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Abstract: In order to make reasonable production-sales-stock decision-making for gasoline produc-
tion enterprises, it is necessary to make an accurate prediction of the gasoline demand. However,
gasoline demand is often affected by many factors, which makes it very difficult to predict. Therefore,
this paper tries to construct a trend- and periodicity-trait-driven decomposition-ensemble forecasting
model in terms of trend and periodicity characteristics of gasoline demand data. In order to verify
the effectiveness of the proposed model, the demand data of a typical gasoline product-93# gasoline
in China, is used. The empirical results show that the proposed trend- and periodicity-trait-driven
decomposition-ensemble forecasting model can achieve better prediction results than the single
models, indicating that the proposed methodology can be used as a feasible solution to predict the
gasoline demand series with trend and periodicity traits.

Keywords: trend trait; periodicity trait; decomposition-ensemble forecasting; gasoline demand
prediction

1. Introduction

As one of the most important refined oil products, gasoline demand changes are
often affected by many factors. From the macro-perspective, national economic growth,
consumer price indices, and carbon emission reductions are important influencing factors.
From the meso perspective, the development of industries that rely on gasoline, such as
the automotive industry and transportation industry, is an important factor that often
affects gasoline demand. At the micro-level, gasoline prices, car ownership, and disposable
income are key factors affecting gasoline demand. For this reason, a variety of factors cause
gasoline demand to fluctuate violently and frequently, and thus it is increasingly difficult
to predict gasoline demand.

In the existing literature, many scholars have used a variety of econometric models
and artificial intelligence (AI) models to predict energy consumption or energy demand.
For example, Azadeh et al. [1] first proposed a neural network-based prediction algorithm
to predict long-term electricity consumption in high-energy industries and demonstrated
the advantages of the neural network approach through an analysis of variance (ANOVA).
Bianco et al. [2] investigated the effects of economic and demographic variables on Italy’s an-
nual electricity consumption. Furthermore, they developed a cointegration- and stationary-
data-based linear regression model to predict long-term electricity consumption and used
different statistical test methods to verify the effectiveness of the proposed model. Kucukali
and Baris [3] used the fuzzy logic method to forecast short-term electricity demand in
Turkey. Wang et al. [4] presented a novel seasonal decomposition-based least squares
support vector regression ensemble learning approach for hydropower consumption fore-
casting in China and obtained good prediction performance. Tang et al. [5,6] proposed a
novel hybrid ensemble learning paradigm and a novel data-characteristic-driven model-
ing methodology for forecasting nuclear energy consumption. The experimental results
demonstrated the effectiveness of the two proposed novel methods. Ahmad et al. [7] re-
viewed the building of power prediction methods based on artificial intelligence methods,
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such as in support vector machines (SVMs) and artificial neural networks (ANNs), and
proposed a hybrid method titled the GLSSVM method, integrating the group method
of data handling (GMDH) and the Least Squares Support Vector Machine (LSSVM) to
predict the potential of a building’s electrical energy consumption. Tang et al. [8] pre-
sented a novel hybrid FA-based LSSVR learning paradigm for hydropower consumption
forecasting and obtained good prediction performance. Akpinar and Yumusak [9] used
a seasonal time series algorithm to forecast natural gas demand in Turkish cities, and
the empirical results proved the effectiveness of the seasonal algorithm. Ruiz et al. [10]
proposed a genetic-algorithm (GA)-based Elman neural network (ENN) to predict energy
consumption and obtained a better prediction result. Yu et al. [11] proposed an online big
data-driven oil consumption forecasting model based on data from Google Trends, and the
empirical results showed that the proposed forecasting model outperformed traditional
forecasting technology. Yan et al. [12] combined long-short-term memory (LSTM) neural
networks with stationary wavelet transform (SWT) techniques to propose a hybrid deep
learning model for household energy consumption prediction. The experimental results
showed that the training efficiency of the proposed method was better than that of the
general machine learning model, and the prediction accuracy was improved. Bedi and
Toshniwal [13] presented a window-based multi-input, multi-output model for short-term
electricity demand forecasting. Liu et al. [14] used an office building as an example and
applied three commonly used deep reinforcement learning (DRL) techniques, namely,
asynchronous advantage actor-critic (A3C), deep deterministic policy gradient (DDPG),
and recurrent deterministic policy gradient (RDPG) to predict the energy consumption of
buildings and achieved better prediction results. Yu et al. [15] adopted an effective rolling
decomposition-ensemble model for gasoline consumption forecasting and obtained a better
prediction performance than that of the benchmark models listed in the study. Similarly,
Yu and Ma [16] proposed a data-trait-driven rolling decomposition-ensemble model for
gasoline consumption forecasting and obtained good prediction performance.

From the perspective of the above demand forecasting methods, the data-trait-driven
method has become a mainstream forecasting method. Using such a methodology empiri-
cal analysis has been conducted regarding gasoline consumption demand and achieved
good forecasting results. However, the forecast of gasoline consumption demand in the
existing literature only analyzes the seasonal characteristics of gasoline, but other data
characteristics, such as trend, memory, chaos, fractality, and other important data charac-
teristics, are not considered. More importantly, the existing energy demand forecasting
studies have not considered the characteristics of the energy demand data itself, leading to
arbitrary model selection. The construction of the forecasting methodology cannot give an
obvious basis, resulting in unsatisfactory prediction accuracy. For this purpose, this paper
tries to propose a prediction model based on the main data traits of gasoline demand data,
improve the forecast accuracy, and support better decision making to production-sales-
stock of enterprises. For this reason, this article selects trend and periodicity as the main
characteristics of gasoline demand data and uses the trend and periodicity traits of gasoline
demand data to conduct the empirical prediction analysis.

This paper is organized as follows. Section 2 presents the testing methods of trend
and periodicity traits. Section 3 proposes a trend- and periodicity-trait-driven gasoline
demand forecasting model. For verification, some experimental analyses are conducted,
and the corresponding results are reported in Section 4. Lastly, the discussions and future
directions are presented in Section 5.

2. Testing Methods of Trend and Periodicity Traits
2.1. Trend Test Method

The Mann-Kendall (MK) trend test method [17] is a mainstream test method for data
trending. This method does not require data samples to follow a particular distribution.
Thus, it is free of a small number of outliers and is often used for checking the trend changes
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in time series such as temperature, water quality, rainfall, and runoff. The general principle
and calculation steps of the MK test are shown below.

(a) Given a time series X = {x1, x2, . . . , xn}, the statistic of the MK test can be expressed
in Equation (1):

S = ∑n−1
k−1 ∑n

j−k+1 sgn
(
xj − xk

)
(1)

where the symbolic function is shown in Equation (2):

sgn
(
xj − xk

)
=


1, xj − xk > 0
0, xj − xk = 0
−1, xj − xk < 0

(2)

(b) The Mann-Kendall proved that S roughly follows a normal distribution with a mean

of 0 and a variance of Var(S) = n(n−1)(2n+5)−∑n
i=1 ti(i−1)(2i+5)

18 where ti the number of
the ith data points, when n ≥ 8. Accordingly, the MK normalized statistic is shown in
Equation (3).

Zc =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0

(3)

(c) The null hypothesis in the MK test is that there is no monotonic trend in the time
series X. When |Zc| > Z 1−α

2
, the null hypothesis is rejected, where the standard

normal variance is Z 1−α
2

, and α is the significance level. In particular, Z is positive
for “uptrend” and Z is negative for “downtrend”. If values of |Zc| are greater than
or equal to the critical values of 1.645, 1.96, and 2.576, the significance tests at the
confidence levels of 90%, 95%, and 99% are passed, respectively.

2.2. Periodicity Test Method

For a periodicity test of the data, the OCSB test [18] is a typical test method. The
specific test principle of OCSB test is shown below.

For time series {yt}, the null hypothesis of OCSB is that a series contains a seasonal
unit root. The regression test for OCSB is shown in Equation (4).

414syt = β14s yt−1 + β241 yt−s + εt, t = 1, · · · , T (4)

where4 is the seasonal difference operator. When the tested t-statistic is greater than the
critical value, it means that the lag term is a periodic trait.

3. Trend- and Periodicity-Trait-Driven Decomposition-Ensemble Forecasting Model

In terms of the trend trait and periodicity trait of gasoline demand data, this paper
proposed a trend- and periodicity-trait-driven decomposition-ensemble forecasting model
to improve the prediction accuracy of gasoline demand, and the general theoretical frame-
work is illustrated in Figure 1. In the proposed model, the trend and periodicity test of
the gasoline demand data were first tested. In terms of the periodicity trait, the gasoline
demand data were then decomposed into three components, i.e., trend, periodicity, and
uncertainty components, by the periodic decomposition method. Subsequently, the com-
ponent prediction model is selected in terms of the specific traits of the trend, periodic,
and uncertain components so as to reflect the driving effect of the trend and periodicity
characteristics on the prediction of gasoline demand.
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Figure 1. General framework of trend- and periodicity-trait-driven decomposition-ensemble forecast-
ing method.

As shown in Figure 1, the proposed trend- and periodicity-trait-driven decomposition-
ensemble prediction model consists of four main stages, which are elaborated below.

Stage 1: Trend and periodicity trait identification and testing
Due to the influence of the economic and social environment and other factors, gasoline

demand data has relatively regular cyclical fluctuations every year. Furthermore, due to the
growth of car ownership, gasoline demand data has an obvious upward trend. Therefore,
at this stage, the OCSB test is used as the main method for the periodic trait, and the MK
test is used as the main method for the trend trait of the gasoline demand data.

Stage 2: Periodicity-trait-driven data decomposition
In terms of the test results of the periodicity trait of the gasoline demand data in the

previous stage, seasonal decomposition is selected as the main decomposition method to re-
duce the difficulty of modeling. Thus, the original gasoline demand data were decomposed
into three components: trend, periodicity, and uncertainty. Specifically, in the series of
seasonal decomposition methods, the X11 seasonal decomposition method [19] is selected,
and the strategy of additive decomposition is adopted. This method can decompose the
original time series data into the trend component Tt, seasonal (periodic) component St,
and residual term (uncertainty) component Rt, fully reflecting the data characteristics of
each component.

Stage 3: Component prediction driven by trend and periodic traits
According to the specific data traits of each component obtained in Stage 2, the

appropriate prediction model was selected for each component prediction with different
data traits. For example, a linear regression (LR) model can be used as a prediction model
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for trend components with small fluctuations because it has the characteristics of stability
predicting. For the cyclical component, the seasonal autoregressive integrated moving
average (SARIMA) model with seasonal difference operators can therefore be used as a
predictive model for component data with periodic or seasonal traits. Because neural
networks can approximate any relationship and the neural network family model can be
used as a prediction model for the uncertainty components with the complexity trait.

Stage 4: Ensemble output prediction results
The prediction results of each component were obtained through the component

prediction of the previous stage, and at this stage, it is necessary to select the appropriate
ensemble method to further integrate the component prediction result. Specifically, in
this stage, it is necessary to comprehensively consider the trend and periodicity traits of
the gasoline demand data to construct the connection rules between the selection of the
ensemble method and the data traits. According to the rules, the suitable ensemble method
can be used for integrated prediction so as to obtain the final prediction result. Based on the
cyclical trait of the gasoline demand data and the additive decomposition that was used in
Stage 2, the strategy of additive integration was adopted at this stage.

In practical use, the four main stages of the proposed trend- and periodicity-trait-
driven decomposition-ensemble forecasting method will be conducted step by step. In
the first step, the trend and periodicity traits of gasoline demand data are tested by the
MK and OCSB test methods. In the second step, according to the periodicity trait, the
gasoline demand data were divided into three parts, i.e., trend, periodicity, and uncertainty
components, by the periodic decomposition method. In the third step, the component
prediction models are selected in terms of the specific traits of the trend, periodic, and
uncertain components so as to reflect the driving effect of the trend and periodicity char-
acteristics on the prediction of gasoline demand. In the final step, the three component
forecasting results are aggregated into the ensemble output as the final prediction result for
gasoline demand. Using the above steps, the proposed trend- and periodicity-trait-driven
decomposition-ensemble forecasting method can be used in practical forecasting tasks.

4. Experimental Results
4.1. Data Description and Experimental Design

Since gasoline is a typical refined oil product with the largest consumption and the
widest use range in China, this article selects the demand data for 93# gasoline as the
research object to conduct predictive analysis. At the same time, for this research we
selected the quarterly data of the total demand for 93# gasoline in China from Q1, 2010 to
Q4, 2019 for the experiments. All of the data regarding gasoline demand were obtained
from the Wind Database (http://www.wind.com.cn/), as shown in Figure 2.

For the raw data collected from the Wind database, the quarterly price data on gasoline
demand needs to be preprocessed. Firstly, the missing values need to be handled. In this
article, the missing values were filled in terms of the average of the previous quarter. After
filling in the missing values, there were a total of 40 observations for the quarterly gasoline
demand data, which covered from Q1, 2010 to Q4, 2019. At the same time, in order to
eliminate the influence of data dimensions, this paper used the max-min normalization
method to preprocess the data, and the normalization equation is expressed by

x′t =
xt −min(x)

max(x)−min(x)
, t = 1, 2, 3 . . . k (5)

where max(x) and min(x) are the maximum and minimum values in the sample data,
respectively, xt is the original sample, and x′t is the normalized data. After normalization,
all of the sample data were normalized to [0,1], which reduced the range of fluctuations in
the data. It should be noted that the prediction results obtained based on the normalized
data need to be denormalized to obtain the final prediction results.

http://www.wind.com.cn/
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Figure 2. Chinese gasoline demand data from 2010 to 2019.

In order to compare the prediction performance, seven single models, i.e., linear
regression (LR), support vector regression (SVR), extreme learning machine (ELM), gen-
eral regression neural network (GRNN), multilayer perceptron (MLP), extreme gradient
boosting regression (XGB Regressor), and random forest (RF) were selected to predict
gasoline demand. Subsequently, the above-mentioned typical single models were used
as the component prediction technique to establish a trend- and periodicity-trait-driven
decomposition-ensemble forecasting model and compare the prediction accuracy of all of
the above models to select the optimal forecasting model. In order to statistically prove
the superiority of the proposed decomposition-ensemble prediction model over other
prediction models, this paper adopted a Diebold Mariano (DM) test [20] for this purpose.
Finally, 80% of the sample data were used as the training set to train the model, and the
remaining 20% of the data were used as the testing set to demonstrate the performance of
the prediction models.

In order to test the effectiveness of the predictive model, this article uses three com-
monly used predictive indicators, mean absolute percent error (MAPE), root mean squared
error (RMSE), and directional statistic (Dstat) to evaluate the prediction accuracy [16]. In
particular, MAPE and RMSE are used to measure the of level accuracy, and Dstat is used to
evaluate the accuracy of the direction predictions.

Considering that the gasoline demand forecast in the actual application of refined oil
enterprises will affect the production-sales-stock plan of gasoline, short-term demand
forecasting is often used to cope with the impact of instantaneous emergencies, and
long-term demand forecasting is used to facilitate long-term planning. Therefore, this
article forecasts future gasoline demand one-step, two-steps, three-steps, and four-steps
in advance, i.e., the demand for the next quarter, second quarter, third quarter, and
fourth quarter based on historical data. In particular, this article uses Python 3.7 (https:
//www.python.org/downloads/release/python-373/) to write codes that use the sitsmod-
els and scikit-learn modules to implement seasonal decomposition and prediction, respec-
tively. By comparing the prediction results of each model, the optimal model can be selected
for gasoline oil demand forecasting.

4.2. Data Trait Testing

Before using a specific prediction model, the gasoline demand data needed to be
tested. First, the three steps of the MK test method were used to test the gasoline demand
data and obtain the results Zc = 8.35, while at the 1% significance level, Z 1−α

21
= 2.576, i.e.,

https://www.python.org/downloads/release/python-373/
https://www.python.org/downloads/release/python-373/
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|Zc| > Z 1−α
2

, and Zc is positive, indicating that the gasoline demand series data had a clear
upward trend.

Next, the OCSB method was used to test the periodicity of gasoline demand with the
2nd, 3rd, 4th, and 5th-order lag analysis, the test results are shown in Table 1.

Table 1. OCSB test results for gasoline demand data.

Data Lag Order Critic Value t Statistic

Gasoline
demand

2 −1.9520 −1.2621
3 −1.9176 −2.800
4 −1.8927 −1.2130
5 −1.8735 −5.3354

Note: bold represents the significance of statistic test.

As can be seen from Table 1, for the gasoline demand data, both the 2nd and 4th
order lags have seasonal unit roots, indicating that the gasoline demand series has Cyclical
characteristics for two quarters (half a year) and four quarters (one year).

After the above statistical test, it was determined that the gasoline demand data had
an obvious trend trait and the cyclical characteristics of half a year and one year, so it is
reasonable to adopt some prediction models based on these two data traits.

As shown in Table 1, when the lag period of four provinces was four quarters, the
correlation coefficient of the time series data were the largest. The test results demonstarted
that the four time series data in Table 1 have cyclicity traits with a period of one year
(four quarters).

4.3. Experimental Results Analysis

In order to build a forecast model of the quarterly demand data for 93# gasoline, it is
necessary first to determine a suitable lag period. For this purpose, the original time series
of the 93# gasoline demand data were processed by the first-order difference, and then the
ACF and PACF were calculated to determine the lag orders, as shown in Figure 3.

Figure 3. ACF and PACF results of 93# gasoline demand data.

As can be seen from Figure 3, the optimal lag order is 2. After determining the lag
order, one-, two-, three-, and four-step-ahead prediction of the gasoline demand data could
be conducted. In order to compare the forecast results, various single models were first used
to predict gasoline demand, and then the decomposition-ensemble forecasting methods
were carried out based on the trend and cyclical traits of gasoline demand data.

According to the above experimental arrangement, seven single models were used,
and the corresponding results of the gasoline demand forecasting are shown in Table 2.

As can be seen from Table 2, three interesting results can be found.
First of all, comparing the results of the one-step-ahead prediction horizontally, it was

found that the extreme learning machine (ELM) models achieved the best results in three
measurements, showing that the ELM model has a good fitness capability for short-term
prediction. However, SVR models achieved the worst performance, which may be related
to the choice of kernel functions, resulting in poor prediction stability.
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Table 2. Gasoline demand forecast results of seven single models.

Step Size Metric LR SVR ELM GRNN MLP XGB RF

One
step

Dstat 0.6250 0.1250 0.7500 0.5000 0.2500 0.6250 0.6250
MAPE 0.0240 0.0324 0.0222 0.0305 0.0264 0.0311 0.0244
RMSE 112.6617 155.6208 94.9666 130.8414 117.6011 135.2791 112.6359

Two
steps

Dstat 0.5000 0.7500 0.5000 0.5000 0.2500 0.7500 0.6250
MAPE 0.0262 0.0415 0.0264 0.0295 0.0285 0.0300 0.0263
RMSE 120.4158 196.1568 118.4198 138.8445 125.4783 139.5928 121.6565

Three
steps

Dstat 0.5000 0.2500 0.5000 0.3750 0.3750 0.3750 0.3750
MAPE 0.0361 0.0553 0.0330 0.0262 0.0251 0.0310 0.0300
RMSE 146.9760 270.0291 136.0105 142.7566 122.1430 167.1368 156.0496

Four
steps

Dstat 0.6250 0.6250 0.6250 0.5000 0.2500 0.5000 0.3750
MAPE 0.0322 0.0767 0.0264 0.0322 0.0347 0.0336 0.0365
RMSE 149.0826 332.0082 133.9106 143.4993 146.9649 149.6941 160.8493

Note: Bold represents the best results of different evaluation metrics.

Secondly, the longitudinal comparison of the prediction results for each step showed
that with the growth of the predicted step, the prediction performance of each model
decreased. In particular, the level of prediction accuracy for the SVR model decreased
distinctly, while the level of prediction accuracy for the LR, MLP, and GRNN models were
relatively stable with the increase in the predicted steps. The main reasons for this are that
the stability of the linear regression model itself and the strong robustness of the neural
network models are suitable for medium- to long-term forecasting tasks.

Finally, a comprehensive comparison of all of the prediction results shows that the
ELM model achieved good results on both one-step-ahead and multi-step-ahead prediction
tasks. In detail, the ELM obtained the best results in most metrics and all prediction steps.
The main reasons for this are that the ELM model is actually a feed-forward neural network
that has advantages over other shallow learning systems in terms of learning rate and
generalization capabilities. Since decision-makers often need directional accuracy as a
reference for policy-making, directional accuracy is an important consideration in multi-
step-ahead forecasting. From Table 2, it can be seen that the ELM model with the best
level of prediction accuracy achieved satisfactory directional accuracy of no less than 0.5
in the two-, three-, and four-step-ahead prediction, but such directional accuracy is far
from supporting decision-making. Because a single model cannot fully learn the mapping
relationships between historical data and future data when faced with complex data, the
single models do not fit well with the actual data on gasoline demand. In particular, the
general trend and volatility forecasting of gasoline demand data are not satisfactory. To
solve this problem, this paper tries to use a decomposition-ensemble forecasting model
based on the trend and periodicity traits to predict gasoline demand.

In the trend- and periodicity-trait-driven decomposition-ensemble prediction model,
the decomposition method uses the X11 seasonal decomposition model, the component
prediction method was uniformly selected from the above single models, and the ensemble
method adopts additive (ADD) integration. Considering the above single models and
decomposition-ensemble prediction models, the gasoline demand forecasting performance
of the data-trait-driven decomposition-ensemble prediction model was explored. In order
to compare the differences in the prediction accuracy between the ordinary decomposition-
ensemble model without considering the characteristics of the component data and the
data-trait-driven decomposition-ensemble model, this paper first tried to use the same
predictive model for the different components and then tried to select different predictive
models for different components in terms of the data traits to highlight the role of data-
trait-driven modeling.

According to the above idea, the ordinary decomposition-ensemble prediction model,
without considering the characteristics of the component data, was first used for the
prediction analysis. Because the data component traits were not considered, the same
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predictive model was used for each decomposed component. Accordingly, Figure 4 shows
the one-step-ahead (i.e., one quarter in advance) prediction performance of a decomposition-
ensemble model with the same forecasting technique.

Figure 4. One-step-ahead prediction results of the gasoline demand using the decomposition-
ensemble model without considering the component data traits.

As can be seen in Figure 4, the prediction curve of the periodicity-trait-driven
decomposition-ensemble model has a high degree of coincidence with the actual curve. In
particular, GRNN as the component prediction method in the decomposition-ensemble
model has the highest degree of coincidence, while the fitting curve of the LR component
prediction technology model has a relatively large difference from the actual curve. The
possible reason is that the LR model is conservative in predicting the maximum points,
resulting in large prediction errors.

However, Figure 4 is only the one-step-ahead prediction. In order to compare the
results of other prediction steps, this paper uses three indicators, Dstat, MAPE, and RMSE,
to compare the prediction performance of the ordinary decomposition-ensemble prediction
model, as shown in Table 3.

Comparing the prediction results of single models in Table 2, the periodicity-trait-
driven decomposition-ensemble forecasting model in Table 3 can effectively improve
the performance of predicting gasoline demand. In terms of directional accuracy, most
models achieved a directional accuracy of 0.75 for four different prediction steps. In
the level of prediction accuracy, both RMSE and MAPE metrics improved significantly
relative to the single models. In detail, the MAPE metrics on each prediction step of most
single models was about 3%, and the MAPE of the proposed decomposition-ensemble
prediction model was about 1%. In particular, the X11-GRNN-ADD model achieved the
best results for different evaluation indicators in both one-step-ahead and two-step-ahead
predictions. The main reason for this is that GRNN has excellent generalization capabilities,
which can achieve good prediction performance in trending, periodic, and uncertain
components. While X11-XGB-ADD and X11-ELM-ADD achieved the best results in the
three-step-ahead and four-step-ahead predictions, respectively, indicating the superiority
of these two methods in medium- and long-term forecasting.

The above analysis did not consider the data traits of the decomposed components,
and the subsequent task is to use the proposed decomposition-ensemble model considering
the decomposed component data traits for gasoline demand forecasting. Figure 5 shows
the one-step-ahead prediction results of the proposed decomposition-ensemble model.
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Table 3. Gasoline demand forecasting results of the periodicity-trait-driven decomposition-ensemble
model without considering the characteristics of the component data.

Step Size Metric X11-LR-
ADD

X11-SVR-
ADD

X11-ELM-
ADD

X11-GRNN-
ADD

X11-MLP-
ADD

X11-XGB-
ADD

X11-RF-
ADD

One
step

Dstat 0.6250 0.7500 0.7500 0.7500 0.6250 0.7500 0.7500
MAPE 0.0115 0.0094 0.0134 0.0076 0.0107 0.0094 0.0088
RMSE 66.8267 44.5502 72.2153 36.9964 51.9117 43.7886 39.2769

Two
steps

Dstat 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
MAPE 0.0174 0.0091 0.0087 0.0087 0.0125 0.0103 0.0099
RMSE 87.1333 41.8056 47.4198 40.2201 57.0031 45.2247 42.1567

Three
steps

Dstat 0.7500 0.7500 0.6250 0.7500 0.7500 0.7500 0.7500
MAPE 0.0156 0.0097 0.0134 0.0096 0.0132 0.0089 0.0121
RMSE 79.8560 44.9304 64.0893 45.3510 61.2052 43.0854 50.6549

Four
steps

Dstat 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
MAPE 0.0109 0.0087 0.0078 0.0078 0.0092 0.0089 0.0099
RMSE 51.8899 43.1658 39.3814 40.1956 43.9967 40.4888 44.4135

Note: In the abbreviation of “X11-LR-ADD”, X11 is used for the decomposition method, LR is used as the
prediction technique for each decomposed component, and ADD is adopted as the ensemble method. Bold
represents the best results of different evaluation metrics.

Figure 5. One-step-ahead prediction of gasoline demand using the decomposition-ensemble model
considering the traits of the component data.

As can be seen from Figure 5, based on the data characteristics of each component,
the proposed decomposition-ensemble model considering the decomposed component
data traits can achieve better prediction results than the decomposition-ensemble model
without considering the decomposed component data traits. From the graphical point of
view, the coincidence of the fitted curve and the actual curve is significantly higher than
that of Figure 4. In particular, the LR-SARIMA-GRNN model has the highest accuracy.
The main reason is that the LR-SARIMA-GRNN model selects the most suitable prediction
technique in terms of the specific data traits of different components. That is, a stable linear
regression (LR) model was used for the smoother trend component, and an SARIMA with
the seasonal trait was used for the periodic component, while the generalized regression
neural network (GRNN) was used for the uncertain components with higher complexity,
illustrating the effectiveness of data trait-driven modeling.
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However, Figure 5 only presents one-step-ahead prediction results. In order to com-
pare the results of other prediction steps, this paper used three indicators of Dstat, MAPE,
and RMSE to compare the prediction results of the decomposition-ensemble prediction
model considering the traits of the component data, as shown in Table 4.

Table 4. Gasoline demand prediction results of the decomposition-ensemble model considering the
traits of the component data.

Step Size Metric X11-LR-GRNN-
XGB-ADD

X11-SVR-GRNN-
ELM-ADD

X11-ELM-SVR-
XGB-ADD

X11-LR-ELM-
RF-ADD

X11-LR-SARIMA-
GRNN-ADD

One
step

Dstat 0.7500 0.7500 0.7500 0.7500 0.7500
MAPE 0.0077 0.0096 0.0080 0.0092 0.0070
RMSE 33. 8595 46.1372 38.1287 48.9500 32. 4460

Two
steps

Dstat 0.7500 0.6250 0.7500 0.7500 0.7500
MAPE 0.0083 0.0107 0.0079 0.0080 0.0100
RMSE 33.9634 50.4139 34.4110 34.1056 41.2624

Three
steps

Dstat 0.7500 0.6250 0.7500 0.7500 0.7500
MAPE 0.0099 0.0123 0.0092 0.0102 0.0128
RMSE 42.4172 54.3939 39.2703 45.5302 52.1904

Four
steps

Dstat 0.7500 0.6250 0.7500 0.7500 0.7500
MAPE 0.0099 0.0082 0.0096 0.0100 0.0116
RMSE 47.2062 41.2325 48.8391 45.3290 49.0334

Note: In the abbreviation of “X11-LR-GRNN-XGB-ADD”, X11 is used for the decomposition method, LR, GRNN,
XGB is used as the prediction technique for trend component, periodic (seasonal) component, and the uncertainty
component, respectively, and ADD is adopted as the ensemble method. Bold represents the best results of different
evaluation metrics.

Comparing Table 3 with Table 4, it can be seen that the proposed decomposition-
ensemble model that selected different component prediction techniques in terms of the
specific data traits was better than the ordinary decomposition-ensemble model that used
the same prediction technology for different components. In terms of directional prediction
accuracy, almost all of the models achieved a directional accuracy of 0.75. For the level of
prediction accuracy, the RMSEs of almost all models were less than 50, while the MAPE
was lower than 1%. In particular, the LR-SARIMA-GRNN model achieved the best results
in the one-step-ahead prediction, which is a reflection of the effectiveness of the trait-
driven modeling of the component data. In the multi-step-ahead prediction, the difference
in the model performance of the models was very small. A detailed comparison of the
prediction results for each prediction step can be found if the prediction step increases,
the change in the prediction accuracy of each model is more stable and does not produce
large fluctuations. This demonstrated that the proposed decomposition-ensemble models
considering the component data traits were more robust than the ordinary decomposition-
ensemble prediction models without considering the component data traits and single-
prediction models.

In order to statistically judge the prediction difference between the various prediction
models, the Diebold Mariano (DM) test method was used to determine the judgment. Since
there are many single models and decomposition-ensemble models, the four models with
the best results for two classes were selected for testing purposes. This article reported the
DM test results for the one-, two-, three-, and four-step-ahead prediction of the 93# gasoline
predictive models, as shown in Tables 5–8.
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Table 5. DM test results of different models with one-step-ahead prediction.

Model X11-SVR-GRNN-
ELM-ADD

X11-ELM-
ADD

X11-GRNN-
ADD ELM SVR MLP LR

X11-LR-SARIMA-
GRNN-ADD

−1.38
(0.17)

−2.31
(0.02)

−0.14
(0.89)

−4.50
(0.00)

−3.20
(0.00)

−4.09
(0.00)

−2.68
(0.01)

X11-SVR-GRNN-
ELM-ADD

−2.23
(0.03)

1.45
(0.15)

−4.31
(0.00)

−3.12
(0.00)

−3.90
(0.00)

−2.29
(0.02)

X11-ELM-ADD 2.58
(0.01)

−1.62
(0.11)

−2.17
(0.03)

−1.96
(0.05)

−1.04
(0.30)

X11-GRNN-ADD −3.82
(0.00)

−3.07
(0.00)

−4.19
(0.00)

−2.44
(0.01)

ELM −1.37
(0.17)

−0.64
(0.52)

−0.29
(0.77)

SVR 0.91
(0.36)

0.81
(0.42)

MLP 0.30
(0.76)

Table 6. DM test results of different models with two-step-ahead prediction.

Model X11-SVR-GRNN-
ELM-ADD

X11-ELM-
ADD

X11-GRNN-
ADD ELM SVR MLP LR

X11-LR-SARIMA-
GRNN-ADD

−0.26
(0.80)

−1.01
(0.31)

0.97
(0.33)

−4.05
(0.00)

−2.94
(0.00)

−3.54
(0.00)

−2.83
(0.00)

X11-SVR-GRNN-
ELM-ADD

−1.53
(0.13)

1.13
(0.26)

−3.21
(0.00)

−2.92
(0.00)

−3.80
(0.00)

−2.16
(0.03)

X11-ELM-ADD 1.87
(0.06)

−2.96
(0.00)

−2.63
(0.01)

−3.31
(0.00)

−1.88
(0.06)

X11-GRNN-ADD −3.60
(0.00)

−2.91
(0.00)

−4.17
(0.00)

−2.55
(0.01)

ELM −1.18
(0.24)

−0.06
(0.95)

0.72
(0.47)

SVR 1.27
(0.20)

1.30
(0.19)

MLP 0.25
(0.80)

Table 7. DM test results of different models with three-step-ahead prediction.

Model X11-SVR-GRNN-
ELM-ADD

X11-ELM-
ADD

X11-GRNN-
ADD ELM SVR MLP LR

X11-LR-SARIMA-
GRNN-ADD

0.10
(0.92)

1.54
(0.12)

−1.97
(0.05)

−4.35
(0.00)

−2.73
(0.01)

−1.83
(0.07)

−5.96
(0.00)

X11-SVR-GRNN-
ELM-ADD

−2.37
(0.02)

1.58
(0.11)

−3.31
(0.00)

−2.79
(0.01)

−2.06
(0.04)

−3.94
(0.00)

X11-ELM-ADD −0.34
(0.74)

−4.15
(0.00)

−2.84
(0.00)

−2.48
(0.01)

−4.91
(0.00)

X11-GRNN-ADD −3.86
(0.00)

−2.82
(0.00)

−2.23
(0.03)

−5.06
(0.00)

ELM −1.65
(0.10)

1.04
(0.30)

−1.33
(0.18)

SVR 2.51
(0.01)

1.18
(0.24)

MLP −1.25
(0.21)
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Table 8. DM test results of different models with four-step-ahead prediction.

Model X11-SVR-GRNN-
ELM-ADD

X11-ELM-
ADD

X11-GRNN-
ADD ELM SVR MLP LR

X11-LR-SARIMA-
GRNN-ADD

1.03
(0.30)

0.67
(0.50)

1.29
(0.20)

−2.40
(0.02)

−4.65
(0.00)

−4.37
(0.00)

−3.09
(0.00)

X11-SVR-GRNN-
ELM-ADD

−0.36
(0.72)

0.74
(0.46)

−2.16
(0.03)

−5.00
(0.00)

−5.54
(0.00)

−2.60
(0.01)

X11-ELM-ADD 0.61
(0.54)

−2.61
(0.01)

−4.76
(0.00)

−3.96
(0.00)

−3.20
(0.00)

X11-GRNN-ADD −2.14
(0.03)

−4.89
(0.00)

−6.10
(0.00)

−2.57
(0.01)

ELM −3.30
(0.00)

−0.40
(0.69)

−1.13
(0.26)

SVR 3.44
(0.00)

3.08
(0.00)

MLP 0.25
(0.81)

From the DM test results in Tables 5–8, three important findings can be summarized.

(1) Comparing the decomposition-ensemble prediction model with the single model,
it can be found that at 90% confidence degree, the prediction performance of two
different decomposition-ensemble models at each step is significantly better than
the single models. The main reason for this is that the decomposition-ensemble
framework can significantly reduce the complexity of modeling, thereby improving
the prediction performance.

(2) By comparing the ordinary decomposition-ensemble model without considering the
component data traits with the component data-trait-driven decomposition-ensemble
model, it can be found that the latter can significantly improve the prediction accuracy
in short-term prediction. For example, in the first-step-ahead prediction, the X11-
LR-SARIMA-GRNN-ADD model exhibits a better prediction performance than the
other decomposition-ensemble models. This is because this model selects different
prediction techniques in terms of the specific data traits of different components in
turn, which effectively improves the results of component prediction. This also shows
that data-trait-driven modeling plays a key role in gasoline demand forecasting.

(3) Comparing the test results of the single models, the advantages and disadvantages
of each model cannot be strictly determined from the statistical perspective when
predicting shorter steps (one-step- and two-step-ahead), but for the longer steps (three-
step- and four-step-ahead), significant differences are shown between the models.
This is due to the fact that short-term predictions tend to achieve more accurate results
than long-term predictions, and their difference in prediction performance is not
significant. However, in long-term predictions, the predictive power of different
forecasting models tends to vary greatly.

5. Discussion and Future Directions

In terms of the two typical data traits of gasoline demand, this paper constructs a
novel trend- and periodicity-trait-driven decomposition-ensemble forecasting model. In
this proposed forecasting model, the seasonal addition decomposition model called X11 is
first adopted in terms of the periodicity-trait of gasoline demand. Then the linear model,
seasonal model, and intelligent model were used for modeling the decomposed components
with the traits of the trend, periodicity (i.e., seasonality), and uncertainty. Finally, the simple
additive ensemble model was adopted based on the addition principle of decomposition.
For verification purpose, the market demand for the 93# gasoline was used to confirm the
effectiveness of the proposed trend- and periodicity-trait-driven decomposition-ensemble
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forecasting model. Through a comparative analysis of multiple experiments, four main
conclusions can be obtained.

First, with the increase in prediction steps, the directional accuracy and the level of
accuracy of the prediction results show a downward trend in both the single models and the
decomposition-ensemble models. This shows that medium- or long-term predictions are
more difficult than short-term ones, and thus in-depth research on medium- and long-term
forecasting models is needed in the future. However, the decomposition-ensemble models
show better prediction results than the single models, which also confirms the superiority
of the decomposition-ensemble forecasting model [16].

Second, by comparing the single prediction models with the decomposition ensem-
ble prediction model without considering the component data traits of the decomposed
component, it can be found that the prediction accuracy of the latter is higher than that of
the former. This shows that the decomposition-ensemble model can effectively reduce the
complexity of modeling and improve prediction accuracy.

Third, by comparing the decomposition-ensemble model using the same prediction
technique for all components and the decomposition-ensemble model using different pre-
diction techniques for the different components, it was found that the prediction accuracy
of the latter was much higher than that of the former. This reveals that selecting the appro-
priate prediction technique in terms of the specific data traits can effectively improve the
prediction accuracy. This also confirms the effectiveness of the data-trait-driven modeling,
which is consistent with the results of Tang et al. [6].

Finally, multiple experiments have found that the prediction accuracy of the trend-
and periodicity-trait-driven decomposition-ensemble model proposed in this paper does
not greatly decrease with the increase in the prediction step, which shows that the proposed
decomposition-ensemble model is not only suitable for short-term predictions but also
suitable for medium- and long-term forecasting with strong robustness. This implies
that the proposed decomposition-ensemble model can provide strong support for the
decision-makers of gasoline production enterprises to make short-term plans and long-
term strategies at the same time.

However, there are still some issues that are worth discussing further.

(1) The proposed decomposition-ensemble forecasting model is more suitable for time
series data with the traits of trend and periodicity. However, if there are some other
data traits such as long-memory, chaos, and fractality in the time series data, the
proposed model may not be suitable for such time series data. Therefore, we will
continue to explore the time series forecasting methods with other data traits.

(2) Because gasoline demand is affected by multiple factors, it usually shows the co-
existence of multiple data traits. This paper only considered two data traits; more
data traits should be taken into account, which is also the direction to be studied in
the future.

(3) The proposed trend- and periodicity-trait-driven decomposition-ensemble forecasting
model can also be applied to other markets, such as precious metal markets, chemical
products markets, and other energy markets. Therefore, these new markets will be
investigated in the future.

Author Contributions: Conceptualization, J.Z. (Jindai Zhang) and J.Z. (Jinlou Zhao); methodology,
J.Z. (Jindai Zhang); software, J.Z. (Jindai Zhang); validation, J.Z. (Jindai Zhang); formal analysis, J.Z.
(Jindai Zhang); investigation, J.Z. (Jindai Zhang); resources, J.Z. (Jinlou Zhao); data curation, J.Z.
(Jindai Zhang); writing—original draft preparation, J.Z. (Jindai Zhang); writing—review and editing,
J.Z. (Jinlou Zhao); visualization, J.Z. (Jindai Zhang); supervision, J.Z. (Jinlou Zhao). All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Energies 2022, 15, 3553 15 of 15

Data Availability Statement: The data were obtained from the Wind Database (http://www.wind.
com.cn/).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Azadeh, A.; Ghaderi, S.; Sohrabkhani, S. Annual electricity consumption forecasting by neural network in high energy consuming

industrial sectors. Energy Convers. Manag. 2008, 49, 2272–2278. [CrossRef]
2. Bianco, V.; Manca, O.; Nardini, S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34,

1413–1421. [CrossRef]
3. Kucukali, S.; Baris, K. Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 2010,

38, 2438–2445. [CrossRef]
4. Wang, S.; Yu, L.; Tang, L.; Wang, S.Y. A novel seasonal decomposition based least squares support vector regression ensemble

learning approach for hydropower consumption forecasting in China. Energy 2011, 36, 6542–6554. [CrossRef]
5. Tang, L.; Yu, L.; Wang, S.; Li, J.P.; Wang, S.Y. A novel hybrid ensemble learning paradigm for nuclear energy consumption

forecasting. Appl. Energy 2012, 93, 432–443. [CrossRef]
6. Tang, L.; Yu, L.; He, K.J. A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting.

Appl. Energy 2014, 128, 1–14. [CrossRef]
7. Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A review on applications of ANN

and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [CrossRef]
8. Tang, L.; Wang, Z.S.; Li, X.X.; Yu, L.; Zhang, G.X. A novel hybrid FA-based LSSVR learning paradigm for hydropower con-

sumption forecasting. J. Syst. Sci. Complex. 2015, 28, 1080–1101. [CrossRef]
9. Akpinar, M.; Yumusak, N. Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods. Energies 2016,

9, 727. [CrossRef]
10. Ruiz, L.G.B.; Rueda, R.; Cuéllar, M.P.; Pegalajar, M.C. Energy consumption forecasting based on Elman neural networks with

evolutive optimization. Expert Syst. Appl. 2018, 92, 380–389. [CrossRef]
11. Yu, L.; Zhao, Y.Q.; Tang, L.; Yang, Z.B. Online big data-driven oil consumption forecasting with Google trends. Int. J. Forecast.

2019, 35, 213–223. [CrossRef]
12. Yan, K.; Li, W.; Ji, Z.; Qi, M.; Du, Y. A Hybrid LSTM Neural Network for Energy Consumption Forecasting of Individual

Households. IEEE Access 2019, 7, 157633–157642. [CrossRef]
13. Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [CrossRef]
14. Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z. Study on deep reinforcement learning techniques for building energy consumption

forecasting. Energy Build. 2019, 208, 109675. [CrossRef]
15. Yu, L.; Ma, Y.; Ma, M. An effective rolling decomposition-ensemble model for gasoline consumption forecasting. Energy 2021, 222,

119869. [CrossRef]
16. Yu, L.; Ma, Y. A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting. Energies 2021,

14, 4604. [CrossRef]
17. Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hy-

drological series. J. Hydrol. 2002, 259, 254–271. [CrossRef]
18. Osborn, D.R.; Chui, A.; Smith, J.P.; Birchenhall, C.R. Seasonality and the order of integration for consumption. Oxf. Bull. Econ.

Stat. 2010, 50, 361–377. [CrossRef]
19. Ladiray, D.; Quenneville, B. Seasonal Adjustment with the X-11 Method; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2001. [CrossRef]
20. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 134–144.

http://www.wind.com.cn/
http://www.wind.com.cn/
http://doi.org/10.1016/j.enconman.2008.01.035
http://doi.org/10.1016/j.energy.2009.06.034
http://doi.org/10.1016/j.enpol.2009.12.037
http://doi.org/10.1016/j.energy.2011.09.010
http://doi.org/10.1016/j.apenergy.2011.12.030
http://doi.org/10.1016/j.apenergy.2014.04.021
http://doi.org/10.1016/j.rser.2014.01.069
http://doi.org/10.1007/s11424-015-4194-x
http://doi.org/10.3390/en9090727
http://doi.org/10.1016/j.eswa.2017.09.059
http://doi.org/10.1016/j.ijforecast.2017.11.005
http://doi.org/10.1109/ACCESS.2019.2949065
http://doi.org/10.1016/j.apenergy.2019.01.113
http://doi.org/10.1016/j.enbuild.2019.109675
http://doi.org/10.1016/j.energy.2021.119869
http://doi.org/10.3390/en14154604
http://doi.org/10.1016/S0022-1694(01)00594-7
http://doi.org/10.1111/j.1468-0084.1988.mp50004002.x
http://doi.org/10.1007/978-1-4613-0175-2

	Introduction 
	Testing Methods of Trend and Periodicity Traits 
	Trend Test Method 
	Periodicity Test Method 

	Trend- and Periodicity-Trait-Driven Decomposition-Ensemble Forecasting Model 
	Experimental Results 
	Data Description and Experimental Design 
	Data Trait Testing 
	Experimental Results Analysis 

	Discussion and Future Directions 
	References

