
for successful integration at the industrial level.

A compelling investigation demands a strong synergy between experiments and
modelling, ideally resulting in efficient and flexible analysis tools that quickly estimate the
optimal operation parameters. Residence Time Distribution (RTD) measurement is widely
employed in chemical industries to analyze the ongoing process and evaluate reactor
performance [10–12]. Besides providing a significant insight into the mixing and reactivity
of the flow, RTD data further improves the design and dimensioning of a Chemical Reactor
Network (CRN) of the system under investigation [13,14]. A CRN employs a properly
designed arrangement of ideal flow reactors to obtain a simplified model for the combustor
flow field. Identifying macromixing zones inside the considered facility makes it easier to
pinpoint the zonal behaviors where optimization effort can be an option.

Furthermore, such simplification enables implementation of detailed kinetic mecha-
nisms where a complete description of the combustion process can be acquired. This unique
advantage makes CRN modelling the preferred alternative compared to Computational
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Fluid Dynamics (CFD). While a valuable tool, CFD’s computational costs are high, espe-
cially when incorporating detailed kinetic mechanisms. Nevertheless, its essential features
of increasing combustion efficiency and lowering the pollutant emissions of combustion-
based devices are determined by the complex interaction between turbulence and chemical
reactions [15,16], requiring the inclusion of complex kinetics.

The schematization of a combustion chamber utilizing a network of interconnected ideal
flow reactors has been successfully achieved in the past [17–22]. The earliest works [17–19]
designed a CRN by identifying the mixing characteristics and modelling them accordingly
with ideal flow reactors. The authors of [23] enriched this approach, proposing a strategy to
schematize the diffusive fluxes necessary to properly describe a diffusion flame despite
modeling the system with ideal flow reactors, which expect a homogeneous feed. These
early methodologies have been further employed in more recent works [20–22] which com-
prise the refinement for diffusion flames based on the work in [23]. Timón et al. followed
the example set by [17] in their work [24] comparing standard gas turbine combustion
chambers and oxyfuel combustion for the Semi-Closed Oxyfuel Combustion Combined Cy-
cle (SCOC-CC). The system was rigorously modeled from the technical point of view, and
highlighted the different technical aspects to consider when designing oxyfuel combustion
systems. In addition, CRNs are sometimes coupled with CFD modelling to facilitate the
design of the network model [16,25–27]. For this reason, an automated hybrid CFD-CRN
approach has been developed and implemented by [28–31].

Despite the proven effectiveness of an automated CFD-CRN approach, more straight-
forward approaches are often preferred for dealing with industrial applications. The reason
lies in the possibility of better identifying the impact of operating parameters on coarser
mixing zones associated with the reactor’s mixing properties. Reactor network studies
based on RTD perfectly fit this scenario because RTD yields the mixing characteristics of
the system, which must be reproduced to describe a reactive flow. Beér and Lee and Van
Der Lans et al. [32,33] coupled RTD and CRN modelling to analyze the effect of the swirl
number in a combustion furnace, whereas in the works [34–36], technical issues related
to combustor design are uncovered and addressed through RTD-CRN modelling. Such
an investigation strategy is also applied in [37,38] to clarify the effect of steam dilution on
the flow field, while RTD-CRNs are usually kept simple and have not yet incorporated
chemical kinetics.

The objective of the present study is to exploit the RTD-CRN approach in order to
gain detailed knowledge about the key controlling parameters of the combustion process
stemming from the substitution of N2 with CO2 in oxy-fuel combustion. Comparing
the two oxidizing atmospheres provides the insight needed to properly retrofit existing
operating power plants while retaining the provided performance. To further this aim
by investigating cold flow and reactive conditions, a CRN of a down-scaled version of a
furnace is designed here, utilizing previous RTD experiments carried out on the test rig.
For the reactive case, kinetic results obtained from the network are therefore compared
with the experimental data on pollutant emissions. The developed model enables a better
understanding of the various mixing and reactive parameters inside the combustor for
both air and oxy-fuel flames.

2. Materials and Methods

The Residence Time Distribution (RTD) is the probability of how long fluid elements
remain inside a continuous process. The residence time of the species inside a reactive
environment is a crucial factor influencing the complete conversion of the fuel (thus
fuel efficiency) and the potential formation of harmful pollutants. While dealing with
continuous and turbulent flow systems such as those of interest in practical combustion,
fluid elements that entered the reactor simultaneously will not leave it at the same time. RTD
measurements are achieved by injecting an inert tracer using a known input function and
recording its concentration at the exit over time, C(t) [39]. Employing a pulse input, RTD
(mathematically referred to as E(t)) is directly retrievable through Equation (1) [11]. Once
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the distribution is known, the moments of the distribution can be calculated. Equations
(2) and (3) show the most common moments of the RTD. The mean residence time, τm in
Equation (2), indicates the average time pockets of fluid spend inside the system, while
the variance of the distribution, (σ2) in Equation (3), gives information about its spread.
In ideal cases, τm equals the time-space τ in Equation (4). Figure 1 shows the RTDs of
the ideal flow reactors, the Continuous Stirred Tank Reactor (CSTR) and the Plug Flow
Reactor (PFR), easily obtained by virtue of the underlying hypothesis behind these two
basic models [11]. The ideal flow reactors represent the two extremes of mixing possibilities:
for the CSTR, perfect and instantaneous mixing of all the entering streams is assumed,
whereas for PFR, piston flow in the streamwise direction and ideal mixing in the generic
cross-section along the flow axis are assumed [11].

E(t) = C(t)/
∫ +∞

0
C(t)dt, [1/s] (1)

τm =
∫ +∞

0
t E(t) dt, [s] (2)

σ2 =
∫ +∞

0
(t− τ)2 E(t) dt,

[
s2
]

(3)

τ = V/
.
v, [s]

V = reactor volume,
[
m3]

.
v = volumetric f low rate,

[
m3/s

] (4)
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Figure 1. Ideal flow reactors and their RTDs. (a) CSTR; (b) PFR.

The flow behavior of real reactive systems lies between these two reactors, exhibiting
complex residence time distributions for which mathematical treatment and understanding
are not straightforward. For this reason, an actual reactor was schematized through an
arrangement of ideal flow reactors with well-known RTD shapes. Such reactors must be
arranged so that the RTD of the network matches the experimental RTD of the real system.
Therefore, two macro-steps were identified to apply this investigation strategy:

• Determination of the reactor network structure, meaning the amount and type of
reactors and their interconnections with mixing or splitting streams.

• Determination of the selected unknown variables. The most common are the volume
of the reactors and the splitting ratio for each designed splitting stream, thus uniquely
defining the processed flow rate and the residence times in the reactors. For non-
isothermal processes, the final process temperature must also be set at this stage.

To design a suitable arrangement, flow visualization data can aid in the interpretation
of RTD in terms of main flow structures. Useful data range from Particle Image Velocimetry
(PIV) measurements for flow field investigation to CFD-computed streamlines. Unlike the
cases reported in the literature [16,25–27], where the reactors’ volumes and processed flow
rates were directly calculated from CFD, in this case computed streamlines (where available)
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only serve to identify the major mixing zones and their interaction. Then, a PFR is chosen if
a prevailing flow direction is present; otherwise, a CSTR is associated with the recirculation
zone [40]. Once an arrangement is designed and the values of selected unknown variables
must be determined, the CRN is treated as an optimization problem [41–43]: the mathe-
matical model of the tracer propagation must be written in terms of the chosen variables,
which are determined by fitting the model response to the experimental response. In this
work, the mathematical model is solved by transforming it into the Laplace domain [44],
and the routine implemented in MATLAB®/Simulink® (Natick, MA, USA) [45]. Based on
these principles, the CRN shown in this work was designed following a stepwise approach
starting from elementary arrangements [32,46,47]. Complexities were gradually added
for implementing more features of the flow field. This approach allowed for reducing the
number of unknown variables to be determined through the optimization, according to the
following reasoning. Although flow visualization data support a first estimation of zone
volume, the coordinates at which a certain zone can be located are not unambiguously de-
marcated. Therefore, the available experimental evidence has been exploited by designing
coarse CRN, starting from 2–3 reactors and only a few splitting ratios. Adding complexity,
these coordinates were checked until they reached a tight range and it was therefore not
necessary to take volume parameters into account. To conclude the discussion about the
variables chosen to properly describe the system, it is worth mentioning how diffusive
fluxes (mass and energy) among the reactors were brought into the picture. Diffusive fluxes
are not explicitly treated in the optimization. The amount of mass exchanged through dif-
fusion is reproduced as a corresponding convective flow, which is not explicitly separated
from the total flow processed by the reactors [20,22,23]. Energy diffusion between two
separated reactors results in a different temperature with respect to an expected value. This
is considered by determining the most suitable temperatures for each zone through the
RTD-fitting procedure. In conclusion, the unknown variables determined by fitting the
computational model to the experimental RTD through an optimization procedure were
splitting ratios and temperatures in case of reactive conditions.

The selected network, shown in the following sections, could fit both air and oxy-
fuel operation points, exhibiting only one global minimum. Employing the same CRN
for both operating conditions supports identifying the crucial differences between air
and oxy-fuel mixtures through the different values of the fitting variables. After fitting
the model response against the experimental data, the network can describe the mixing
features of the system and the chemical kinetics applied to the CRN. This is achieved by
employing the newly developed NetSMOKE [48,49] tool for the kinetic resolution of CRNs,
a chemical reactor solver developed in C++. It utilises the OpenSMOKE++ libraries for
CSTRs and PFRs [50]. The CRN is regarded as a system of nonlinear equations for the mass
balance of a certain species across each device. The equations are solved for every species
included in the chosen chemical kinetic mechanism, which in this case is the GRI kinetic
mechanism [51].

2.1. Oxy-Fuel Combustor and Residence Time Distribution Measurements

Figure 2 shows the geometry and dimensions of the oxy-fuel combustor (OFC). The test
rig was designed to investigate gas flames and gas-assisted coal/biomass flames operating
in both air and oxy-fuel conditions. This setup has been thoroughly investigated both
experimentally [46,47,52–55] and numerically [56,57]. The fuel employed in the referenced
studies, as well as in the present one, is methane. As from Figure 2, the burner down-fires
into the combustion chamber. Walls are made of wedged fused silica to enable optical
access. A partially premixed mixture of fuel and oxidizer (either air or an oxyfuel mixture,
details in Table 1) is injected from the inner orifice (primary flow, I).
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Figure 2. Sectional view of the burner with the combustion chamber and optical equipment for the
RTD measurements: (a) burner and quarl flows; (b) entire combustion chamber with the depiction of
gas flame. Reprinted with permission from [47] © The Optical Society.

Table 1. Details of the points of operation [52]. Data below reproduced with permission from ref. [52],
2017, Elsevier.

Operation Points NRair NR30 Rair R30

Oxidizer Air/O2/CO2, vol% 100/0/0 0/30/70 100/0/0 0/30/70
I CH4, Nm3/h - - 2.01 2.01

I Oxidizer, Nm3/h 13.55 8.16 13.55 8.16
II Straight Oxidizer, Nm3/h 5.97 3.76 5.97 3.76
II Inclined Oxidizer, Nm3/h 12.02 7.27 12.02 7.27

III Oxidizer, Nm3/h 69.95 42.60 69.95 42.60
Equivalence ratio φ, I and II - - 0.6 0.69

Thermal Power, kW - - 20 20
Swirl number 0.47 0.47 0.47 0.47

An outer orifice comprising straight and inclined channels delivers a swirled flow of
oxidizer (secondary flow, II). A tertiary flow of oxidizer is injected closer to the combustor
walls (Figure 1b).

For simplicity, the cases employing air as the oxidizer are addressed as NRair/Rair,
and oxy-fuel mixture cases are referred to as NR30/R30 (Table 1), where the initials NR
and R designate non-reactive and reactive mode.

These operating conditions are the reference for the experimental work carried out in
the test rig [52,54,55]. As clear from Table 1, they were also conceived so that the flames
would have the same output power. This is of particular importance, as the final goal
of such studies is to understand the difference between a more sustainable combustion
process and a reference one, ensuring there is no performance reduction. The choice of the
different volume flows for the two selected operative conditions was furthermore based
on previous investigation. In [52], an oxy-flame stabilization method which relied on
burner aerodynamics was applied. It was resumed in [53], where it was found that the
momentum fluxes at the inlet nozzles of a combustion chamber have a decisive influence
on the flame shape. Therefore, following these findings, the volumetric flow rates in Table 1
were selected to reproduce the same axial momentum fluxes as the reference flames in [52].

RTD measurements were carried out for cold and reactive conditions, investigating
both oxidizing streams [46,47]. The non-reactive tracer, CH4 for isothermal measurements
and HCl during combustion, was added through the primary flow orifice (see Figure 2)
and detected in situ through direct Tunable Diode Laser Absorption Spectroscopy (TDLAS).
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The temporal evolution of the tracer concentration yielding the gas phase RTD was mea-
sured by simultaneously detecting its concentration immediately after its injection (optical
equipment in Figure 2a) and before the combustor exit (optical equipment in Figure 2b).
The tracer was detected 50 times for each operating condition, and the resulting RTD curves
result from the average of these single-injection experiments.

2.2. Modelling

Following the guidelines mentioned earlier, a CRN was designed for the OFC. PIV
experiments [52] support a consistent identification of the mixing zones together with the
CFD-predicted flow field in Figures 3 and 4, which stems from an investigation of the
suitability of LES for computing RTDs in complex combustors [56]. The joint interpretation
of the RTD data and the available flow visualization material led to a first gross flow
schematization, which is shown in Figure 3a.
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The delivered swirled flow, typical of industrial combustion systems [58,59], exhibits
the classical structure comprising a flow bypass and a central recirculation, as seen in
Figure 4. The primary and secondary flow injected from the respective orifices generate
a small corner recirculation zone, also visible in Figure 4. Thus, understanding and sub-
sequent correct schematization of the near nozzle region is essential for the accuracy of
the entire CRN, especially to reproduce the reactive flow field and properties. Figure 4
shows the IRZ and the small corner recirculation zone schematized by CSTRs due to the
intense mixing. The IRZ is enclosed by a high-velocity flow [52] with a clear preferential
path directed toward the combustion chamber. Therefore, a series of PFRs represents this
region referred to as “bypass” in Figure 3a. As shown in Figure 4b, the difference between
the isothermal model and the reactive one lies in the presence of a separated reactor to
schematize the flame during combustion. Swirling flows promote the stabilization of the
flame in the shear layers delimiting recirculation zones.
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Figure 4. Magnification of the near-nozzle and CRN depiction: (a) isothermal case; (b) reactive case.

This region yields high temperatures and a fast formation rate of radical species. Thus,
it would be a considerable error to fail to take this into account while dealing with a reactive
case; a CSTR represents it due to the high turbulence levels and the swirl motion mixing.
After the near-nozzle region in Figure 3 follows a segregated region represented by a PFR
that serves as a post-flame zone (PFZ). As mentioned (see Figure 2 and Table 1), oxidizer is
introduced alone in the proximity of the combustor wall. This stream defines a dilution
zone, resulting in lateral recirculation zones. PFRs represent this dilution region with a
recirculation CSTR to capture dead zone behaviour [60]. In the lower part of the combustor,
a mixed region was also identified and represented as a CSTR. The complete model for the
entire combustion chamber is depicted in Figure 3b.

Figure 5 shows the dynamic response of the CRN optimization against the experimen-
tal RTD. The two responses are superimposed, and the error is also reported in this plot in
green. The experimental inlet pulse is displayed for completeness, although scaled to the
order of the plot magnitude for graphical reasons.
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The appropriate fit of the CRN-RTD versus the experimental one confirms the designed
model capability in describing the mixing features inside the system. Nonetheless, it is
still necessary to check the suitability of the network to capture the underlying reactive
features adequately.

Species concentrations reported in Ref. [53] were measured 35 mm upstream of the
exit plane of the combustor. This coordinate was identified as a specific reactor zone in
the OFC, namely the mixed exit zone (see Figures 3 and 4). All of the species compared in
Table 2 exhibited good agreement for the air-fired case, Rair. The agreement for R30 was
suitable for all the considered species, with a slight overprediction of CO that impacted the
CO2 mole fraction values. CO formation was susceptible to the flow field characteristics.
It is possible that the present model, even if appropriately designed to capture the main
mixing features, slightly overestimates the mixing within the dilution region. This region
had a lower temperature than the main flow path, and its CO content was high because
of the slower reactivity at low temperatures. If a higher share of reacting flow carrying
CO were entrained in the cold side zone, a higher amount of CO would be quenched and
available for mixing along the combustor coordinate. Despite this discrepancy, the model
was able to describe the system’s mixing features and species formation.

Table 2. Comparison between experimental data [53] and CRN-predicted species concentration near
the exit of the combustor. “Exp.” data reproduced with permission from ref. [53], 2018, Elsevier.

CRN Exp.

CO, ppm
Rair 1140 1300
R30 107 ~40

CH4, ppm
Rair 559 570
R30 61 <61

O2, mole fraction
Rair 1.6 × 10−1 1.7 × 10−1

R30 2.3 × 10−1 2.2 × 10−1

CO2, mole fraction
Rair 1.9 × 10−2 1.9 × 10−2

R30 7.1 × 10−2 7.25 × 10−2

H2O mole fraction
Rair 4 × 10−2 3.9 × 10−2

R30 6.2 × 10−2 6.1 × 10−2

Moreover, the model correctly reproduced the noticeable CO reduction compared
to the Rair system. An important implication of these results is that the model properly
predicted the different mixing and reactive properties of the flow investigated under two
different oxidizing conditions. It was therefore employed in this study to understand the
system behaviour when switching from air to oxy-fuel conditions.

Key parameters selected and defined to carry out this comparison are explained as:

• τm, s-Mean residence time inside the system;
• σ2, s2-Variance of the distribution;
• τc, s-Convective time delay, time before the first arrival of the tracer;
• mIRZ/min_quarl-Mass flow entrained into the IRZ, related to the mass flow fed to the quarl;
• mdead/mtot-Total mass flow entrained into the dead volume zones, related to the total

mass flow fed to the system;
• m f lame/min_quarl-Mass flow entrained into the flame zone reactor, related to the mass

flow fed to the quarl (only for reactive cases);
• mdilution→main/mtot-Mass flow entrained from the lateral dilution zone in the main

(central) flow.

The standard deviation for each listed key parameter was also calculated, and is shown
in Tables 3 and 4 designated as Std. This standard deviation was calculated by fitting the
CRN model to the single-injection curves (as explained in Section 2.1, each experimental
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RTD curve is the average of single injections of tracer) and calculating the key parameters
for each single injection fit. The same procedure was carried out for both the NRair and
Rair cases.

Table 3. Selected properties of the CRN model: non-reactive case.

Parameter NRair NR30 Std.

τm, s 3.8 4.7 ±0.2
σ2, s2 8 12 ±1
τc, s 0.4 0.7 ±0.1

mIRZ/min_quarl 1.4 1.6 ±0.2
mdead/mtot 0.82 0.99 ±0.04

mdilution→main/mtot 0.79 0.85 ±0.07

Table 4. Selected properties of the CRN model: reactive case.

Parameter Rair R30 Std.

τm, s 1.5 2.9 ±0.2
σ2, s2 1.7 3.8 ±0.5
τc, s 0.25 0.52 ±0.05

mIRZ/min_quarl 0.50 1.38 ±0.09
mdead/mtot 0.80 1.4 ±0.05

mdilution→main/mtot 0.54 0.50 ±0.09
m f lame/min_quarl 0.4 0.6 ±0.01

3. Results and Discussion

The impact of oxidizers on the mixing and reactive behaviour of the combustor is
discussed in the following section. The parameters introduced earlier are employed to
comment on the features of systems, varying through different diluents as the system
delivers the same output power. For brevity, the isothermal case is discussed first followed
by results concerning the reactive cases.

3.1. Non-Reactive Flow: Comparison between the Oxidizers

Figure 6 shows the CRN-fits for NRair and NR30, superimposed to better highlight
the differences. The onset of NR30 is delayed with respect to NRair, as can be understood
from the convective time delay in Table 3. Additionally, the oxy-fuel condition causes a
broader shape of the RTD. The shape of the RTD is described by the mean residence time,
τm, and the spread of the distribution, σ2, and broader RTDs normally exhibit a higher
value for these parameters.
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Accordingly, in Table 3, both mentioned parameters are larger for NR30 comparing
to NRair, in accordance with experimental findings [46,47]. These features agree with the
lower flow rate fed to the system for NR30 with respect to NRair, as reported in Table 1.
Therefore, a lower bulk velocity is associated with NR30, justifying the delayed arrival of
the tracer to the detection point. This lower velocity expresses a lower impulse of the flow
entering the combustion chamber, and is also responsible for a more significant share of the
combustor volume associated with the IRZ, consistent with experimental evidence [52]. In
this recirculation zone, more mass flow is entrained for the oxyfuel atmosphere concerning
the total mass flow fed to the quarl zone, mIRZ/min_quarl in Table 3, to which the lower bulk
velocity is also attributed [61].

The discussion is extended with the aid of Table 3, clarifying further phenomena that
contribute to the major broadening of the NR30 distribution. Under oxy-fuel conditions, a
higher total mass flow is entrained in the lateral dead zones described earlier. In addition,
a slightly higher percentage of mass flow from the dilution region is entrained in the main
(central) flow. The dead zones in the dilution region of the combustor (see schematization
in Figure 3) present the most prominent residence times in the system under the definition
of dead zones [10]. As a result, the mass flow from these zones experiences a longer mixing
time, and its tracer concentration is severely broadened. A higher share of this flow joins
the descending bulk flow (see the factor mdilution→main/mtot in Table 3). These combined
factors are most likely the explanation for the different broadening of the RTD curves.

3.2. Reactive Flow: Comparison between the Oxidizers

The RTD-fits obtained after optimizing the parameters of the reactive CRN in different
operating conditions are compared in Figure 7.
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Table 4 contains the values of the key parameters chosen to compare these operating
conditions. What clearly emerges is the considerable difference between the spread of the
two distributions and the strong resemblance between R30 and NR30 (shown in Figure 6).
Referring to Figure 6, the maximum value of the distribution corresponding to NR30 is
around 0.25 s−1, and that corresponding to R30 is around 0.4 s−1 (Figure 7). Instead, the
two maxima corresponding to NRair (around 0.28 s−1) and Rair (around 0.9 s−1) are distant
from each other, as expected when comparing a cold flow distribution to a reactive flow
(higher temperatures). The broadening of the R30 distribution is characterized in Table 4
by higher τm and σ2. The discrepancy between the convective time delays increases more
than twofold for the oxy-fuel combustion.

For the isothermal case (see the previous section), the broader distribution calculated
for R30 is partly due to the lower flow rate fed to the system compared to Rair, as explained
in Section 2.1. For this reason, higher residence times are associated with oxy-fuel flows in
reactive conditions.
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Besides the lower mass fed to the system, higher entrainment in recirculation zones is
also calculated for R30. The parameter mIRZ/min_quarl in Table 4 is approximately one order
of magnitude higher when feeding the O2/CO2 mixture as oxidizer, while the amount
of mass flow entrained in the lateral recirculation zones, mdead/mtot, is nearly doubled.
Therefore, a significantly larger portion of the flow experiences intense mixing inside the
system, broadening the flow distribution. The value of m f lame/min_quarl shows a slightly
higher number for R30. According to the modelling section, the flame is represented by a
CSTR. Once again, a higher percentage of the flow is entrained in a mixing reactor while
investigating oxyfuel combustion as compared to Rair. This phenomenon corroborates the
observations about the higher mixing intensity in the oxy-fuel case. The entrainment of
colder flow from the dilution region, mdilution→main/mtot, is quite similar for both atmo-
spheres, being slightly lower for R30.

To further discuss the reactive system, Figure 8 shows two sample profiles inside
the combustor. Species concentrations and temperatures from the CRN model are cal-
culated over the profiles and plotted in order to compare the reactive behaviour with
different oxidizers.
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Figure 9 shows the temperature trend, CO, and CH4 concentration along the selected
profiles in Figure 8. The comparison starts from the vertical temperature profile, where the
first zone from the right side is the IRZ. The temperatures do not significantly differ here,
being approximately 1800 K for both conditions. The intense mixing and high reactivity by
the IRZ are apparent, as the CO values are below 500 ppm (R30 exhibits the higher value),
and no methane is present in this zone (Figure 9). In the post-flame region, R30 shows a
higher temperature along the whole region. The CO concentration shows a sharp rise for
Rair due to the combined effect of direct transport of flow from the reaction regions and the
side dilution region. The amount of carbon monoxide decreases until the temperatures are
high enough to promote the reactions (around 1000 K), and increases again as at the low
temperatures diminishes OH formation and CO is no longer oxidized to CO2 through the
reaction CO + OH = CO2 + H. R30 exhibits a slightly different situation, as the CO content
experiences an increase due to transport from CO-rich zones. However, the intensity of
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this peak is approximately one order of magnitude lower than that calculated for Rair. In
other words, despite the higher φ that characterizes R30 (Table 1), the CO mole fraction in
the PFZ is significantly lower during oxyfuel combustion.
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This behavior is explained by the higher mIRZ/min_quarl and m f lame/min_quarl calculated
for R30 (Table 4), showing that a higher share of the inlet flow is entrained in the high-
temperature IRZ-CSTR and flame-CSTR. Higher reactant consumption in these reactor
zones closer to the burner region also results in less fresh fuel available to react later
in the system. The entrainment of lateral dilution gas is to some extent lower for R30
(mdilution→main/mtot), mitigating CO mixing from colder regions and slower reactivity due
to mixing cold fluid pockets in the reactive stream. In addition, the higher R30-temperatures
in the PFZ also enhance CO reaction with OH, promoting CO2 formation.

It is also worth mentioning that the availability of unreacted fuel near the exit of the
combustor influences the different CO yield in the two cases. The possibility of fuel slip
has also been postulated before, based on species measurements [53]. Among the model
variables described in Section 2, the developed CRN model includes a flow variable that
accounts for a fuel slip event which pushes flow from the quarl region to the post-flame
region. Therefore, it accounts for possible unreacted methane being transported toward the
exit. The value of this fuel slip variable is one order of magnitude lower for R30, meaning
that the residence time in the oxy-fuel case is long enough to consume almost all feed.

This higher fuel conversion explains the diverse trend of the CO concentration in
the different operating conditions, which is also evident from the horizontal profile. This
profile cuts through the flame and bypass zones, and R30 is characterized by a higher
temperature in both regions. The bypass shows a higher CO content for Rair, confirming
that a higher amount of CO is transported to the post flame region. The in-flame CO content
is comparable for the two investigated conditions. No CH4 is calculated in the bypass region
for either case. A lower reactivity in the flame reactor is found for Rair, with a significantly
higher fuel content (approximately one order of magnitude higher) with respect to R30.
A plausible explanation lies in the higher flame and bypass R30-temperatures, causing
this mixture to achieve complete oxidation faster. Following the above discussion, and as
evident from Figure 9, the oxy-fuel condition shows higher operating temperatures. This
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might at first be unexpected due to the higher specific heat of CO2 with respect to that of
N2, as also shown in Table 5.

Table 5. Specific heat of the oxidizing streams [62], cal
mol K .

N2 CO2 Air Mix. Oxy-Fuel Mix.

293 K 6.79 8.86 6.66 8.05
1500 K 8 14.4 8.12 12.6

However, according to Table 1 and Section 2.1, the two investigated operating points
feature a different total flow rate. This choice is necessary to investigate the impact of
the diluent on systems that deliver the same power, in line with previous studies [63,64],
where burner aerodynamics were exploited to achieve successful flame stabilization. The
momentum fluxes were found to play a crucial role in flame shape; thus, they have been
kept equal to a reference flame in [63]. Nevertheless, the fuel flow rate is the same in
both cases, determining a higher fuel-to-oxidizer ratio for R30, which also exhibits higher
O2 availability with respect to Rair. These observations describe the higher oxy-fuel
temperatures and its lower CO emission; in addition to the more efficient CO conversion at
higher temperatures, the loss of in-flame reactivity due to entrainment of cold flow from
the dilution region is expected to be lower with increased O2 availability.

3.3. Comparison between Non-Reactive and Reactive Conditions

For further elaboration, the different mixing behaviors and CRN-parameters of the
cold and reactive systems are compared in Table 6. It appears that the key parameters for
oxy-fuel mixtures are less influenced by the temperature increase due to the combustion
heat release. The air flow shows the highest deviations from the cold case parameters.
However, mdead/mtot represents an exception, showing that the ratio between the mass
flow entrained in the large lateral dead zones is approximately the same between reactive
and non-reactive systems. It can be argued that the entrainment in the lateral recirculation
zones is not influenced by combustion, as the lateral injection of oxidizer entrains and
mixes with the main flow in the same manner.

Table 6. Non-reactive and reactive comparison.

Parameter NRair Rair NR30 R30

τm, s 3.8 1.5 4.7 2.9
σ2, s2 8 1.7 12 3.8
τc, s 0.4 0.25 0.7 0.52

mIRZ/min_quarl 1.4 0.50 1.6 1.38
mdead/mtot 0.82 0.80 0.99 1.4

mdilution→main/mtot 0.79 0.54 0.85 0.50

For the mentioned parameter, the difference is distinguishable under oxyfuel con-
ditions. A higher part of the reactive flow gets trapped in the dead zones, causing a
significant broadening of the reactive oxyfuel distribution (see Table 4 and Figure 7), as dis-
cussed in the previous section. The same reasoning applies to the last presented parameter,
mdilution→main/mtot.

3.4. Comparison between Equilibrium and CRN Species Predictions

A comparison between CRN-values and equilibrium predicted values is given in
Table 7. The equilibrium values were calculated using the hypothesis of plug flow at a
constant temperature, set at 1500 K. The results show that equilibrium CO content is more
significant for O2/CO2 conditions [4,24,65]. The higher CO emission for air combustion
compared to oxyfuel combustion is attributed to the different mixing aspects highlighted in
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previous sections. A more substantial mixing is noticed for R30, ensuring higher residence
times in high-temperature mixed areas.

Table 7. Comparison between CRN and equilibrium emissions.

CRN Equilibrium

CO, ppm
Rair 1140 2× 10−1

R30 107 7
CH4, ppm

Rair 559 0
R30 61 0

O2, mole fraction
Rair 1.6 × 10−1 1.7× 10−1

R30 2.3 × 10−1 2.2× 10−1

CO2, mole fraction
Rair 1.9 × 10−2 1.97× 10−2

R30 7.1 × 10−2 7.1× 10−1

H2O mole fraction
Rair 4 × 10−2 3.9× 10−2

R30 6.2 × 10−2 6.4× 10−2

The main specie concentrations do not show a significant deviation from the equilib-
rium values, whereas CO and CH4 values deviate from those predicted by the equilibrium
calculations. The reason lies mainly in the temperature non-uniformity in the combustor:
as seen in Figure 9, temperatures can range from approximately 500 K (dilution zone) to
2000 K (reaction zone). The mixing of pockets of fluid with different temperatures results in
loss of reactivity in the combustor, especially in the dilution zone. The resulting unreacted
CO or CH4 amount is then entrained from the dilution region into the main flow stream.
In the PFZ, it is not able to react further due to the lower temperatures. Flame quenching
attributable to entrainment from the dilution region into the flame is expected to be lower
with increased O2 availability, as in the case of R30. This explains the lower CO emission
for this oxy-fuel atmosphere, as pointed out in the previous section.

4. Conclusions

Oxy-fuel combustion is undoubtedly a promising strategy to be coupled with CCS
technologies. The employment of CO2 in the oxidizing stream determines the peculiar
properties of this stream, resulting in a different flow field and temperature distribution
and thus impacting the reactivity of the system. A thorough investigation of oxy-fuel com-
bustion is crucial in order to understand this technology, and flexible modeling strategies
must support the interpretation of experimental results.

Therefore, a CRN model of an intermediate-scale combustor operating under air and
oxy-fuel combustion has been designed and sized against available RTD data. The relevant
network parameters to be determined through the fitting procedure are the splitting ratios
and the temperature for reactive conditions. The work aims at comparing oxy-fuel char-
acteristics to reference cases, namely combustion in air. Such a comparison supports the
retrofitting of existent combustors by shedding light on the crucial differences between the
different operating conditions with the same delivered thermal power. The CRN model
designed in this work could be properly fitted to each experimental RTD and measured for
non-reactive as well as reactive flows. The reactive CRN yielded good overall agreement
with experimental species, and was therefore employed to investigate the different reactive
properties of oxy-fuel systems compared to air combustion.

The R30 operating conditions showed a broader RTD during cold flow measurements
and modeling, explained with the aid of selected CRN-retrieved analysis parameters. The
oxy-fuel atmosphere showed a higher entrainment of the seeded stream in the mixing
zone, including the lateral dead zones. The more intense mixing of the tracer was even
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more pronounced for oxy-fuel during combustion. In this case, a higher share of the flow
was entrained in high-temperature mixed regions. This caused a broader RTD, meaning
a longer mean residence time of the flow inside the system. Further effects of the more
intense mixing occurring for R30 included lower CO emissions and more complete fuel
consumption. Overall, the effect of combustion on CRN-derived parameters was assessed.
The deviation of CO and CH4 from their equilibrium values was explained by the different
mixing properties of the systems.

This work confirms the capability of the RTD-based CRN as an effective tool to analyze
and optimize complex combustion systems, especially from a retrofitting point of view.
Studies involving this strategy have typically kept their CRNs very simple, and have not
previously incorporated kinetics [32–38]. As shown in this study, as well as in [49], a fairly
detailed RTD-CRN which incorporates complex kinetics can shed light on the underlying
phenomena in alternative combustion processes. Such a tool is therefore a valuable asset
while exploring new strategies towards the sustainability of the combustion process.
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