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Abstract: Load characteristics play an essential role in the planning of power generation and distri-
bution. Various undiscovered factors, which could be socioeconomic, geographic, or climatic, make
it possible to describe the electricity demand by a multimodal distribution. This letter proposes a
novel method based on multimodal distributions to characterize the hidden factors in electricity
consumption. Consequently, a new approach is developed to evaluate the impact of the under-
lying factors of electricity consumption. Some quantifiable and predictable factors are analyzed
in developing multimodal distribution to describe the expected demand. Simulations based on
synthetic and real-world data have been conducted to demonstrate the usefulness and robustness of
the proposed method.
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1. Introduction

Characterizing and forecasting load demand have been challenging issues due to
the dependency of load demand on a large number of hidden factors. Detailed study
of electricity consumption involves knowledge of the trends and seasonality that can be
exploited to extrapolate the demand characteristics [1]. Major factors driving electricity
consumption include economic activities, meteorology, and human activity patterns. The
impact of economic activities and meteorology on electricity demand is long term and large
scale. Periodic temperature conversion (e.g., it is warmer in the summer than in the winter)
and cyclical human activity patterns influence electricity demand in the short term [2].
Thus, understanding electricity demand patterns is crucial in planning and managing the
type, size, and timing of supply needs [3]. For example, changes in demand levels and
real-time prices will affect the value of storage capacity [4]. Statistical methods characterize
the inherent similarities in historical electricity data and classify residential loads into
several typical load patterns. The Gaussian mixture model (GMM) is a popular method
that is used to extract the typical load patterns [5]. In [6], a multi-stage probabilistic method
is proposed to estimate the monthly and hourly PV generation sequentially by GMM and
maximum likelihood estimation (MLE).

The study described in this work has been partially motivated by results [7] showing
that certain socioeconomic and meteorological factors are able to characterize electricity
consumption patterns. As a natural next step, we propose a framework that helps to
uncover hidden factors in electricity demand data as well as to evaluate the impact of these
factors on electricity consumption. In particular, a multi-dimensional data set is constructed
by fusing the electricity demand data with other socioeconomic or meteorological data sets.
Since real-world electricity consumption data are multimodally distributed [7], we then
use a Gaussian mixture to obtain an estimated electricity consumption model. Based on the
Gaussian mixture model (GMM), genetic algorithms (GA) are consequently employed to
uncover and evaluate the hidden factors. Experiments on synthetic data and real-world
data are also conducted to show the usefulness of the proposed method in uncovering the
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hidden factor in electricity demand data. The proposed method is innovative and intuitive;
its contributions can be summarized as follows:

• A GMM-based residential load characterization method is proposed, which efficiently
assesses the hidden factors in the residential load from real-world and synthesized
data set.

• A new metric, mixture error, is proposed, which is able to handle the uncertainty in
the residential load.

• The proposed method considers various specific properties of the multidimensional
load data.

The results indicate that the proposed method is able to uncover various hidden factors
and, at the same time, accurately characterize the load demand pattern. The rest of the
paper is organized as follows. The proposed method of this study is presented in Section 2.
Experiments on synthetic and real-life data are described in Section 3. Conclusions are
drawn in Section 4.

2. Proposed Method
2.1. Multimodal Distribution and Mixing Error

A multimodla distribution is a probablity distribution with multiple modes that
displays distinct peaks in the probability function. Power data naturally appear as a
multimodal distribution due to the cyclic patterns of meteorological rotation and human
activity [1]. Namely, electricity demand data can be estimated by the Gaussian mixture
model, which can be stated as Equation (1) below.

f (x) =
K

∑
i

wiN (µi, σi) (1)

where N (µi, σi) denotes the i-th component characterized by normal distributions with
means µi and covariance σi, and wi is the corresponding mixing parameter satisfying
∑K

i wi = 1.
Here, we use an index S, defined in Equation (2), to quantify the separation of such a

bimodal distribution [8]. Specificity, for a normal distribution, bimodality occurs for certain
mixture proportions if, and only if, the separation index S is greater than 3.2237.

S =
|µ1 − µ2|

2(σ1 + σ2)
. (2)

In addition, a mixture error matrix E is defined as pair-wise intersection between
components in Equation (3) below to measure the multimodality of the fitted distribution.

E =


ε11 ε12 . . . ε1K
ε21 ε22 . . . ε2K

...
...

. . .
...

εK1 εK2 . . . εKK.

 (3)

The pair-wise intersection can be compute according to Equation (4) below.

εij = εji =
∫

min
(
wi pi(x), wj pj(x)

)
dx, (4)

where pi(x) is the component of the multimodal distribution in (1), and wi is the corre-
sponding mixture proportion. Additionally, the intersect point xij

c can be obtained through
wi pi(xij

c ) = wj pj(xij
c ), which is the point where two components intersect. The parameter

ε can be used to describe the mixing error that occurs when the tail of one component
intersects the other component when forming a mixture distribution. This concept can be
extended to any multimodal distributions besides Gaussian mixtures.
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2.2. Multi-Dimensional Load Profile

In order to study the impact of hidden factors on electricity demand, a multi-dimensional
data set needs to be constructed. The multi-dimensional data must include the electricity
demand and at least one hidden factor data set, e.g., socioeconomic or meteorological
data. For example, a daily load demand and the corresponding daily temperature can be
constructed as three-dimensional vectors and expressed as (P, T, t) ∈ R3, where the three
axis represent load demand P, temperature T, and time t, respectively. This concept can be
extended to other applications that utilize information from multiple domains.

2.3. Uncover the Hidden Factors

As discussed in Section 1, the load demand is statistically characterized as bimodal
distributions [7]. With the availability of multi-dimensional electricity load data, we now
propose a strategy to characterize the hidden factors in an electricity load profile. Firstly,
the GMM is employed to estimate the probability density function (PDF) of the load
demand, f (x) = ∑ wi pi(x), i = 1, 2, . . . , m, where x ∈ Rk is a multi-dimensional variable,
pi(x) ∼ N (µi, σi) is the mixture component, and w = [w1, w2, . . . , wm] is the mixing
parameter. We then compute the original mixing error ε0 of f0(x, w). Secondly, based on
the number of GMM components m, the multi-dimensional data set E is divided into m
subsets {Ei|Ei ⊂ E, i = 1, 2, . . . , m}. The data volume in each subset is proportional to the
corresponding mixing parameter V(Ei) ∝ wi. We now employ Gaussian distribution to
estimate the corresponding PDFs p̂i of subsets Ei. Thirdly, p̂i is re-mixed to form a new
GMM f̂ (x, w). If the new mixing error ε̂ is greater than ε0, we re-split the original data
set to obtain a new GMM and mixing error. Eventually, we aim to find a proper grouping
scheme of E that has the minimal mixing error ε̂ ≤ ε0 and the critical point x̂c. In order to
improve the efficiency of the algorithm and ensure reliable results, a genetic algorithm is
employed to handle the data set splitting process. The details of the proposed method are
summarized in Algorithm 1.

Algorithm 1: Uncovering hidden factor from multi-dimensional load profile.
Data: Multi-dimensional load profile E =

{
x|x ∈ Rk}.

Result: Find the critical point x̂c in the multi-dimensional electricity demand data that characterize the
hidden factor.

Compute conventional Gaussian mixture estimation f0(x, w) of E with mixing error ε0 with critical
point xc0 and initiate the stopping criteria ε̂ = 2ε0, x̂c = xc0, and Ê = E;

while ε̂ > ε0 do
step 1: initialize the genetic algorithm, perform n random grouping schemes of E as the 1st

generation 1G =
{

1E1, 1E2, . . . , 1Ej, . . . , 1En

}
; for each grouping scheme

1Ej =
{

1E1j, 1E2j, . . . , 1Eij, . . . , 1Emj

}
satisfies V

(
1Eij

)
∝ pi ;

step 2: perform the genetic algorithm process (crossover, mutation) on l−1G (if l > 2) to generate

2n new grouping schemes l−1C =
{

1E
′
1, 1E

′
2, . . . , 1E

′
2n

}
as the children of l−1G;

step 3: compute the mixing error lε for all grouping schemes in l−1C and l−1G, pick m grouping
schemes that have the smallest mixing errors to form a new generation l G, and update
ε̂ = min

(lε
)
;

if min
(lε
)
> ε̂ then

repeat step 2 and step 3;
else

update Ê = l Ej and x̂c = l xc j, where l Ej is the grouping scheme and l xc j is the critical point
corresponding to min

(lε
)
, respectively;

repeat step 2 and step 3;
end

end

3. Case Studies

In this section, two case studies of both synthetic and real-life scenarios are conducted
to demonstrate the performance of the proposed approach.
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3.1. The Hidden Factor of Household Population

In the first case study, we use a synthetic load profile to study the impact of household
population on peak load demand. The synthetic load profile data are generated by the
load profile generator (LPG) [9]. The LPG simulates the full behavior of people in a house-
hold [10]. In this study, we generate a data set E1 containing the electricity consumption
profiles of 1257 households over a year. The data set E1 contains hourly electric loads
and number of persons living in each household. The house model and human activity
pattern are based on a German census in 1996. Before applying the proposed method,
conventional GMM is employed to obtain a Gaussian mixture estimation f1(x, w) with
a separation index of S1 = 2.2437 and a mixing error of ε1 = 0.0159. Figure 1 shows the
grouping results and the corresponding f̂1(x, w), with the mixing error being ε̂1 = 0.0159.
The new Gaussian mixture f̂1(x, w) and its corresponding grouping scheme Ê1 indicate
that the data are clustered due to the household population. Specifically, the critical point is
x̂c1 = [81.3 kWh, 4.5], inferring that if a house has five or more people, the maximum daily
electricity consumption of this household will increase significantly, where there is a 91.84%
probability that the consumption will exceed 81.3 kWh. On the other hand, if a house
has four or fewer people, the maximum daily electricity consumption has a probability of
98.68% to be less than 81.3 kWh.
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Figure 1. Grouping scheme and critical point in household population-load profile.

3.2. The Hidden Factor of Temperature

In the second case study, we analyze how the minimum daily temperature character-
izes the daily load demand. Every year, Ausgrid (an electricity distribution company in
Sydney, Australia) will publish 12 months of the load demand data of its substations. The
data contain load demand profiles of over 180 zone substations, which form the boundary
between the sub-transmission network and the distribution (11 kV) network. The second
case study uses the daily average load data covering the period from 1 May 2018 to 30
April 2019. Figure 2 shows the daily load demand curves of six different substations. It
can be observed that the load demand follows a weekly periodical pattern. The electricity
demand is high during weekdays and drops sharply on weekends, as expected. However,
the daily load curves of Rockdale (green) and Leichhardt (yellow) in Figure 2 do not follow
the weekly pattern of the others. Through our investigation, we found that temperature can
also be an important factor affecting load demand. As well as the substations’ daily average
load data from Ausgrid, the daily max/min temperature data are obtained from the Bureau
of Meteorology, Australia. By inserting the daily average load data with the corresponding
temperature data, we end up with a 4-D load data set E2(t, Tmin, Tmax, Pmean), where t is the
timestamp in day, Pmean is the average daily load, and Tmin and Tmax are the minimal and
the maximum daily temperature, respectively. The distributions of the daily average load
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and daily temperature both appear bimodal. The daily average load data of the Rockdale
substation are used to test the proposed method. Before the grouping procedure, we obtain
the conventional GMM of Rockdale f2(x, w), with a separation index of S2 = 1.4918 and a
mixing error of ε2 = 0.0744. Figure 3 shows the results of grouping scheme Ê2 and critical
point (black cross) x̂c2 = [12.2 ◦C, 1359 MW]. The mixing error of the new Gaussian mixture
f̂2(x, w) that corresponds to Ê2 is now ε̂2 = 0.0740. The results indicate that the daily
temperature is an important factor in characterizing the daily average load. The critical
point indicates that the daily average load will increase as the temperature rises higher
than 12.2 ◦C. As a result, there is a 95.24% probability that that the daily average load of
Rockdale will exceed 1359 MW. This information discovered here by the proposed method
is useful in planning electricity generation and supply based on historical temperature data
and weather forecasting.
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Figure 2. Daily load demand curves of six Ausgrid substations.
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Figure 3. Grouping scheme and critical point in temperature–load profile.

4. Conclusions

The emerging grid modernization is evolving rapidly, constantly reshaping our long-
lasting expectation of electric consumption patterns. While much attention has been paid
to time-series load forecasting, there is little literature on uncovering significant yet hidden
factors that affect electricity consumption. In this paper, we set out to obtain a fresh
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perspective on understanding the multidimensional database and gain insight into load
demand analysis for real-world applications. The case studies indicate that electricity
consumption is correlated with various variables/factors in a more complicated way than
we have imagined.

This letter proposes a new approach to study electricity demand patterns. The proce-
dure starts by assembling electricity demand data with other types of data into a multidi-
mensional database and modeling such multidimensional data as a multimodal distribution.
Based on such a multidimensional data set, the proposed method is able to uncover hidden
factors in load demand. Numerical studies based on real and synthetic data sets demon-
strate the usefulness of the proposed framework. Understanding the underlying factors
and how they influence the load demand pattern will benefit power suppliers in planning
the type and size of electricity generation accordingly. For our future work, we plan to
incorporate the hidden factor analysis into new market mechanism designs, such as a
personalized demand response program.
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