Study on Air-to-Water Heat Pumps Seasonal Performances for Heating in Greece
Abstract
:1. Introduction
2. Methodology—Climate Data
3. Description of the Sample
4. Discussion
- (a)
- In the case of Ierapetra (Table 4) and for Tw,outlet = 35 °C, most of the models of the sample offered from all the 12 companies show SCOP ≥ 3.0 (86 models without compensation and 90 with compensation control system). For Tw,outlet = 45 °C, the corresponding number of models that have SCOP ≥ 3.0 decreases significantly (only 7 models without compensation and 49 models with compensation control system offered from 4 and 9 of the 12 companies, respectively). It is worth mentioned that for Tw,outlet = 55 °C, none of the HPs of the sample have SCOP ≥ 3.0.
- (b)
- In the case of Athens (Table 5), when Tw,outlet = 35 °C, the number of models that meet the SCOP ≥ 3 condition is also significant (81 models without compensation and 87 models with compensation control system from all 12 companies). When Tw,outlet = 45 °C, the corresponding number decreases, as it also significantly decreases in the Climatic Zone A (19 models without compensation and 55 models with compensation control system from 5 and 11 of the 12 companies, respectively). Additionally, for constant Tw,outlet = 55 °C, none of the AWHPs have SCOP ≥ 3.0, while the criterion is fulfilled by 19 models with a compensation control system from three companies.
- (c)
- In the case of Thessaloniki (Table 6), the number of HPs with SCOP ≥ 3 is reduced even more, especially when the water supply temperature to the heating system is 45 °C. More specifically, for Tw,outlet = 35 °C, the corresponding number of models is 76 and 81 without and with compensation control system, respectively, from all the 12 companies. When Tw,outlet = 45 °C, then only four models without compensation and 41 models with compensation control system from two and nine companies, respectively, show SCOP ≥ 3. Moreover, for constant Tw,outlet = 55 °C, none of the AWHPs have SCOP ≥ 3.0, while the criterion is fulfilled by 16 models with compensation control system from three companies.
- (d)
- Finally, in the case of Florina (Table 7), the number of HPs with SCOP ≥ 3 is significantly reduced, both for Tw,outlet = 35 °C (46 and 56 models without or with compensation control system from 8 and 11 companies, respectively) and for Tw,outlet = 45 °C (16 models with compensation control system from five companies), while for Tw,outlet = 55 °C, none of the HPs of the sample show SCOP ≥ 3.0.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eurostat. Energy Data—2020 Edition; Publications Office of the European Union: Luxembourg, 2020; ISBN 9789276206293. [Google Scholar] [CrossRef]
- Eurostat. Energy, Transport and Environment Statistics; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-20736-8. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Energy Roadmap 2050; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Mouzeviris, G.A.; Papakostas, K.T. Seasonal heat performances of air-to-water heat pumps in the Greek climate. Earth Environ. Sci. 2020, 410, 012043. [Google Scholar] [CrossRef]
- Mouzeviris, G.A.; Papakostas, K.T. Comparative Analysis of Air-to-Water and Ground Source Heat Pumps Performances. Int. J. Sustain. Energy 2020, 40, 69–84. [Google Scholar] [CrossRef]
- European Union. Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, L 140, 16–62. [Google Scholar]
- European Union. Directive 2009/125/EC of the European Parliament and of the Council: Establishing a framework for the setting of eco-design requirements for energy-related products. Off. J. Eur. Union 2009, L 285, 10–35. [Google Scholar]
- European Union. Directive 2010/30/EU of the European Parliament and of the Council on the indication by labelling and standard product information of the consumption of energy and other resources by energy-related products. Off. J. Eur. Union 2010, L 153, 1–12. [Google Scholar]
- European Union. Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings. Off. J. Eur. Union 2010, L 153, 13–35. [Google Scholar]
- European Union. Directive 2012/27/EU of the European Parliament and of the Council, on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Off. J. Eur. Union 2012, L 315, 1–56. [Google Scholar]
- European Union. Directive (EU) 2018/844 of the European Parliament and of the Council, Amending Directive 2010/31/EU on the energy per-formance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, L 156, 75–91. [Google Scholar]
- Staffell, I.; Brett, D.; Brandon, N.; Hawkes, A. A review of domestic heat pumps. Energy Environ. Sci. 2012, 5, 9291–9306. [Google Scholar] [CrossRef]
- Huchtemann, K.; Müller, D. Simulation study on supply temperature optimization in domestic heat pump systems. Build. Environ. 2012, 59, 327–335. [Google Scholar] [CrossRef]
- The State of Renewable Energies in Europe; 19th EurObserv’ER Report. 2019. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2020/The-state-of-renewable-energies-in-Europe-2019.pdf (accessed on 10 April 2021).
- Madonna, F.; Bazzocchi, F. Annual performances of reversible air-to-water heat pumps in small residential buildings. Energy Build. 2013, 65, 299–309. [Google Scholar] [CrossRef]
- Naldi, C.; Dongellini, M.; Morini, G.L. Climate Influence on Seasonal Performances of Air-to-water Heat Pumps for Heating. Energy Procedia 2015, 81, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Dongellini, M.; Naldi, C.; Morini, G.L. Seasonal performance evaluation of electric air-to-water heat pump systems. Appl. Therm. Eng. 2015, 90, 1072–1081. [Google Scholar] [CrossRef]
- Dongellini, M.; Naldi, C.; Morini, G.L. Sizing effects on the energy performance of reversible air-source heat pumps for office buildings. Appl. Therm. Eng. 2017, 114, 1073–1081. [Google Scholar] [CrossRef]
- Dongellini, M.; Morini, G.L. On-off cycling losses of reversible air-to-water heat pump systems as a function of the unit power modulation capacity. Energy Convers. Manag. 2019, 196, 966–978. [Google Scholar] [CrossRef]
- Dongellini, M.; Naldi, C.; Morini, G.L. Influence of sizing strategy and control rules on the energy saving potential of heat pump hybrid systems in a residential building. Energy Convers. Manag. 2021, 235, 114022. [Google Scholar] [CrossRef]
- Mouzeviris, G.A.; Papakostas, K.T. Air-to-water heat pumps: The impact of climate, compressor technology, water output temperature and sizing on the seasonal coefficient of performance for heating. Mater. Sci. Eng. 2020, 997, 012150. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Z.; Li, X.; Xu, Z.; Yang, Y.; Yang, Q. Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications. Build. Environ. 2020, 180, 107029. [Google Scholar] [CrossRef]
- Kudela, L.; Špiláček, M.; Pospíšil, J. Influence of Control Strategy on Seasonal Coefficient of Performance for a Heat Pump with Low-Temperature Heat Storage in the Geographical Conditions of Central Europe. Energy 2021, 234, 121276. [Google Scholar] [CrossRef]
- Pospíšil, J.; Špiláček, M.; Kudela, L. Potential of predictive control for improvement of seasonal coefficient of performance of air source heat pump in Central European climate zone. Energy 2018, 154, 415–423. [Google Scholar] [CrossRef]
- Renaldi, R.; Kiprakis, A.; Friedrich, D. An optimization framework for thermal energy storage integration. Appl. Energy 2017, 186, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Europen Union. European Standard EN 14825: Air Conditioners, Liquid Chilling Packages and Heat Pumps, with Electrically Driven Compressors, for Space Heating and Cooling—Testing and Rating at Part Load Conditions and Calculation of Seasonal Performance; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- Carrier. Available online: https://ahi-carrier.gr/product-category/business-solutions/heating/air-to-water-heatpumps/ (accessed on 10 December 2020).
- Climaveneta Technical Bulletin. AWR_MTD2_XE_0011_0091_201211_EN, NECS_N_0202T_0612T_201211_EN, ELCADOC—Ver. 1.0.0.7; De’Longhi: Bassano del Grappa, Italy, 2012.
- Daikin Altherma. ERHQ-BW1, EEDEN15-725 07/15, ERSQ-AY1; Daikin: Oostende, Belgium, 2017.
- De Dietrich. Alevisio Evolution, 300019732C, November 2014. Available online: http://www.dedietrich-heating.com/ (accessed on 10 December 2020).
- Hitachi. Techical Catalogue: RHU-3AVFHN1, RHUE-(3-6)A(V)HN-HM; TCGB0090 rev.0—12/2013; Yutaki, M., Ed.; Hitachi: Tokio, Japan, 2013. [Google Scholar]
- LG, Therma V. P/No.: MFL66101110; LG: Seoul, Korea, 2016. [Google Scholar]
- Mitsubishi. Ecodan—Air-to-Water Heat Pump Systems, Aug. 2015 M-P0655 SIZ1508; Mitsubishi: Changsha, China, August 2015. [Google Scholar]
- Rhoss. K20128EN ed.3, August. 2015. Available online: http://www.rhoss.com/products/applied-systems-en (accessed on 10 December 2020).
- Stiebel Eltron. Technical Guide: Heat Pumps; Stiebel Eltron: Holzminden, Germany, 2009. [Google Scholar]
- Toshiba. Engineering Data Book: Air to Water Heat Pump; Toshiba: Minato, Tokyo, 2017. [Google Scholar]
- Trane. Reversible Air-to-Water Scroll Heat Pumps—Model CXA 040-115, Flex Series Heat Pumps; CG-PRC030A-GB 0215; Trane: Dublin, Ireland, 2015. [Google Scholar]
- York. Air-Condensed Cooling Units and Heat Pumps YLCA/YLHA 40; User Manual Ref.: N-40314_EN 0912; Johnson Controls: Addison, IL, USA, 2003. [Google Scholar]
- Mouzeviris, G.A.; Papakostas, K.T. Comparative Analysis of Air-to-Water Heat Pumps Performances—Seasonal Performance for Heating of Domestic Heat Pumps in the Greek Climate. In Proceedings of the 6th International Conference on Renewable Energy Sources and Energy Efficiency—New Challenges (RESEE2018), Nicosia, Cyprus, 1–2 November 2018; pp. 179–193. [Google Scholar]
- Zagana-Papavasileiou, P. Updating of Temperature Data Base of Athens and Thessaloniki for Energy Studies—Period 1983–2012. Diploma Thesis, School of Mechanical Engineering Aristotle University of Thessaloniki, Thessaloniki, Greece, 2013. (In Greek). [Google Scholar]
- Kyrou, D. Statistical Analysis of Hourly Ambient Air Dry-Bulb Temperature and Relative Humidity Observations for the Period 1983–2012 in Athens (NOA)—Elaboration of Data for HVAC Energy Analysis Methods. Bachelor’s Thesis, School of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2018. (In Greek). [Google Scholar]
- Karadaglis, C.; Felekis, P. Estimation of Bin Temperature Data in 38 Greek Cities. Bachelor’s Thesis, School of Mechanical Engineering, Aristotle University Thessaloniki, Thessaloniki, Greece, 2005. (In Greek). [Google Scholar]
- Papakostas, K.; Tsilingiridis, G.; Kyriakis, N. Bin weather data for 38 Greek cities. Appl. Energy 2008, 85, 1015–1025. [Google Scholar] [CrossRef]
- Technical Directive of the Technical Chamber of Greece T.O.T.E.E. 20701–3/2010 Climatic Data of Greek Regions (In Greek). 2014. Available online: http://portal.tee.gr/portal/page/portal/tptee/totee/TOTEE-20701-3-Final-TEE%202nd.pdf (accessed on 10 December 2020).
- Technical Directive of the Technical Chamber of Greece T.O.T.E.E. 20701–1/2017 Analytical Specifications of Parameters for the Calculation of the Energy Performance of Buildings and the Issue of Energy Certificate (In Greek). 2017. Available online: http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/GR_ENERGEIAS/kenak/files/TOTEE_20701-1_2017_TEE_1st_Edition.pdf (accessed on 10 December 2020).
Ierapetra (Τdes = 7 °C) | Athens (Τdes = 2 °C) | Thessaloniki (Τdes = −2 °C) | Florina (Τdes = −7.5 °C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (3) | (4) | (5) | (3) | (4) | (5) | (3) | (4) | (5) |
Bin Range | Middle Bin Value | Hours in Bin | (%) of Design Heat Load | Heat Load ≥ (%) of Design Heat Load | Hours in Bin | (%) of Design Heat Load | Heat Load ≥ (%) of Design Heat Load | Hours in Bin | (%) of Design Heat Load | Heat load ≥ (%) of Design Heat Load | Hours in Bin | (%) of Design Heat Load | Heat load ≥ (%) of Design Heat Load |
(°C) | (°C) | (h) | (h) | (h) | (h) | (h) | (h) | (h) | |||||
−18/−16 | −17 | - | - | - | - | - | - | - | - | - | 1 | 140.4 | 1 |
−16/−14 | −15 | - | - | - | - | - | - | - | - | - | 2 | 131.9 | 3 |
−14/−12 | −13 | - | - | - | - | - | - | - | - | - | 6 | 123.4 | 9 |
−12/−10 | −11 | - | - | - | - | - | - | - | - | - | 15 | 114.9 | 24 |
−10/−8 | −9 | - | - | - | - | - | - | - | - | - | 28 | 106.4 | 52 |
−8/−6 | −7 | - | - | - | - | - | - | - | - | - | 69 | 97.9 | 121 |
−6/−4 | −5 | - | - | - | 2 | 150.0 | 2 | 10 | 116.7 | 10 | 128 | 89.4 | 249 |
−4/−2 | −3 | - | - | - | 4 | 135.7 | 6 | 22 | 105.6 | 32 | 226 | 80.9 | 475 |
−2/0 | −1 | - | - | - | 6 | 121.4 | 12 | 54 | 94.4 | 86 | 357 | 72.3 | 832 |
0/2 | 1 | 22 | 166.7 | 22 | 36 | 107.1 | 48 | 171 | 83.3 | 257 | 481 | 63.8 | 1313 |
2/4 | 3 | 34 | 144.4 | 56 | 100 | 92.9 | 148 | 300 | 72.2 | 557 | 569 | 55.3 | 1882 |
4/6 | 5 | 93 | 122.2 | 149 | 215 | 78.6 | 363 | 407 | 61.1 | 964 | 591 | 46.8 | 2473 |
6/8 | 7 | 197 | 100.0 | 346 | 379 | 64.3 | 742 | 582 | 50.0 | 1546 | 584 | 38.3 | 3057 |
8/10 | 9 | 374 | 77.8 | 720 | 552 | 50.0 | 1294 | 697 | 38.9 | 2243 | 555 | 29.8 | 3612 |
10/12 | 11 | 571 | 55.6 | 1291 | 725 | 35.7 | 2019 | 670 | 27.8 | 2913 | 496 | 21.3 | 4108 |
12/14 | 13 | 724 | 33.3 | 2015 | 824 | 21.4 | 2843 | 628 | 16.7 | 3541 | 407 | 12.8 | 4515 |
14/16 | 15 | 781 | 11.1 | 2796 | 766 | 7.1 | 3609 | 536 | 5.6 | 4077 | 282 | 4.3 | 4797 |
Company | Model Type (Models in Sample) |
---|---|
CARRIER | 30AWH (7) |
30RQ (3) | |
30RQA (3) | |
30RQV (1) | |
38AW (5) | |
CLIMAVENETA | AWRMTD2 (4) |
DAIKIN | ERHQ (3) |
EUWP (4) | |
EUWYN (4) | |
EWYQ (5) | |
DE DIETRICH | AWHP (5) |
HITACHI | RHUE(5) |
LG | AHUW (10) |
MITSUBISHI | PUHZ (7) |
RHOSS | THAETY (3) |
THAITY (2) | |
THCETY (2) | |
STIEBEL ELTRON | WPL (6) |
TOSHIBA | HWS (7) |
TRANE | CXA (6) |
FLEX (1) | |
YORK | YLHA (7) |
Compressor | HP Water Outlet Temperature | Control System * | Ierapetra | Athens | Thessaloniki | Florina | ||||
---|---|---|---|---|---|---|---|---|---|---|
Min ÷ Max | Mean | Min ÷ Max | Mean | Min ÷ Max | Mean | Min ÷ Max | Mean | |||
FIXED CAPACITY | 35 °C | N.Comp. | 2.62 ÷ 3.63 | 3.16 | 2.52 ÷ 3.68 | 3.12 | 2.39 ÷ 3.49 | 2.99 | 2.07 ÷ 3.26 | 2.77 |
W.Comp. | 2.67 ÷ 3.71 | 3.22 | 2.61 ÷ 3.88 | 3.24 | 2.48 ÷ 3.67 | 3.12 | 2.11 ÷ 3.39 | 2.88 | ||
45 °C | N.Comp. | 2.17 ÷ 2.92 | 2.59 | 2.07 ÷ 2.86 | 2.49 | 1.96 ÷ 2.77 | 2.37 | 1.67 ÷ 2.60 | 2.21 | |
W.Comp. | 2.35 ÷ 3.14 | 2.80 | 2.34 ÷ 3.34 | 2.83 | 2.23 ÷ 3.21 | 2.73 | 1.83 ÷ 2.91 | 2.50 | ||
55 °C | N.Comp. | 1.77 ÷ 2.40 | 2.19 | 1.64 ÷ 2.33 | 2.09 | 1.55 ÷ 2.29 | 2.01 | 1.38 ÷ 2.65 | 1.90 | |
W.Comp. | 2.11 ÷ 2.68 | 2.47 | 2.20 ÷ 2.77 | 2.56 | 2.11 ÷ 2.77 | 2.49 | 1.84 ÷ 3.07 | 2.33 | ||
INVERTER DRIVEN | 35 °C | N.Comp. | 3.24 ÷ 4.03 | 3.54 | 3.30 ÷ 4.30 | 3.74 | 2.95 ÷ 4.15 | 3.53 | 2.48 ÷ 3.72 | 3.10 |
W.Comp. | 3.26 ÷ 4.20 | 3.66 | 3.40 ÷ 4.64 | 3.98 | 3.07 ÷ 4.52 | 3.77 | 2.58 ÷ 4.03 | 3.30 | ||
45 °C | N.Comp. | 2.53 ÷ 3.22 | 2.87 | 2.58 ÷ 3.35 | 2.95 | 2.37 ÷ 3.22 | 2.79 | 2.00 ÷ 2.89 | 2.49 | |
W.Comp. | 2.87 ÷ 3.58 | 3.16 | 2.96 ÷ 4.02 | 3.47 | 2.70 ÷ 3.93 | 3.28 | 2.23 ÷ 3.51 | 2.90 | ||
55 °C | N.Comp. | 2.10 ÷ 2.65 | 2.41 | 1.97 ÷ 2.71 | 2.41 | 1.84 ÷ 2.60 | 2.26 | 1.48 ÷ 2.38 | 2.03 | |
W.Comp. | 2.42 ÷ 2.97 | 2.71 | 2.49 ÷ 3.49 | 2.98 | 2.27 ÷ 3.34 | 2.84 | 1.81 ÷ 3.01 | 2.50 |
Company No. | Climatic Zone: A (Ierapetra) | |||
---|---|---|---|---|
Fixed Capacity Compressor | Inverter Capacity Compressor | |||
No Compensation | With Compensation | No Compensation | With Compensation | |
Water Outlet Temperature: 35 °C | ||||
1 | - | - | 3.39 ÷ 4.03 | 3.49 ÷ 4.20 |
2 | - | - | 3.24 ÷ 3.79 | 3.36 ÷ 3.96 |
3 | 2.96 ÷ 3.26 | 3.01 ÷ 3.32 | - | - |
4 | 2.91 ÷ 3.29 | 2.97 ÷ 3.37 | 3.50 ÷ 3.68 | 3.60 ÷ 3.78 |
5 | 3.07 ÷ 3.34 | 3.12 ÷ 3.40 | - | - |
6 | 3.29 ÷ 3.63 | 3.36 ÷ 3.71 | - | - |
7 | 2.97 ÷ 3.13 | 3.03 ÷ 3.20 | - | - |
8 | - | - | 3.40 ÷ 3.71 | 3.44 ÷ 3.78 |
9 | 3.22 ÷ 3.43 | 3.40 ÷ 3.50 | - | - |
10 | 2.91 ÷ 3.16 | 2.95 ÷ 3.21 | 3.33 ÷ 3.71 | 3.45 ÷ 3.90 |
11 | 3.15 ÷ 3.52 | 3.21 ÷ 3.58 | - | - |
12 | 2.62 ÷ 2.77 | 2.67 ÷ 2.82 | 3.26 ÷ 3.73 | 3.37 ÷ 3.89 |
Water Outlet Temperature: 45 °C | ||||
1 | - | - | 2.78 ÷ 3.22 | 3.03 ÷ 3.58 |
2 | - | - | 2.53 ÷ 3.00 | 2.89 ÷ 3.41 |
3 | 2.48 ÷ 2.73 | 2.66 ÷ 2.94 | - | - |
4 | 2.37 ÷ 2.69 | 2.56 ÷ 2.90 | 2.92 ÷ 3.02 | 3.15 ÷ 3.25 |
5 | 2.59 ÷ 2.75 | 2.74 ÷ 2.96 | - | - |
6 | 2.64 ÷ 2.85 | 2.90 ÷ 3.14 | - | - |
7 | 2.41 ÷ 2.64 | 2.62 ÷ 2.75 | - | - |
8 | - | - | 2.76 ÷ 3.04 | 3.01 ÷ 3.26 |
9 | 2.62 ÷ 2.75 | 2.92 ÷ 3.01 | - | - |
10 | 2.54 ÷ 2.66 | 2.69 ÷ 2.83 | 2.71 ÷ 3.06 | 3.11 ÷ 3.34 |
11 | 2.54 ÷ 2.92 | 2.73 ÷ 3.14 | - | - |
12 | 2.17 ÷ 2.31 | 2.35 ÷ 2.47 | 2.63 ÷ 2.89 | 2.87 ÷ 3.25 |
Water Outlet Temperature: 55 °C | ||||
1 | - | - | 2.26 ÷ 2.56 | 2.59 ÷ 2.97 |
2 | - | - | 2.27 ÷ 2.62 | 2.46 ÷ 2.87 |
3 | 2.19 ÷ 2.31 | 2.37 ÷ 2.58 | - | - |
4 | 1.77 ÷ 2.26 | 2.11 ÷ 2.52 | - | - |
5 | 2.04 ÷ 2.12 | 2.35 ÷ 2.40 | - | - |
6 | 2.02 ÷ 2.27 | 2.36 ÷ 2.61 | - | - |
7 | - | - | - | - |
8 | - | - | 2.30 ÷ 2.44 | 2.58 ÷ 2.74 |
9 | 2.21 ÷ 2.33 | 2.50 ÷ 2.60 | - | - |
10 | - | - | 2.36 ÷ 2.65 | 2.64 ÷ 2.92 |
11 | 2.10 ÷ 2.40 | 2.33 ÷ 2.68 | - | - |
12 | - | - | 2.10 ÷ 2.16 | 2.42 ÷ 2.50 |
Company No. | Climatic Zone: B (Athens) | |||
---|---|---|---|---|
Fixed Capacity Compressor | Inverter Capacity Compressor | |||
No Compensation | With Compensation | No Compensation | With Compensation | |
Water Outlet Temperature: 35 °C | ||||
1 | - | - | 3.40 ÷ 4.30 | 3.56 ÷ 4.64 |
2 | - | - | 3.48 ÷ 4.18 | 3.72 ÷ 4.52 |
3 | 2.96 ÷ 3.28 | 3.07 ÷ 3.40 | - | - |
4 | 2.87 ÷ 3.29 | 2.98 ÷ 3.44 | 3.69 ÷ 3.79 | 3.88 ÷ 3.97 |
5 | 3.05 ÷ 3.34 | 3.15 ÷ 3.46 | - | - |
6 | 3.22 ÷ 3.68 | 3.34 ÷ 3.88 | - | - |
7 | 2.85 ÷ 3.16 | 2.95 ÷ 3.29 | - | - |
8 | - | - | 3.33 ÷ 3.69 | 3.40 ÷ 3.83 |
9 | 3.15 ÷ 3.45 | 3.47 ÷ 3.60 | - | - |
10 | 2.75 ÷ 3.05 | 2.82 ÷ 3.14 | 3.70 ÷ 4.08 | 3.98 ÷ 4.41 |
11 | 3.16 ÷ 3.55 | 3.28 ÷ 3.67 | - | - |
12 | 2.52 ÷ 2.72 | 2.61 ÷ 2.82 | 3.30 ÷ 4.02 | 3.44 ÷ 4.33 |
Water Outlet Temperature: 45 °C | ||||
1 | - | - | 2.74 ÷ 3.35 | 3.13 ÷ 4.02 |
2 | - | - | 2.65 ÷ 3.12 | 3.22 ÷ 3.87 |
3 | 2.47 ÷ 2.71 | 2.78 ÷ 3.06 | - | - |
4 | 2.27 ÷ 2.62 | 2.61 ÷ 3.00 | 2.93 ÷ 3.06 | 3.35 ÷ 3.46 |
5 | 2.50 ÷ 2.69 | 2.78 ÷ 3.04 | - | - |
6 | 2.52 ÷ 2.78 | 2.91 ÷ 3.34 | - | - |
7 | 2.24 ÷ 2.51 | 2.56 ÷ 2.74 | - | - |
8 | - | - | 2.66 ÷ 2.93 | 3.00 ÷ 3.31 |
9 | 2.49 ÷ 2.70 | 3.02 ÷ 3.12 | - | - |
10 | 2.33 ÷ 2.49 | 2.54 ÷ 2.78 | 2.90 ÷ 3.28 | 3.53 ÷ 3.88 |
11 | 2.46 ÷ 2.86 | 2.79 ÷ 3.20 | - | - |
12 | 2.07 ÷ 2.19 | 2.34 ÷ 2.46 | 2.58 ÷ 3.01 | 2.96 ÷ 3.69 |
Water Outlet Temperature: 55 °C | ||||
1 | - | - | 2.16 ÷ 2.68 | 2.72 ÷ 3.39 |
2 | - | - | 2.19 ÷ 2.64 | 2.71 ÷ 3.23 |
3 | 2.12 ÷ 2.26 | 2.46 ÷ 2.70 | - | - |
4 | 1.64 ÷ 2.16 | 2.2 ÷ 2.61 | - | - |
5 | 1.93 ÷ 2.03 | 2.44 ÷ 2.50 | - | - |
6 | 1.86 ÷ 2.16 | 2.48 ÷ 2.75 | - | - |
7 | - | - | - | - |
8 | - | - | 2.14 ÷ 2.28 | 2.56 ÷ 2.79 |
9 | 2.12 ÷ 2.22 | 2.62 ÷ 2.69 | - | - |
10 | - | - | 2.42 ÷ 2.71 | 3.04 ÷ 3.49 |
11 | 2.01 ÷ 2.33 | 2.37 ÷ 2.77 | - | - |
12 | - | - | 1.97 ÷ 2.01 | 2.49 ÷ 2.57 |
Company No. | Climatic Zone: C (Thessaloniki) | |||
---|---|---|---|---|
Fixed Capacity Compressor | Inverter Capacity Compressor | |||
No Compensation | With Compensation | No Compensation | With Compensation | |
Water Outlet Temperature: 35 °C | ||||
1 | - | - | 3.27 ÷ 4.15 | 3.43 ÷ 4.52 |
2 | - | - | 3.28 ÷ 3.91 | 3.51 ÷ 4.22 |
3 | 2.88 ÷ 3.18 | 2.99 ÷ 3.30 | - | - |
4 | 2.77 ÷ 3.17 | 2.89 ÷ 3.31 | 3.58 ÷ 3.67 | 3.78 ÷ 3.87 |
5 | 2.94 ÷ 3.20 | 3.05 ÷ 3.33 | - | - |
6 | 3.09 ÷ 3.49 | 3.24 ÷ 3.67 | - | - |
7 | 2.6 ÷ 3.07 | 2.68 ÷ 3.20 | - | - |
8 | - | - | 2.95 ÷ 3.31 | 3.07 ÷ 3.45 |
9 | 3.04 ÷ 3.34 | 3.36 ÷ 3.49 | - | - |
10 | 2.60 ÷ 2.96 | 2.68 ÷ 3.06 | 3.48 ÷ 3.89 | 3.73 ÷ 4.14 |
11 | 3.13 ÷ 3.46 | 3.26 ÷ 3.59 | - | - |
12 | 2.39 ÷ 2.63 | 2.48 ÷ 2.74 | 3.09 ÷ 3.80 | 3.26 ÷ 4.09 |
Water Outlet Temperature: 45 °C | ||||
1 | - | - | 2.60 ÷ 3.22 | 3.01 ÷ 3.93 |
2 | - | - | 2.52 ÷ 2.99 | 3.04 ÷ 3.68 |
3 | 2.42 ÷ 2.66 | 2.73 ÷ 3.00 | - | - |
4 | 2.15 ÷ 2.54 | 2.55 ÷ 2.92 | 2.82 ÷ 2.95 | 3.25 ÷ 3.38 |
5 | 2.40 ÷ 2.58 | 2.70 ÷ 2.94 | - | - |
6 | 2.30 ÷ 2.69 | 2.82 ÷ 3.21 | - | - |
7 | 2.06 ÷ 2.33 | 2.38 ÷ 2.62 | - | - |
8 | - | - | 2.37 ÷ 2.67 | 2.70 ÷ 3.04 |
9 | 2.39 ÷ 2.61 | 2.94 ÷ 3.04 | - | - |
10 | 2.15 ÷ 2.42 | 2.36 ÷ 2.73 | 2.77 ÷ 3.14 | 2.98 ÷ 3.66 |
11 | 2.41 ÷ 2.77 | 2.78 ÷ 3.13 | - | - |
12 | 1.96 ÷ 2.08 | 2.23 ÷ 2.40 | 2.41 ÷ 2.91 | 2.82 ÷ 3.56 |
Water Outlet Temperature: 55 °C | ||||
1 | - | - | 2.04 ÷ 2.60 | 2.60 ÷ 3.34 |
2 | - | - | 2.03 ÷ 2.48 | 2.59 ÷ 3.15 |
3 | 2.05 ÷ 2.22 | 2.40 ÷ 2.68 | - | - |
4 | 1.55 ÷ 2.08 | 2.11 ÷ 2.54 | - | - |
5 | 1.84 ÷ 1.96 | 2.37 ÷ 2.44 | - | - |
6 | 1.76 ÷ 2.05 | 2.41 ÷ 2.67 | - | - |
7 | - | - | - | - |
8 | - | - | 1.86 ÷ 2.14 | 2.27 ÷ 2.61 |
9 | 2.04 ÷ 2.18 | 2.57 ÷ 2.77 | - | - |
10 | - | - | 2.34 ÷ 2.56 | 2.84 ÷ 3.24 |
11 | 1.98 ÷ 2.29 | 2.35 ÷ 2.71 | - | - |
12 | - | - | 1.84 ÷ 1.88 | 2.36 ÷ 2.41 |
Company No. | Climatic Zone: D (Florina) | |||
---|---|---|---|---|
Fixed Capacity Compressor | Inverter Capacity Compressor | |||
No Compensation | With Compensation | No Compensation | With Compensation | |
Water Outlet Temperature: 35 °C | ||||
1 | - | - | 3.06 ÷ 3.72 | 3.21 ÷ 4.03 |
2 | - | - | 2.88 ÷ 3.42 | 3.09 ÷ 3.66 |
3 | 2.73 ÷ 2.99 | 2.81 ÷ 3.09 | - | - |
4 | 2.65 ÷ 3.02 | 2.76 ÷ 3.14 | 3.28 ÷ 3.40 | 3.45 ÷ 3.56 |
5 | 2.74 ÷ 2.95 | 2.83 ÷ 3.05 | - | - |
6 | 2.8 ÷ 3.13 | 2.92 ÷ 3.27 | - | - |
7 | 2.07 ÷ 2.86 | 2.11 ÷ 2.97 | - | - |
8 | - | - | 2.48 ÷ 2.94 | 2.58 ÷ 3.04 |
9 | 2.86 ÷ 3.10 | 3.10 ÷ 3.24 | - | - |
10 | 2.41 ÷ 2.79 | 2.49 ÷ 2.88 | 3.02 ÷ 3.49 | 3.19 ÷ 3.74 |
11 | 2.99 ÷ 3.26 | 3.12 ÷ 3.39 | - | - |
12 | 2.13 ÷ 2.46 | 2.20 ÷ 2.55 | 2.69 ÷ 3.39 | 2.83 ÷ 3.62 |
Water Outlet Temperature: 45 °C | ||||
1 | - | - | 2.41 ÷ 2.89 | 2.77 ÷ 3.51 |
2 | - | - | 2.25 ÷ 2.76 | 2.69 ÷ 3.25 |
3 | 2.33 ÷ 2.55 | 2.58 ÷ 2.82 | - | - |
4 | 1.98 ÷ 2.42 | 2.40 ÷ 2.76 | 2.59 ÷ 2.70 | 2.96 ÷ 3.07 |
5 | 2.23 ÷ 2.40 | 2.49 ÷ 2.70 | - | - |
6 | 2.18 ÷ 2.49 | 2.52 ÷ 2.86 | - | - |
7 | 1.67 ÷ 2.09 | 1.83 ÷ 2.37 | - | - |
8 | - | - | 2.00 ÷ 2.53 | 2.23 ÷ 2.79 |
9 | 2.25 ÷ 2.46 | 2.73 ÷ 2.83 | - | - |
10 | 1.82 ÷ 2.31 | 2.02 ÷ 2.59 | 2.47 ÷ 2.81 | 2.92 ÷ 3.25 |
11 | 2.28 ÷ 2.60 | 2.62 ÷ 2.91 | - | - |
12 | 1.75 ÷ 1.88 | 1.96 ÷ 2.15 | 2.13 ÷ 2.65 | 2.44 ÷ 3.14 |
Water Outlet Temperature: 55 °C | ||||
1 | - | - | 1.87 ÷ 2.38 | 2.36 ÷ 3.01 |
2 | - | - | 1.90 ÷ 2.32 | 2.36 ÷ 2.92 |
3 | 1.96 ÷ 2.13 | 2.27 ÷ 2.55 | - | - |
4 | 1.38 ÷ 1.92 | 1.84 ÷ 3.07 | - | - |
5 | 1.70 ÷ 1.85 | 2.15 ÷ 2.26 | - | - |
6 | 1.59 ÷ 1.85 | 2.12 ÷ 2.42 | - | - |
7 | - | - | - | - |
8 | - | - | 1.48 ÷ 2.01 | 1.81 ÷ 2.43 |
9 | 1.90 ÷ 2.65 | 2.30 ÷ 3.05 | - | - |
10 | - | - | 2.11 ÷ 2.27 | 2.51 ÷ 2.86 |
11 | 1.89 ÷ 2.17 | 2.21 ÷ 2.53 | - | - |
12 | - | - | 1.56 ÷ 1.65 | 2.02 ÷ 2.09 |
Fixed-Capacity Compressor | |||||||
From N.Comp. to W.Comp. | From 45 to 35 °C | From 55 to 45 °C | |||||
35 °C | 45 °C | 55 °C | N.C. | W.C. | N.C. | W.C. | |
Ierapetra | 2.0% | 7.8% | 12.7% | 21.8% | 15.3% | 18.4% | 13.2% |
Athens | 3.9% | 13.7% | 22.4% | 25.4% | 14.6% | 18.9% | 10.4% |
Thassaloniki | 4.2% | 14.9% | 23.8% | 25.9% | 14.3% | 17.9% | 9.4% |
Florina | 4.0% | 13.3% | 22.6% | 25.7% | 15.3% | 16.0% | 7.3% |
Inverter-Driven Compressor | |||||||
From N.Comp. to W.Comp. | From 45 to 35 °C | From 55 to 45 °C | |||||
35 °C | 45 °C | 55 °C | N.C. | W.C. | N.C. | W.C. | |
Ierapetra | 3.5% | 10.1% | 12.5% | 23.3% | 16.1% | 19.2% | 16.6% |
Athens | 6.4% | 17.7% | 23.7% | 26.9% | 14.8% | 22.6% | 16.6% |
Thassaloniki | 6.8% | 17.5% | 25.4% | 26.3% | 14.7% | 23.4% | 15.6% |
Florina | 6.3% | 16.1% | 23.2% | 24.5% | 14.0% | 23.0% | 15.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouzeviris, G.A.; Papakostas, K.T. Study on Air-to-Water Heat Pumps Seasonal Performances for Heating in Greece. Energies 2022, 15, 279. https://doi.org/10.3390/en15010279
Mouzeviris GA, Papakostas KT. Study on Air-to-Water Heat Pumps Seasonal Performances for Heating in Greece. Energies. 2022; 15(1):279. https://doi.org/10.3390/en15010279
Chicago/Turabian StyleMouzeviris, Georgios A., and Konstantinos T. Papakostas. 2022. "Study on Air-to-Water Heat Pumps Seasonal Performances for Heating in Greece" Energies 15, no. 1: 279. https://doi.org/10.3390/en15010279
APA StyleMouzeviris, G. A., & Papakostas, K. T. (2022). Study on Air-to-Water Heat Pumps Seasonal Performances for Heating in Greece. Energies, 15(1), 279. https://doi.org/10.3390/en15010279