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Abstract: This paper focuses on the estimation of energy consumption of Electric Vehicles (EVs)
by means of models derived from traffic flow theory and vehicle locomotion laws. In particular,
it proposes a bi-level procedure with the aim to calibrate (or update) the whole parameters of
traffic flow models and energy consumption laws by means of Floating Car Data (FCD) and probe
vehicle data. The reported models may be part of a procedure for designing and planning transport
and energy systems. This aim is to verify if, and in what amount, the existing parameters of
the resistances/energy consumptions model calibrated in the literature for Internal Combustion
Engines Vehicles (ICEVs) change for EVs, considering the above circular dependency between supply,
demand, and supply–demand interaction. The final results concern updated parameters to be used
for eco-driving and eco-routing applications for design and a planning transport system adopting
a multidisciplinary approach. The focus of this manuscript is on the transport area. Experimental
data concern vehicular data extracted from traffic (floating car data and probe vehicle data) and
energy consumption data measured for equipped EVs performing trips inside a sub-regional area,
located in the Città Metropolitana of Reggio Calabria (Italy). The results of the calibration process
are encouraging, as they allow for updating parameters related to energy consumption and energy
recovered in terms of EVs obtained from data observed in real conditions. The latter term is relevant
in EVs, particularly on urban routes where drivers experience unstable traffic conditions.

Keywords: sustainable mobility; smart energy; energy consumption models; traffic flow models;
internal combustion engines vehicles (ICEVs); electric vehicles (EVs); floating car data (FCD); probe
vehicle data

1. Introduction

Mobility of people and goods inside a smart energy environment is a cross-cutting
issue to be addressed in order to help achieve the 2030 agenda for sustainable development.

Transport infrastructure and services are means allowing people and business to access
destinations (e.g., workplaces, schools, markets) in order to perform activities. At the same
time, these means require natural, economic and financial resources. Among them, energy
resources are crucial, in order to reach sustainability ([1,2]).

Electric Vehicles (EVs) play a relevant role in sustainable mobility. In recent years,
there has been an increasing use of EVs in the mobility of people and goods, and they
are replacing traditional internal combustion engine vehicles (ICEVs). This evolution has
several implications in the so-called tank-to-wheel process.

This paper focuses on energy consumption for mobility. Particular attention is devoted
to the estimation of energy consumption of EVs by means of models derived from traffic
flow theory and vehicle locomotion laws. The objective is to calibrate (or update) the whole
parameters of traffic flow models, vehicle locomotion laws and energy consumption by
means of Floating Car Data (FCD), and probe vehicle data.
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The transport models considered in this paper are a part of the more general models
for the supply transport sub-system. The supply models, together with demand and the
demand–supply interaction models are adopted for the analysis, design, and planning
modelling transport and smart energy systems. The aim of this paper is relative to the
transport medialization, with the aim to design the system a priori in order to reach
sustainability via a multi-disciplinary approach.

The calibration process at each level (I. FCD and II. Probe) is developed with an
optimization framework inside a Specification–Calibration–Validation (SCV) approach.
The Specification (S) adopts the consolidated energy consumption models, which have a
mixed static/dynamic nature. The Calibration (C) is carried out using a weighted GLS
(Generalized Least Square) estimator, sequentially combining the energy components
related to consumption and to recovery. The Validation (V) is carried out evaluating
statistical indicators to verify the quality of the model.

The innovations reported in this paper mainly concern two elements (more details are
reported in Section 2.4). The first concerns the updating of the traditional parameters of
energy consumption models for EVs, estimated in the past for ICEV vehicles. The second
concerns the minimization of costs necessary to build the above models, as the calibration
is executed by means of FCD and probe vehicles data.

The results of the calibration process allow for updating parameters related to energy
consumption and energy recovering in terms of EVs. The recovery term is relevant in
the case of Evs, especially in urban areas, where drivers experience unstable traffic condi-
tions (stop-and-go), rather than in extra-urban areas, where drivers travel in stable traffic
conditions (constant speed).

The calibrated parameters could allow to update the explicit relationships of Evs’
energy consumption and traffic conditions in terms of circular dependency between: (a) EVs’
energy consumption, times and costs (supply); (b) users’ behaviour and choice (demand);
(c) traffic flow on links and paths (supply–demand interaction).

The remaining part of the paper is structured as follows. Section 2 presents a state
of the art concerning the main issues of the paper: data, speed functions, and energy
consumption models. The proposed framework is presented in Section 3. Section 4 reports
the experimental results. Conclusions and developments are reported in the last section.

2. State of the Art and Research Contribution

The state of the art concerns the main issues of the paper: data (Section 2.1); speed
functions (Section 2.2); energy consumption models (Section 2.3). Section 2.4 reports the
research contribution in relation to the existing literature.

2.1. Data

ICT applications for mobility and automotive markets (e.g., mobile phones, GPSs, on-
board vehicles equipment) allow for the collection of a large amount of potentially valuable
data on travel patterns, transport networks and energy consumption of vehicles ([3] and the
included references). The possibility to replace or integrate data coming from traditional
surveys with big-data depends on the ability to select, filter and process them ([4]).

The main big-data sources are mobile phones, smart cards, GPS and Point Of Interests
(POIs). GPS and Bluetooth data are widely used in mobility applications and in travel
time estimation due to their high spatial–temporal resolution, such as monitoring private
passenger and freight vehicles (Floating Car Data, FCD). Today, their potentialities in
providing positions, speeds and accelerations, and in general, spatio-temporal trajectories
of road vehicles are commonly recognized ([5]). They could support the building of
Transport System Models (TSMs), which are composed of three modelling elements ([6]):
Transport Supply (TS) models, Travel Demand (TD) models and Transport Supply–Travel
Demand (TS–TD) models.

As far as concerning TS, [7] proposed a graph-based approach to elaborate data about
vehicle trajectory, in order to extract general patterns about mobility. Oloo, F., et al. [8]
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elaborated GPS data related to trajectories of motorcycle taxis with a semi-automatic
procedure with the aim to model rural-level road networks in Kenya. Croce, A.I., et al. [4]
proposed a procedure that uses FCD and traditional data to support the processes of
zoning and graph building. The proposed procedure provides benefits in the network
model forecasting capabilities and reduces the costs connected to traditional surveys. Some
authors elaborate GPS data to obtain performance measures (e.g., travel time, average
speeds) of specific road segments ([9]). Pirra, M., et al. [10] proposed a measurement method
of congested travel times, integrating data from GPS and from traffic conditions. As far
as concerns TD (and TS–TD), big data (i.e., FCD, CDR) are used, sometimes in synergy
with traditional data, to estimate travel behaviour or origin-destination flow matrices.
Wang, J., et al. [11] investigated driving behaviour through FCD, which are converted into
passengers’ ring and chain trips. Nuzzolo, A., et al. [12] processed taxi data (FCD) in order
to assess taxi services in Rome. These data were converted into data useful to estimate
within-day and day-to-day service demand, considering the main trips’ characteristics (e.g.,
origin, destination and travel time).

2.2. Speed Functions

The literature on speed functions cannot be dissociated from the more comprehensive
one related to Transport System Models (TSMs), in particular, to the three modelling
components above specified.

In relation to TS, the network approach is the one commonly used in literature ([6]),
where the supply is modelled with nodes, links and cost functions. According to their
level of aggregation, cost functions may be specified with speed-density or time-flow rela-
tionships (in the aggregate case), or with car-following, lane-changing and gap-acceptance
models (in the disaggregate case).

As far as concerns aggregate cost functions, there is a long research history concerning
the definition of relationships (Traffic Flow, TF, models) between average vehicular speed,
flow and density in order to describe traffic conditions on a link, a class of links, and in
general on a network. In the link case, several specifications were proposed in the past
able to represent steady-state conditions, which range from mono-regime to multi-regime
models ([13], and the references included). In the network case, there is a more recent line
of research that assumes the existence of a relationship between speed, flow and density at
network level, called Network Macroscopic Fundamental Diagram (NMFD) ([14], and the
references included).

In relation to TD, it is commonly used in literature the multi-step approach, simulating
the trip purpose, departure time, origin, destination, mode and path of users ([6,15];).
Travel demand models can be classified into two main categories: not-behavioural models
or behavioural models. The first category is general based on gravitational-entropy prin-
ciples, while the second one has random utility, fuzzy or quantum utility as background
theories ([16]).

In relation to TS–TD, traffic assignment models consider the interaction between travel
demand and transport network, estimating costs (or disutilities) and traffic flows on the
network. If the available supply (transport facilities and services) is limited, congestion
costs arise. Traffic assignment models can be classified according to different criteria:
the criterion of aggregation of cost functions categorizes models into macroscopic and
microscopic; the second criterion regards the static vs. dynamic nature of models ([6,17]).

2.3. Energy Consumption Functions

Many economic studies predict in the next future that the automotive market will be
covered by EVs in several configurations (i.e., hybrid plug-in or not, extended range). ([18],
and the references included). Some elements are currently under development in order to
support a large scale diffusion of EVs:

(i) batteries;
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(ii) charging stations in term of location, infrastructure ([19,20], and the references in-
cluded);

(iii) energy consumption connected to vehicle performances and drivers’ behaviour ([21–23]);
(iv) energy recovered with the brake system ([24]). The recovered energy is relevant in EVs:

it is more evident on urban routes, where drivers experience instability conditions
(frequent stop-and-go), rather than on freeways, where drivers travel in more stable
conditions ([25]). The values of wheels-to-battery regenerative efficiency, defined as
the portion of energy dissipated during deceleration and downhill which is recovered
with regenerative braking system, range from 0.59 to 0.84 in literature. A literature
review of different calculated values is presented in [21].

As concerns energy consumption models, two classification criteria can be adopted ([21,
26,27];). The first criterion considers forward models, that estimate energy from the engine
to the wheels; and backward models, that estimate energy from the wheels to the engine.
The second criterion is based on the level of temporal aggregation. Models may be steady-
state (or aggregate) and dynamic (disaggregate). Steady-state models need fewer input
data (e.g., average link speed, consumption per unit of travelled distance), than dynamic
models (e.g., instantaneous speed/traction profile of vehicle). However, the former ones
provide aggregate results that do not take into account the variability of driver behaviour,
vehicle and infrastructure characteristics.

2.4. Research Contribution

The research contribution of the paper regards the integration of energy consumption
models, FCD and experimental data in a proposed framework in order to pursue two
objectives.

(i) The first concerns the updating of the traditional parameters of energy consump-
tion models for EVs, estimated in the past for ICEV vehicles ([28]) at a macroscopic
level. This could allow adopting the energy consumption model inside the static and
day-to-day dynamic assignment models in order to consider the circular dependency
between travel demand and transport network. The objective to estimate continuous
profiles of speed, acceleration and energy consumption of EVs, to be used in micro-
scopic dynamic traffic assignment models, is out of the scope of this research. The
authors adopt in this research aggregated profiles of speed, acceleration and energy
consumption of Evs, to be used in macroscopic (static) traffic assignment models.

(ii) The second concerns the minimization of costs necessary to build the above models.
Surveys to obtain traffic data (vehicular flows, densities), vehicles cinematic (speeds
and accelerations) and energy consumption (fuel, electricity consumption) are expen-
sive. Real-time and/or off-line big-data gives a lot of historical information in the
space and in the time about passengers’ mobility and freight transported. This data
cannot be directly used for system forecast. The data have to be used for the transport
system state indicators estimation and for the integration with the transport models.
The combination of big-data and experimental ones could lead to relevant benefits in
terms of model building results.

(i and ii.) The paper can be considered as an example of a possible application for
validate models for traffic flow and energy consumption in real context, updating previous
and/or literature model specification and parameters values.

3. Proposed Framework

The proposed framework (Figure 1) allows to update the parameters of traffic flow
models and energy consumption models by means of a SCV procedure from FCD and
experimental data deriving from probe vehicle monitoring.

The framework has three components, as presented below.
The Specification (S), reported in Section 3.1, where models are specified; they allow to

estimate performances (estimated variables) from parameters of literature (initial parame-
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ters) by means of system modelling. The specification adopts traditional models existing in
the literature. The energy consumption models have a mixed static/dynamic nature. The
static component allows for estimating the average values of vehicular speed and accelera-
tion on the links, or on classes of links, of a road network. The (quasi-)dynamic component
allows for estimating the energy consumption of an EV in a discrete spatial-temporal
domain, according to the average values of speed, acceleration and traction/resistance.
The energy consumption of EVs combines models derived from: vehicles locomotion
laws, to estimate the resistances acting on a vehicle in motion and then to estimate energy
consumption; traffic flow theory, to estimate the interactions among vehicles inside the
road facilities.
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The Calibration (C), reported in Section 3.2, where an optimization model allows
to updating parameters of traffic flow and/or energy consumption models (updated
parameters) by means of experimental traffic and energy consumption data (observed
variables). The calibration is carried out using a weighted GLS (Generalized Least Square)
estimator, sequentially combining the energy components related to consumption and to
recovery. Data used for the model calibration belong to two categories: floating car data
available from ICT (i.e., GPS) devices, that provide information about spatial-temporal
positions of equipped vehicles; data deriving from probe EVs traveling in a real road
network.

The Validation (V), reported in Section 3.3, where informal and formal statistic tests
for ending the procedure or come back at specification or calibration level. The valida-
tion is carried out evaluating statistical indicators in order to confirm the quality of the
model or to give indications that the SCV procedure has to come back at calibration or
specification level.

There are several areas of application of the proposed framework (Table 1): TD models,
TS models, TF models, Energy Consumption (EC) models.

As far as concerns the initial parameters of all the models, they generally are the ones
that have been already calibrated in other similar contexts (available in literature).

The SCV procedure for TSMs’ building is commonly used in literature, while it is
not common the combined usage of FCD and probe vehicle data. The aim is to show
the potentialities connected to FCD and probe data in calibrating model parameters. In
particular, the focus is on speed flow and energy consumption functions, this is the reason
of the disaggregation of TS area in Table 1.
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Table 1. Areas of application of the proposed framework and parameters calibration from FCD and
from probe vehicles.

Travel Demand (TD) Transport Supply (TS)
Cost Speed-Flow Energy Consumption

Initial parameters
Calibrated for similar
urban structure and

mobility patterns
Calibrated for links of similar characteristics Calibrated for existing

vehicles

Model Multi-step model Network model
Speed-density diagram

and acceleration
distribution

Resistances and energy
consumption models

Estimated variables Origin-destination flow
matrix link cost functions Average link speeds

and acceleration
Resistances and energy

consumption
Main observed

variables FCD FCD Experimented energy
consumption

Optimization
estimation

Bayesian/Maximum
Likelihood/GLS Maximum Likelihood/GLS

Updated parameters
for models relative to Emission/Distribution Link cost Speed/acceleration Resistances/energy

consumption

3.1. Speed Functions

The functions’ specifications (S), used for TS modelling in static and day-to-day dy-
namic assignment, belong to two classes:

• (vehicular) speed functions (TF, Section 3.1.1);
• energy consumption functions (EC, Section 3.1.2).

3.1.1. Speed Functions

The instantaneous speed of a vehicle depends on space s and time t by means of other
fundamental traffic flow variables, such as density, k = k(s, t) and flow, q = q(s, t), and a
vector of parameters βv to be calibrated.

Two assumptions can be adopted:

(a) the traffic flow variables depend on each other, and only density k = k(s, t) could be
assumed as reference;

(b) the variables k (density) and q (flow) can be assumed stationary in a reference time
interval (assumed equal to t*) and space interval (assumed equal to s*, i.e., link, or
class of links) and assume values (density) kt*,s* and (flow) qt*,s*. According to the
above assumption, the speed function, v(), depends on:

vt*,s* = v(βv(kt*,s*, qt*,s*), kt*,s*) (1)

where βv() is the vector of the speed function parameters.

3.1.2. Energy Consumption Functions

The total resistance acting on a vehicle (obtained as the sum of rolling resistance,
aerodynamic resistance, slope resistance), in the time and space interval t*, s*, may be
expressed as a function, r():

rtot
t*,s* = r(x, vt*,s*, α) (2)

where

x is the vector of vehicle attributes (i.e., mass xm, coefficient of aerodynamic shape, xa);
vt*, s* is the speed in the time and space interval t*, s*;
α is the vector of resistances’ parameters.
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The vehicle is subject also to the inertial and traction forces. The inertial force ri, in the
time and space interval t*, s*, is equal to:

ri
t*,s* = xm × at*,s* = xm ×βa (3)

with

xm, mass of the vehicle;
at*,s*, acceleration evaluated in the time and space interval t*, s*.

The acceleration is a cinematic parameter βa to be calibrated. It can be assumed:
βa = at*,s*. For calibration purpose, a vector, βa, of accelerations can be defined considering
positive (acceleration) or negative (deceleration) phases.

The traction force, nt*,s*, is the force that the engine gives to the wheels in the time and
space interval t*, s*. It has to be lower that the adhesion force acting between the tyre and
the road surface. It is regulated by the driver in the space and in the time.

According to the Newton principle:

nt*,s* = rtot
t*,s* + ri

t*,s* (4)

Several external factors related to the environment, vehicle and driver, not previously
considered, could influence the forces in the real context (indicated with the symbol γ). For
this reason, some parameters may be introduced in Equation (4):

nt*,s* = γrt × rtot
t*,s* + γin × ri

t*,s* (5)

with

γrt, parameter related to resistances (to be calibrated);
γin, parameter related to inertia (to be calibrated).

Let:

• h, is the path followed by the vehicle, composed by road links (belonging to a class) s*
of length ls*;

• nt*,s* · ls* is the energy at the wheels necessary for the motion of a vehicle on a road
link s*;

• eh is the energy consumed by the engine of a vehicle along a road path h;
• ea is the energy consumption for the accessory installations (i.e., air conditioning);
• γt-w is the efficiency parameter related to energy consumption (to be calibrated);
• γw-b is the efficiency parameter related to energy recovered (to be calibrated).

By considering a time and space interval t*, s*, three cases can be introduced:

• Case I: the traction force is greater than zero, nt*,s* > 0 (Equations (4) or (5)), and the
vehicle consumes energy:

eh = ea + (Σs∗∈h nt*,s* × ls*)/γt-w (6)

• Case II: the traction force is lower than zero, nt*,s* < 0 (Equations (4) or (5)), and the
vehicle recovers energy:

eh = ea + (Σs∗∈h nt*,s* × ls*) × γw-b (7)

• Case III: the traction force is equal to zero, nt*,s* = 0 (it could be included in case II
considering that nt*,s* = 0):

eh = ea (8)
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The vectors α (relative to vehicle resistances), β (relative to the speed, βv, and acceler-
ation, βa) and γ (relative to the vehicle inertia and resistance and to energy efficiency) have
to be calibrated.

The dependency of energy from the three classes of parameters is synthetically ex-
pressed in the following function, e(), that take into consideration Equations (1)–(5):

e = e(α, β, γ) (9)

where e is the energy vector, with eh as generic component.

3.2. Calibration

The calibration (C) of the three class of parameters α, β and γ could be executed
according to two types of procedure: simultaneous or sequential.

As concerns the simultaneous calibration, the objective function to be minimized is
expressed as:

min (e(α, β, γ) − e*)T × (e(α, β, γ) − e*) + w1 × α - α*)T × α - α*) +
+ w2 × β - β*)T × (β - β*) + w3 × γ - γ*)T × γ - γ*)

(10)

where

• e* is the vector of observed consumed energy (the generic entry h is e*h);
• α∗, β∗ and γ*(=1) the initial values of parameters obtained from the literature;
• w1, w2 and w3 the relative weight of the single terms in the objective function.

The objective function could be applied also assuming the relative weights equal
to zero. As concerns the sequential calibration, one step for each of the three vectors of
parameters is considered:

• first step: calibration of α (αOPT is obtained), assuming the values for β and γ given
by literature;

• second step: calibration of β (βOPT is obtained), assuming the value αOPT and γ given
by literature;

• third step: calibration of γ (γOPT is obtained), assuming the value αOPT and βOPT.

As an example of the second step, the specification of the objective function for
calibration of βv:

min (v(βv(kt*,s*, qt*,s*), kt*,s*) − v*)T × (v(βv(kt*,s*, qt*,s*), kt*,s*) − v*) + wβ × (βv − βv*)T × (βv − βv*) (11)

where

• v() is the vector of estimated speed with the model;
• v* is the vector of observed speed;
• βv* is the initial vectors values of parameters obtained from the literature;
• wβ is a relative weight (it could be assumed equal to zero).

As an example of the third step, the specification of the objective function for calibra-
tion of γ:

min (e(αOPT, β OPT, γ) − e*)T × (e(αOPT, β OPT, γ) − e*) + w1 × (γ - γ*)T × (γ - γ*) (12)

where

• e* is the vector of observed energy;
• γ* is the initial vectors values of parameters obtained from the literature;
• w1 is a relative weight (it could be assumed equal to zero).

3.3. Validation

The Validation (V) allows to verify the reasonableness and significance of the estimated
parameters, the model’s capability to reproduce the observations and, if necessary, the
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hypotheses underlying the functional form assumed by the model. These activities can be
carried out by means of the following statistical tests, starting from observations.

The most common statistical tests are formal and non-formal tests on calibrated
parameters of the specified functions. Informal tests are based on the reasonableness of the
signs of the calibrated parameters and on their mutual relationships. Formal tests belong to
different groups. The first group of tests verifies the different hypotheses (if they exist) on
the parameters’ estimates, such as the t-student test on the single parameter or on couples
of parameters, the chi-square test on the parameters’ vector. The second group of tests are
statistics on the goodness of fit of the model: for example, the rho-square statistic and the
mean square error measure the model’s capability to reproduce the observed data.

4. Experimentation

The experimentation was implemented to verify the proposed SCV approach in an
experimental area, located in Calabria Region (Southern Italy). In particular, the experi-
mental area (Figure 2) encompasses several towns close to Roccella Jonica, which attract
great interest of tourists who arrive at the local port, called “Porto delle Grazie”.
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The analysis concerns the energy consumption of electric vehicles (EV), that offer
transport services to tourists who arrive at the port and visit the touristic destinations
inside the area. During the experimentation, EVs use an electricity charging station located
inside the port.
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4.1. Specification

The speed function of Equation (2) is specified as a trapezoidal speed profile (Figure 3
as reference), with:

• βT = [βv
T βa

T] with βv
T = [βv1 βv2 βv3 βv4]T the vector of parameters for speed and

βa
T = [βa1 βa2]T the vector of parameters for the acceleration;

• βv1 = vm average speed, function of density and flow in congested link;
• βv2, βv3, βv4, percentage of link length where average vehicle speed is respectively

increasing, constant, decreasing;
• βa1 (>0), βa2 (<0), respectively average acceleration and deceleration.
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4.2. Calibration

The parameters β and γ are sequentially calibrated adopting the two correspond levels
with two type data, as reported below.

I. FCD experimentation (Section 4.2.1), where parameters β for speed and acceleration
are calibrated using FCD. As well known, FCD do not provide information about
energy consumption; therefore, the calibration of γ with FCD experimentation was
not possible.

II. Probe EV experimentation (Section 4.2.2), where parameters β and γ are calibrated
using probe electric vehicles allowed to obtain measurements of kinematic (speed,
acceleration) and energy quantities (energy consumption, energy recovery). The
parameters of γ have been calibrated, in their turn, through a double-stage calibration
process.

The main characteristics of the adopted electric vehicle (vector x) for the probe ex-
perimentation are: mass 1468 kg, coefficient of aerodynamic shape 0.25, front surface
1.5 m2.

It is assumed that the vector of the resistances parameters is constant: α = α*.

4.2.1. FCD experimentation

The available data for FCD experimentation cover a portion of Calabria Region (Italy),
including the experimental area, for two weeks (about 2.01 million vehicle positions).
Preliminarily, the road graph was built in order to represent the main existing road facilities.
The links of the road graph were classified into five classes according to their functional
and geometric characteristics: length, width, number of lanes, average slope weighted by
the distance ([4]):

Class 1: Freeway, extra-urban location, two lanes for each direction with separate
carriageways (the average slope is 0.05%);
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Class 2: Primary of type 1, extra-urban location, width greater or equal to 3.5 m, one
lane for each direction and average slope lower or equal to 0.5% (the average slope is
0.09%);

Class 3: Primary of type 2, extra-urban location, width greater or equal to 3.5 m, one
lane for each direction and average slope greater than 0.5% (the average slope is 2.03%);

Class 4: Extra-urban, width less than 3.5 m, one lane for each direction (the average
slope is 1.93%);

Class 5: Urban, one lane for each direction (the slope has average value 0.43% and
high standard deviation).

From the available FCD (about 2.08 million), the data useful for the experimentation
were obtained through a sequence of filtering operations:

• temporal filtering: selection of vehicle positions travelling during the weekdays (about
1.54 million);

• spatial filtering: elimination of vehicle positions outside the study area (0.17 million);
• cinematic filtering: selection of vehicle positions with speed greater than zero (0.13 mil-

lion);
• topological filtering (or map matching): association of vehicle positions to the road

network (0.06 million, which are 3.1% of the total points).

The data extracted from FCD allow to calibrate the vector β, by taking into account
the classification of the road network.

The calibrated parameters βv2, βv3, βv4, βa1, and βa2 are reported in Table 2. The
calibration was executed considering Equations (10) and (11), assuming the weights in the
objective function equal to zero.

Table 2. Calibrated parameters of vector β for each link class c.

βv2 βv3 βv4 βa1 (>0) βa2 (<0)

class c (1/m) (1/m) (1/m) (m/sec2) (m/sec2)

1 0.1 0.75 0.15 0.20 −0.30
2 0.06 0.83 0.11 0.20 −0.20
3 0.06 0.78 0.16 0.20 −0.25
4 0.07 0.88 0.05 0.20 −0.20
5 0.07 0.86 0.07 0.20 −0.20

The parameter βv1 depends on k and q, and it is estimated from a speed-density
equation (Equation (1)) related to each link class, if FCD are not available.

Figure 4 reports a speed–density scatterplot of a link belonging to class c = 3. The
speed-density function is obtained from vehicle positions (FCD), by means of a procedure
described in detail in ([29]). The procedure allows to estimate the average vehicular speed
on link, v, and the average vehicular density on link, k. for each time interval of the whole
reference period. Then, the value of speeds and density are further averaged between all
links belonging to each class.

This paper reports the results relative to the link class 3. These values are the ones
reported in the scatterplot of Figure 4, By observing them, it emerges that they lie in the
stable region of the curve. Therefore, the linear specification of the speed-density curve is
calibrated:

v = v(βv(k, q), k) = v0 + β × k (13)

The values of the calibrated parameters are:

• free speed v0 = 72.55 (km/h);
• speed reduction per unit of density β = −1.65 (km/veic × km/h).
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The same procedure can be adopted for all link categories.
As far as concerns acceleration functions, the values of acceleration, βa1 and βa2, are

estimated directly from the observed frequency of accelerations of FCD detected on the
link of class c (Figure 5a,b).
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Figure 5. Relative (a) and cumulative (b) frequency of FCD vehicle accelerations for one link class,
considered as an example ([4]).

Figure 5a,b depict, as an example, the relative (a) and cumulative (b) frequencies of
vehicle accelerations for one link class, considered as example (it could be extended to the
other identified link classes), of the available FCD. The calibrated average acceleration, βa1
and βa2.

4.2.2. Probe EV Experimentation

The experimental data relating to energy consumption are obtained by means of probe
EVs, equipped with:

• GPS devices, to detect the position and kinematic characteristics of the vehicle: instan-
taneous speed, direction with respect to geographic north;
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• on-board computer, capable of recording energy consumption: propulsion energy and
recovered energy.

The fully electric vehicle has travelled along routes that, starting from the port, reach
some touristic destinations within the study area. Figure 6 reports the itinerary of one route,
composed of a group of paths, having as origin the Porto delle Grazie.
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Experimental data about energy consumption from the probe EVs made it possible to
measure the amount of electricity consumed and recovered along the paths, which compose
the route travelled by the vehicle.

Calibration of Vector β

The experimental data about the position and the kinematic characteristics of the probe
EVs made it possible to update the speed functions parameters, βv, and of the acceleration
functions, βa, previously estimated with FCD on each link of the network (Section 4.2.1).

As far as concerns speeds, the value of speed on the link, βv1, is updated from the
direct measurement of the instantaneous speed of the probe EVs, if equipped vehicle passed
the link; otherwise, it is updated from FCD, if no equipped vehicle did not travel on the link.

As far as concern accelerations, the values of acceleration, βa1 and βa2, are updated
from the direct observation of accelerations of the probe EVs passing the link (Figure 7a,b
and Table 3).

Figure 7a,b depict, as an example, the updated relative (a) and cumulative (b) frequen-
cies of vehicle accelerations for link class 3, measured by the probe EVs passing on the link.
The updated values of acceleration for each link class are reported in Table 3. The portions
of the link in which the acceleration could be positive, negative, and zero are also updated
from the frequency diagram of accelerations of Figure 7a,b (Table 3).



Energies 2022, 15, 82 14 of 20

Energies 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

As far as concern accelerations, the values of acceleration, βa1 and βa2, are updated 
from the direct observation of accelerations of the probe EVs passing the link (Figure 7a,b 
and Table 3). 

Figure 7a,b depict, as an example, the updated relative (a) and cumulative (b) fre-
quencies of vehicle accelerations for link class 3, measured by the probe EVs passing on 
the link. The updated values of acceleration for each link class are reported in Table 3. The 
portions of the link in which the acceleration could be positive, negative, and zero are also 
updated from the frequency diagram of accelerations of Figure 7a,b (Table 3). 

 
 

(a) (b) 

Figure 7. Updated relative (a) and cumulative (b) frequency of equipped vehicle accelerations for link class 3. 

Finally, the above operations allow to update allow to obtain a second-round updat-
ing of a vector β, by considering the cinematic data obtained by the probe EVs. The cali-
bration was executed considering Equations (10) and (11), assuming the weights in the 
objective function equal to zero. 

The results of the further updating of vector β, executed by applying the optimization 
model (Equation (3)), is reported in Table 3 (except for links of class 2 for which there are 
no available data), where the observed values of speeds (vector v*) are experimentally 
measured on probe EVs travelling on the defined paths. 

Table 3. Updated parameters of vector β for each link class c. 

 βv2 βv3 βv4 βa1 (>0) βa2 (<0) 
class c (1/m) (1/m) (1/m) (m/sec2) (m/sec2) 

1 0.397 0.206 0.397 0.15 −0.27 
2 0.06 (*) 0.83 (*) 0.11 (*) 0.23 −0.32 
3 0.401 0.198 0.401 0.32 −0.38 
4 0.400 0.202 0.398 0.51 −0.55 
5 0.409 0.202 0.389 0.49 −0.63 

(*) Parameters calibrated with FCD data (Table 2). 

By comparing the two calibrated sub-vectors of speed parameters, βv2, βv3 and βv4, 
with FCD (Table 2) and with probe EVs (Table 3) experimentations, it emerges that the 
percentage of link in which the vehicles, on average, travel at constant speed, βv3 (Figure 
3), reduces from the FCD experimentation to the probe EVs one. The result of the calibra-
tion with probe EVs is more in line with the observed phenomenon, where the speed of 
individual vehicles is always variable while travelling along the link. The higher value of 
parameter βv3 in FCD experimentation is due to the fact that the spatio-temporal “dis-
tance” from two consecutive FCD points is relevant (one kilometre, or one minute) in the 
examined case. 
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Table 3. Updated parameters of vector β for each link class c.

βv2 βv3 βv4 βa1 (>0) βa2 (<0)

class c (1/m) (1/m) (1/m) (m/sec2) (m/sec2)

1 0.397 0.206 0.397 0.15 −0.27
2 0.06 (*) 0.83 (*) 0.11 (*) 0.23 −0.32
3 0.401 0.198 0.401 0.32 −0.38
4 0.400 0.202 0.398 0.51 −0.55
5 0.409 0.202 0.389 0.49 −0.63

(*) Parameters calibrated with FCD data (Table 2).

Finally, the above operations allow to update allow to obtain a second-round updating
of a vector β, by considering the cinematic data obtained by the probe EVs. The calibration
was executed considering Equations (10) and (11), assuming the weights in the objective
function equal to zero.

The results of the further updating of vector β, executed by applying the optimization
model (Equation (3)), is reported in Table 3 (except for links of class 2 for which there are
no available data), where the observed values of speeds (vector v*) are experimentally
measured on probe EVs travelling on the defined paths.

By comparing the two calibrated sub-vectors of speed parameters, βv2, βv3 and βv4,
with FCD (Table 2) and with probe EVs (Table 3) experimentations, it emerges that the
percentage of link in which the vehicles, on average, travel at constant speed, βv3 (Figure 3),
reduces from the FCD experimentation to the probe EVs one. The result of the calibra-
tion with probe EVs is more in line with the observed phenomenon, where the speed of
individual vehicles is always variable while travelling along the link. The higher value
of parameter βv3 in FCD experimentation is due to the fact that the spatio-temporal “dis-
tance” from two consecutive FCD points is relevant (one kilometre, or one minute) in the
examined case.

Calibration of Vector γ

The calibrated parameters γ are reported in Table 4. The calibration was executed
considering the Equation (11), assuming the weights in the objective function equal to zero
and using a double-stage calibration process.
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Table 4. Calibration results of vector of parameters γ.

Model 1* 2 3* 4*

Parameters
(first stage)

Link class All All 1-4 5 1-2 3-4 5

γrt 1.409 1.209 1.230 1.676 1.770 1.109 1.752
γin 1.409 1.492 1.230 1.676 1.770 1.109 1.752

Parameters
(second stage)

Link class All All All All

γw-b 0.661 0.642 0.654 0.653
γt-w 0.904 0.878 0.895 0.893

* constrained to: γrt =γin; o.f. = objective function.

For all models:

• the first stage minimization process concerns the calibration of the two parameters γrt
and γin, related to the levels of energy consumed, e();

• the second stage minimization process concerns the calibration of the parameter γt-w,
related to the tank-to-wheels efficiency, and of the parameter, γw-b, related to the
wheels-to-battery regenerative efficiency.

As far as concerns the first stage minimization process, models 1, 3 and 4 assume the
constrain that the parameter of total resistances is equal to the parameter of inertial force:
γrt = γin (Equation (3)). In model 1 the calibrated value of the parameter is γrt = γin = 1.409
and it is the same for the five link classes defined above (Section 4.2.1). Model 3 presents two
calibrated values of parameter, γrt = γin, for two groups of link classes: γrt = γin = 1.230 for
group of classes 1, 2, 3 and 4; γrt = γin = 1.676 for class 5. Model 4 is the most disaggregate
one in terms of link class representation; it presents three calibrated values of parameter
γrt = γin for three groups of link classes: γrt = γin = 1.770 for group of classes 1 and 2;
γrt = γin = 1.109 for group of classes 3 and 4; γrt = γin = 1.752 for class 5. Model 2 does not
consider the constrain γrt = γin; therefore, γrt = 1.209 is the calibrated value for the total
resistances and γin = 1.492 is the calibrated value for inertial force. The two parameters are
the same for the five link classes defined above (Section 4.2.1). As general comment, in all
the four models the calibrated parameters are greater than 1, due to the fact that the values
of estimated consumed energy are lower, on average, than the corresponding experimental
values for each path (Figure 8a).
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As far as concerns the second stage minimization process, in all the models the
calibrated parameters γt-w and γw-b are valid for all the five link classes. They are less
than one, confirming their nature of efficiency terms. The calibrated parameter related to
the wheels-to-battery regenerative efficiency, γw-b, ranges from 0.642 and 0.661 because
the values of estimated recovered energy are higher, on average, that the corresponding
experimental values for each path (Figure 8b). The value of the calibrated parameter, γw-b,
is inside the range of values (between 0.59 and 0.84) estimated in the literature; and it is
close to the mean value of 0.69 among all the individual values.

4.3. Validation

The validation of the proposed framework relates to energy consumption models
(calibration of vector γT), and it is based upon the following data:

• estimated values of energy consumption and energy recovery of EVs with parameters
of literature (Figure 8);

• observed values of energy consumption and energy recovery of probe EVs (Figure 9);
• validation statistics of the models: initial and final values of objective functions and of

rho-square (Table 5);
• estimated values of energy consumption and energy recovery with calibrated parame-

ters (Figure 9);
• disaggregated estimated energy consumption of EVs along a route (Figure 10).

Table 5. Validation statistics.

Model 1* 2 3* 4*

Initial objective function 24.31 24.31 24.31 24.31
Final objective function 6.30 5.95 5.50 4.88

$2 0.741 0.755 0.774 0.799
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Figure 10. Comparison of disaggregated estimation of energy consumption (with literature parame-
ters) and of estimation of energy consumption (with calibrated parameters of model 1).

Figure 8a,b shows the scatterplots between estimated energy consumption with pa-
rameters of literature vs. path length and between experimental energy consumption with
probe EVs vs. path length. In particular, Figure 8a reports the scatterplot between estimated
and experimental consumed energy vs. path length and two calibrated linear models: (a)
the estimated energy consumption per unit of distance and (b) the experimental energy con-
sumption per unit of distance. For model (a), the estimated coefficient is 0.1186 (kwh/km)
(value of R2 = 0.6434), while for model (b), it is 0.1863 (kwh/km) (value of R2 = 0.6562).

By using parameters of literature, the energy consumption of EVs is underestimated
of 63%. Figure 8b reports the scatterplot between estimated and experimental recovered
energy vs. path length and two calibrated linear models: (a) the estimated energy recovered
per unit of distance and (b) the experimental energy recovered per unit of distance. For
model (a), the estimated coefficient is -0.0886 (kwh/km) (value of R2 = 0.88); while for
model (b), it is−0.0645 (kwh/km) (value of R2 = 0.83). In this case, the energy consumption
of EVs is overestimated of 27%. The discrepancy between estimated and experimental
energy consumption may be probably derived from the increased efficiency of the observed
vehicles, during the experimentation described in the paper, with respect the vehicles
observed in the past and considered for the calibration of the literature values. Since the
“estimated” is based on ICEV data, this means that ICEV is less efficient than the EV tested
in this study.

Table 5 shows the values of objective function (o.f.) and of ρ2 statistics related to the
estimated models. They improve by passing from the less disaggregated model in terms
of link classes (model 1: one parameter) to the most disaggregated one (model 4: three
parameters).

As an example of model validation, the new scatterplots of the energy consumed and
recovered estimated with model 1 vs. paths length are obtained (Figure 9ab). In particular,
Figure 9a reports the new scatterplot of the energy consumed estimated with model 1 vs.
path length and the corresponding calibrated linear model. The estimated coefficient of
the linear model is 0.2039 (kwh/km) (value of R2 = 0.62), with a gain in the prediction
capability of the model 1 respect to the prediction in the first level minimization process.
Figure 9b reports the new scatterplot of the energy recovered estimated with model 1 vs.
path length and the corresponding calibrated linear model. The estimated coefficient of
the linear model is −0.0824 (kwh/km) (value of R2 = 0.88), with a (reduced) gain in the
prediction capability of the model 1 respect to the first level minimization process.
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The last validation result concerns the disaggregate representation at link level of
energy consumption per unit of distance (kwh/km) along the route travelled of an EV,
composed of several paths considered in the experimentation (the route is depicted in
Figure 6). The route presents the following relevant characteristics:

• the most part (44 km, which are the 66% of the total route length) has no relevant
changes of slope both inside urban and extra-urban areas;

• a part (5 km, which are the 8% of the total route length) has relevant changes of slope
(up to 10% in ascent and up to −8% in descent), close to the urban area of Roccella
Jonica;

• a part (17 km, which are the 26% of the total route length) has changes of slope in
extra-urban area (necessary to the EV to reach the village of Gerace, located at 373 mt
of altitude).

The pattern of energy consumption per unit of distance in estimated with parameters
of literature and estimated with calibrated parameters (with the application of model 1) is
depicted in Figure 10. The figure also reports the pattern of slope variation (%), in order to
highlight the peaks of energy consumption of EV in the portions of the route with highest
variation of slope. The mass of the driver is not considered, and this could concur to
determine the difference. In the case of estimation with calibrated parameters (model 1),
the level of consumed energy is higher respect to the case of parameters of literature.

5. Conclusions and Research Perspectives

This paper aimed to calibrate (or update) parameters of traffic flow and energy
consumption models of EVs by means of big-data (FCD) and experimental (probe ve-
hicles) data.

The ICT tools and applications in mobility and automotive markets (e.g., mobile
phones, GPSs, on-board vehicles equipment) allow the collection of a huge amount of
potentially valuable information on travel patterns, transport networks and energy con-
sumption of road vehicles. Their use (FCD), combined with experimental data (obtained
by means of probe EVs), could lead to relevant benefits in terms of updating the traditional
parameters of energy consumption models for EVs, estimated in the past for ICEVs. The
benefits are two-fold:

• the increasing capacity to analyse and forecast the effect of the increasing number of
EVs with respect to the road traffic conditions, geometry-related characteristics and
drivers’ behaviour;

• the minimization of costs necessary to build the above models by combining big-data
and experimental data.

The paper could be considered as an example of validation of traffic flow and en-
ergy consumption models in a real context, updating previous and/or literature model
specification and parameters values. This aim is to verify if, and in what amount, the exist-
ing parameters of resistances/energy consumptions model calibrated in the literature for
ICEVs change for EVs, in order to obtain updated parameters. The results of the calibration
process presented in the paper are encouraging, as they allow to updating parameters
related to the energy consumption and to the energy recovering terms of EVs. The latter
term is relevant in EVs, which is more evident on urban routes, where drivers experience
unstable traffic conditions (stop-and-go), rather than on extra-urban routes, where drivers
travel in more stable traffic conditions (constant speed).

The effect of temperature on energy consumption has not been considered, as the
experimentation took place during a limited period with rather constant temperature. It is
well known that temperature has a strong effect on energy consumption and this element
will be further investigated.

The updated parameters of EVs energy consumption could be to be used for future
eco-driving and eco-routing applications. The minimum travel time has been traditionally
considered by transport planners and analysts as the main important criterion in path
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and route choice on a road network. While reducing fuel consumption was considered a
secondary objective, as in most situations, the minimum travel time and minimum fuel
consumption criteria were consistent for ICEV users.

Methods and models presented in this paper can be useful for different stakeholders
involved in EV’s market, as producers or consumers. The calibrated functions can be
adopted for evaluating investments in the electrification of the vehicle fleet. In general,
proposed models support the activities of mobility management.

The introduction of EVs in the market needs the criteria connected to path and route
choices, and their potential impacts on traffic assignment when the penetration of EVs in
the market will increase, to be re-defined and further investigated.

In the future, the experimentations can be extended to an entire private or public
vehicle fleet in order to analyse interactions between user behaviour, EVs and road infras-
tructure.
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