Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electricity Load Data
2.2. Weather Data
2.3. Methods
2.3.1. Generalized Regression Neural Network
2.3.2. Support Vector Machine
3. Exploratory Data Analysis
4. Prediction of Electricity Load
4.1. Prediction Using Weather Data
4.2. Prediction Using Moving Average Data
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burke, P.J.; Stern, D.I.; Bruns, S.B. The Impact of Electricity on Economic Development: A Macroeconomic Perspective. Int. Rev. Environ. Resour. Econ. 2018, 12, 85–127. [Google Scholar] [CrossRef]
- Wu, K.Y.; Huang, Y.H.; Wu, J.H. Impact of electricity shortages during energy transitions in Taiwan. Energy 2018, 151, 622–632. [Google Scholar] [CrossRef]
- Nduhuura, P.; Garschagen, M.; Zerga, A. Impacts of electricity outages in urban households in developing countries: A case of Accra, Ghana. Energies 2021, 14, 3676. [Google Scholar] [CrossRef]
- Falentina, A.T.; Resosudarmo, B.P. The impact of blackouts on the performance of micro and small enterprises: Evidence from Indonesia. World Dev. 2019, 124, 104635. [Google Scholar] [CrossRef] [Green Version]
- Koks, E.; Pant, R.; Thacker, S.; Hall, J.W. Understanding business disruption and economic losses due to electricity failures and flooding. Int. J. Disaster Risk Sci. 2019, 10, 421–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y.; Hug, G. Cost-oriented load forecasting. Electr. Power Syst. Res. 2022, 205, 107723. [Google Scholar] [CrossRef]
- Jorgenson, A.; Longhofer, W.; Grant, D. Disproportionality in power plants’ carbon emissions: A cross-national study. Sci. Rep. 2016, 6, 28661. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.; El Hibaoui, A. Energy consumption prediction model with deep inception residual network inspiration and LSTM. Math. Comput. Simul. 2021, 190, 97–109. [Google Scholar] [CrossRef]
- Wahab, A.; Tahir, M.A.; Iqbal, N.; Ul-Hasan, A.; Shafait, F.; Kazmi, S.M.R. A Novel Technique for Short-Term Load Forecasting Using Sequential Models and Feature Engineering. IEEE Access 2021, 9, 96221–96232. [Google Scholar] [CrossRef]
- Li, K.; Zhang, T. Forecasting electricity consumption using an improved grey prediction model. Information 2018, 9, 204. [Google Scholar]
- Tian, Y.J.; Zhou, S.J.; Wen, M.; Li, J.G. A Short-Term Electricity Forecasting Scheme Based on Combined GRU Model with STL Decomposition. IOP Conf. Ser. Earth Environ. Sci. 2021, 701, 012008. [Google Scholar] [CrossRef]
- Hamdoun, H.; Sagheer, A.; Youness, H. Energy time series forecasting-analytical and empirical assessment of conventional and machine learning models. J. Intell. Fuzzy Syst. 2021, 40, 12477–12505. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, X.; Li, C.; Zhang, F.; Wang, Q. Short-term Load Forecasting of PowerSystem Based on Improved Feedforward Neural Network. J. Phys. Conf. Ser. 2020, 1549, 052095. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems. Sustain. Cities Soc. 2019, 45, 460–473. [Google Scholar] [CrossRef]
- Kumar, R.; Rachunok, B.; Maia-Silva, D.; Nateghi, R. Asymmetrical response of California electricity demand to summer-time temperature variation. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Cassarino, T.G.; Sharp, E.; Barrett, M. The impact of social and weather drivers on the historical electricity demand in Europe. Appl. Energy 2018, 229, 176–185. [Google Scholar] [CrossRef]
- Chabouni, N.; Belarbi, Y.; Benhassine, W. Electricity load dynamics, temperature and seasonality Nexus in Algeria. Energy 2020, 200, 117513. [Google Scholar] [CrossRef]
- Bozkurt, Ö.Ö.; Biricik, G.; Tayşi, Z.C. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market. PLoS ONE 2017, 12, e0175915. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Allinson, D.; He, M. Seasonal variation in household electricity demand: A comparison of monitored and synthetic daily load profiles. Energy Build. 2018, 179, 292–300. [Google Scholar] [CrossRef]
- Sukarno, I.; Matsumoto, H.; Susanti, L. Household lifestyle effect on residential electrical energy consumption in Indonesia: On-site measurement methods. Urban Clim. 2017, 20, 20–32. [Google Scholar] [CrossRef]
- Aisyah, S.; Arionmaro, A.S. Correlation between Weather Variables and Electricity Demand. IOP Conf. Ser. Earth Environ. Sci. 2021, 927, 012015. [Google Scholar] [CrossRef]
- Kumara, I.N.S.; Ariastina, W.G.; Sukerayasa, I.W.; Giriantari, I.A.D. On the potential and progress of renewable electricity generation in Bali. In Proceedings of the 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 7–8 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Li, G.; Li, Y.; Roozitalab, F. Midterm load forecasting: A multistep approach based on phase space reconstruction and support vector machine. IEEE Syst. J. 2020, 14, 4967–4977. [Google Scholar] [CrossRef]
- Shukla, D.; Jaiswal, S.; Babu, V.P.; Singh, S.P. Near Real Time Load Forecasting in Power System. In Proceedings of the 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India, 17–19 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Lee, D.W.; Park, K.Y.; Choi, S.R.; Choi, S. Prediction of plasma etching using a randomized generalized regression neural network. Vacuum 2004, 76, 37–43. [Google Scholar] [CrossRef]
- Eskidere, Ö.; Ertaş, F.; Hanilçi, C. A comparison of regression methods for remote tracking of Parkinson’s disease progression. Expert Syst. Appl. 2012, 39, 5523–5528. [Google Scholar] [CrossRef]
- Hu, R.; Wen, S.; Zeng, Z.; Huang, T. A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing 2017, 221, 24–31. [Google Scholar] [CrossRef]
- Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced deep networks for short-term and medium-term load forecasting. IEEE Access 2018, 7, 4045–4055. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Liu, J.; Bao, W.; Shi, L.; Zuo, B.; Gao, W. General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers. Appl. Acoust. 2014, 76, 128–137. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1–16. [Google Scholar] [CrossRef]
Weather Parameter | CC |
---|---|
2 m Temperature | 0.63 |
Net Solar Radiation | 0.43 |
Wind Speed | −0.40 |
Rainfall Rate | −0.18 |
Pressure | −0.22 |
Relative Humidity | 0.14 |
Scenario | Feature | |
---|---|---|
User Behavior | Weather Parameter | |
1 | Hourly Characteristics | - |
Daily Characteristics | ||
2 | Hourly Characteristics | 2 m Temperature |
Daily Characteristics | ||
3 | Hourly Characteristics | 2 m Temperature |
Daily Characteristics | Net Solar Radiation | |
4 | Hourly Characteristics | 2 m Temperature |
Daily Characteristics | Net Solar Radiation | |
Wind Speed | ||
5 | Hourly Characteristics | 2 m Temperature |
Daily Characteristics | Net Solar Radiation | |
Wind Speed | ||
Rainfall Rate | ||
6 | Hourly Characteristics | 2 m Temperature |
Daily Characteristics | Net Solar Radiation | |
Wind Speed | ||
Rainfall Rate | ||
Pressure |
Spread | CC | RMSE |
---|---|---|
1.25 | 0.917 | 46.35 |
1.00 | 0.926 | 44.36 |
0.75 | 0.933 | 42.68 |
0.50 | 0.937 | 41.72 |
Scenario | GRNN | SVR | ||
---|---|---|---|---|
CC | RMSE | CC | RMSE | |
1 | 0.886 | 53.87 | 0.877 | 62.21 |
2 | 0.937 | 41.72 | 0.929 | 49.88 |
3 | 0.897 | 50.79 | 0.934 | 48.88 |
4 | 0.894 | 52.44 | 0.917 | 53.44 |
5 | 0.884 | 54.62 | 0.906 | 55.43 |
6 | 0.879 | 53.61 | 0.876 | 59.51 |
Scenario | GRNN | SVR | ||
---|---|---|---|---|
CC | RMSE | CC | RMSE | |
Without MA | 0.937 | 41.72 | 0.929 | 49.88 |
MA-Monthly | 0.884 | 54.62 | 0.931 | 47.88 |
MA-Weekly | 0.916 | 40.27 | 0.943 | 46.77 |
MA-Daily | 0.956 | 28.82 | 0.965 | 44.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aisyah, S.; Simaremare, A.A.; Adytia, D.; Aditya, I.A.; Alamsyah, A. Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia. Energies 2022, 15, 3566. https://doi.org/10.3390/en15103566
Aisyah S, Simaremare AA, Adytia D, Aditya IA, Alamsyah A. Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia. Energies. 2022; 15(10):3566. https://doi.org/10.3390/en15103566
Chicago/Turabian StyleAisyah, Siti, Arionmaro Asi Simaremare, Didit Adytia, Indra A. Aditya, and Andry Alamsyah. 2022. "Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia" Energies 15, no. 10: 3566. https://doi.org/10.3390/en15103566
APA StyleAisyah, S., Simaremare, A. A., Adytia, D., Aditya, I. A., & Alamsyah, A. (2022). Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia. Energies, 15(10), 3566. https://doi.org/10.3390/en15103566