Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems
Abstract
:1. Introduction
- Dimensionless differential equations for mass and momentum conservation were developed for pipeline systems with surge protection devices.
- Solutions for dimensionless governing equations were developed in terms of operators such as the dimensionless hydraulic impedance and propagation constant through linearization and integration in the dimensionless frequency domain.
- The dimensionless time-domain response functions were integrated into a widely used optimization scheme, particle swarm optimization (PSO), to delineate a comprehensive solution for surge tank design in RPSPV systems.
2. Materials and Methods
2.1. Dimensionless Equations for Hydraulic Transient in Pipeline Systems
2.2. Connecting Pipeline Element for Surge Tank
2.3. Dimensionless Hydraulic Impedance at Surge Tank
2.4. Dimensionless Hydraulic Impedances for RPSPV System
2.5. Dimensionless Lumped Inertia
2.6. Integration of the Dimensionless Response Function with PSO
3. Results
3.1. Transient Analysis
3.2. Optimum Dimensionless Design of RPSPV Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wylie, E.B.; Streeter, V.L. Fluid Transients in Systems, 3rd ed.; Prentice-Hall International: London, UK, 1993; pp. 37–79. [Google Scholar]
- Di Santo, A.R.; Fratino, U.; Iacobellis, V.; Piccinni, A.F. Effects of free outflow in rising mains with air chamber. J. Hydraul. Eng. 2002, 128, 992–1001. [Google Scholar] [CrossRef]
- Izquierdo, J.; Lopez, P.A.; Lopez, G.; Martinez, F.J.; Perez, R. Encapsulation of air vessel design in a neural network. Appl. Math. Model. 2006, 30, 395–405. [Google Scholar] [CrossRef]
- Martino, G.D.; Fontana, N. Simplified approach for the optimal sizing of throttled air chambers. J. Hydraul. Eng. 2012, 138, 1101–1109. [Google Scholar] [CrossRef]
- Stephenson, D. Simple guide for design of air vessels for water hammer protection on pumping lines. J. Hydraul. Eng. 2002, 129, 792–797. [Google Scholar] [CrossRef]
- Zhou, J.X.; Palikhe, S.; Cai, F.L.; Liu, Y.F. Experimental ad simulation-based investigations on throttle’s head loss coefficients of a surge tank. Energ. Sci. Eng. 2020, 8, 2722–2733. [Google Scholar] [CrossRef]
- An, J.F.; Zhang, J.; Yu, X.D.; Chen, S. Influence of flow field on stability of throttled surge tank with standpipe. J. Hydrodyn. 2014, 25, 292–299. [Google Scholar] [CrossRef]
- Guo, W.C.; Liu, Y.; Qu, F.L.; Xu, X.Y. A review of critical stable sectional areas for the surge tanks of hydropower stations. Energies 2020, 13, 6466. [Google Scholar] [CrossRef]
- Kendir, T.E.; Ozdamar, A. Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plant. Renew. Energy 2013, 60, 323–331. [Google Scholar] [CrossRef]
- Wan, W.Y.; Zhang, B.R.; Chen, X.Y.; Lian, J.J. Water hammer control analysis of an intelligent surge tank with spring self-adaptive auxiliary control system. Energies 2019, 12, 2527. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H. Design of surge tank for water supply systems using the impulse response method with the GA algorithm. J. Mech. Sci. Technol. 2010, 24, 629–636. [Google Scholar] [CrossRef]
- Besharat, M.; Tarinejad, R.; Aalami, M.T.; Ramos, H.M. Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis. Water Resour. Manag. 2016, 30, 2687–2702. [Google Scholar] [CrossRef]
- Boston, M.; Akhtari, A.A.; Bonakdari, H.; Jalili, F. Optimal design for shock damper with genetic algorithm to control water hammer effects in complex water distribution systems. Water Resour. Manag. 2019, 33, 1665–1681. [Google Scholar] [CrossRef]
- Kim, S.G.; Lee, K.B.; Kim, K.Y. Water hammer in the pump-rising pipeline system with an air chamber. J. Hydrodyn. 2017, 26, 960–964. [Google Scholar] [CrossRef]
- Maghaddas, S.M.J.; Samani, H.M.V.; Haghighi, A. Multi-objective optimization of transient protection for pipelines with regard to cost and serviceability. J. Water Supply Res. Technol.-Aqua 2017, 66, 340–352. [Google Scholar] [CrossRef]
- Maghaddas, S.M.J. The steady-transient optimization of water transmission pipelines with consideration of water-hammer control devices: A case study. J. Water Supply Res. Technol.-Aqua 2018, 67, 556–565. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar] [CrossRef]
OB1 | ||||
---|---|---|---|---|
1.25 × 10−7 | 0.202 | 13.4 | 0.08 | 479.7 |
1.25 × 10−6 | 0.202 | 13.4 | 0.08 | 479.5 |
1.25 × 10−5 | 0.284 | 8.1 | 0.08 | 596.2 |
1.25 × 10−4 | 0.001 | 18.8 | 0.00 | 1.4 |
1.25 × 10−3 | 0.001 | 19.1 | 0.00 | 1.4 |
5.16 × 10−3 | 0.001 | 19.1 | 0.00 | 1.3 |
9.07 × 10−3 | 0.001 | 19.1 | 0.00 | 1.3 |
1.69 × 10−2 | 0.001 | 18.8 | 0.00 | 1.3 |
2.47 × 10−2 | 0.001 | 18.8 | 0.02 | 20.8 |
4.03 × 10−2 | 0.001 | 19.0 | 0.03 | 17.0 |
5.59 × 10−2 | 0.001 | 18.4 | 0.03 | 14.3 |
7.16 × 10−2 | 0.001 | 19.0 | 0.03 | 12.3 |
1.03 × 10−1 | 0.001 | 18.8 | 0.04 | 9.7 |
1.34 × 10−1 | 0.009 | 14.7 | 0.02 | 6.6 |
1.65 × 10−1 | 0.001 | 19.1 | 0.05 | 6.9 |
2.27 × 10−1 | 0.009 | 9.4 | 0.02 | 3.9 |
2.90 × 10−1 | 0.009 | 8.8 | 0.02 | 3.1 |
3.53 × 10−1 | 0.009 | 8.1 | 0.02 | 2.5 |
4.15 × 10−1 | 0.009 | 13.8 | 0.02 | 2.2 |
4.78 × 10−1 | 0.001 | 8.4 | 0.06 | 2.7 |
5.40 × 10−1 | 0.001 | 7.5 | 0.05 | 2.4 |
OB2 | ||||
---|---|---|---|---|
1.25 × 10−7 | 0.693 | 3.5 | 0.03 | 1.58 |
1.25 × 10−6 | 0.693 | 3.5 | 0.03 | 1.58 |
1.25 × 10−5 | 0.693 | 3.5 | 0.03 | 1.58 |
1.25 × 10−4 | 0.001 | 15.0 | 0.00 | 0.03 |
1.25 × 10−3 | 0.001 | 19.2 | 0.00 | 0.03 |
5.16 × 10−3 | 0.001 | 19.3 | 0.00 | 0.03 |
9.07 × 10−3 | 0.001 | 19.3 | 0.00 | 0.03 |
1.69 × 10−2 | 0.001 | 19.3 | 0.00 | 0.03 |
2.47 × 10−2 | 0.001 | 19.3 | 0.00 | 0.03 |
4.03 × 10−2 | 0.001 | 19.3 | 0.00 | 0.03 |
5.59 × 10−2 | 0.001 | 19.3 | 0.00 | 0.03 |
7.16 × 10−2 | 0.001 | 19.3 | 0.00 | 0.03 |
1.03 × 10−1 | 0.001 | 19.3 | 0.00 | 0.03 |
1.34 × 10−1 | 0.001 | 18.7 | 0.00 | 0.03 |
1.65 × 10−1 | 0.001 | 18.6 | 0.00 | 0.03 |
2.27 × 10−1 | 0.001 | 14.5 | 0.00 | 0.03 |
2.90 × 10−1 | 0.001 | 11.4 | 0.00 | 0.03 |
3.53 × 10−1 | 0.001 | 9.4 | 0.00 | 0.03 |
4.15 × 10−1 | 0.001 | 9.0 | 0.00 | 0.03 |
4.78 × 10−1 | 0.001 | 6.9 | 0.00 | 0.03 |
5.40 × 10−1 | 0.001 | 6.1 | 0.00 | 0.03 |
OB1 | |||
---|---|---|---|
1.25 × 10−7 | 18.8 | 0.00 | 0.0 |
1.25 × 10−6 | 18.8 | 0.00 | 0.0 |
1.25 × 10−5 | 18.8 | 0.00 | 0.0 |
1.25 × 10−4 | 18.8 | 0.00 | 0.0 |
1.25 × 10−3 | 19.2 | 0.00 | 0.0 |
5.16 × 10−3 | 19.2 | 0.00 | 0.0 |
9.07 × 10−3 | 19.2 | 0.00 | 0.0 |
1.69 × 10−2 | 19.2 | 0.00 | 0.0 |
2.47 × 10−2 | 12.2 | 0.00 | 0.0 |
4.03 × 10−2 | 6.4 | 0.00 | 0.0 |
5.59 × 10−2 | 4.2 | 0.00 | 0.0 |
7.16 × 10−2 | 3.0 | 0.00 | 0.0 |
1.03 × 10−1 | 18.6 | 0.03 | 6.2 |
1.34 × 10−1 | 18.7 | 0.03 | 4.9 |
1.65 × 10−1 | 18.3 | 0.04 | 4.1 |
2.27 × 10−1 | 17.0 | 0.04 | 3.1 |
2.90 × 10−1 | 14.1 | 0.04 | 2.5 |
3.53 × 10−1 | 11.5 | 0.04 | 2.0 |
4.15 × 10−1 | 9.8 | 0.04 | 1.8 |
4.78 × 10−1 | 8.9 | 0.04 | 1.6 |
5.40 × 10−1 | 7.7 | 0.04 | 1.4 |
OB2 | |||
---|---|---|---|
1.25 × 10−7 | 18.9 | 0.00 | 0.0 |
1.25 × 10−6 | 18.9 | 0.00 | 0.0 |
1.25 × 10−5 | 18.9 | 0.00 | 0.0 |
1.25 × 10−4 | 19.0 | 0.00 | 0.0 |
1.25 × 10−3 | 19.2 | 0.00 | 0.0 |
5.16 × 10−3 | 19.2 | 0.00 | 0.0 |
9.07 × 10−3 | 19.2 | 0.00 | 0.0 |
1.69 × 10−2 | 19.2 | 0.00 | 0.0 |
2.47 × 10−2 | 11.9 | 0.00 | 0.0 |
4.03 × 10−2 | 6.3 | 0.00 | 0.0 |
5.59 × 10−2 | 4.1 | 0.00 | 0.0 |
7.16 × 10−2 | 3.0 | 0.00 | 0.0 |
1.03 × 10−1 | 1.9 | 0.00 | 0.0 |
1.34 × 10−1 | 1.7 | 0.00 | 0.0 |
1.65 × 10−1 | 1.7 | 0.00 | 0.0 |
2.27 × 10−1 | 1.7 | 0.00 | 0.0 |
2.90 × 10−1 | 1.7 | 0.00 | 0.0 |
3.53 × 10−1 | 2.9 | 0.00 | 0.0 |
4.15 × 10−1 | 3.9 | 0.00 | 0.0 |
4.78 × 10−1 | 18.4 | 0.00 | 0.0 |
5.40 × 10−1 | 17.3 | 0.00 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Choi, D. Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems. Energies 2022, 15, 3603. https://doi.org/10.3390/en15103603
Kim S, Choi D. Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems. Energies. 2022; 15(10):3603. https://doi.org/10.3390/en15103603
Chicago/Turabian StyleKim, Sanghyun, and Dooyong Choi. 2022. "Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems" Energies 15, no. 10: 3603. https://doi.org/10.3390/en15103603
APA StyleKim, S., & Choi, D. (2022). Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems. Energies, 15(10), 3603. https://doi.org/10.3390/en15103603