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Abstract: This paper presents a disturbance observer-based model predictive of super-twisting control
for Soft Open Point (SOP). First, with the consideration of the disturbances caused by parameter
mismatches and unmodelled dynamics, a super-twisting sliding-mode observer (STO) is proposed
to observe the disturbances, and the observed disturbances are introduced into the inner-loop as
the compensation to improve the anti-disturbance of SOP system. Second, the outer-loop controller
is designed by applying the super-twisting sliding-mode control (STC) approach to improve the
dynamic performance and robustness. Third, to deal with large current harmonics by traditional
model predictive control (MPC), a Three-Vector-based MPC (TV-MPC) is proposed to increase the
number of voltage vectors in a sampling time. Finally, it is verified by simulations that the proposed
method can reduce current harmonics, DC-side voltage setting time and improve the dynamic
performance of SOP system effectively. In case of parameter mismatches, the proposed observer can
observe the disturbances correctly to enhance the robustness of the SOP system.

Keywords: Soft Open Point (SOP); model predictive control (MPC); parameter mismatch; super-
twisting algorithm; sliding-mode observer

1. Introduction

In recent years, with the popularization and development of renewable energies, in-
creasingly renewable energy sources are connected to electricity distribution networks.
However, with the development of renewable energy sources, such problems as voltage
instability, bi-directional current and unbalanced power arise in electric energy systems [1,2].
As a new power electronic device, Soft Open Point (SOP) has the advantages of flexible
power management of the distribution network, fast response time and various control
methods, among others [3]. Therefore, SOP has been widely used in the electricity distribu-
tion energy systems.

Two-port SOP can be seen as a back-to-back converter, which consists of two voltage
source converters (VSCs) and a DC-side capacitor [4]. The two-port SOP system is depicted
in Figure 1. The control proposed for SOP includes traditional proportional-integral (PI)
control, droop control and model predictive control (MPC) [5–7]. These methods are widely
applied in a SOP system. However, traditional PI control requires many parameters to be
designed; when disturbances occur in the SOP system, PI control and droop control are
less robust as well. In signal-vector-based MPC, only one voltage vector is applied in the
system in a sampling time, which causes large current harmonics and power fluctuations.
Therefore, it is necessary to design improved inner and outer loop control to improve the
steady state and dynamic state of the SOP system.

In order to solve the problems above, various improved methods are proposed for
the inner-loop MPC, such as increasing the number of voltage vectors in a sampling time,
dual-vector MPC [8] and three-vector-based MPC [9]; combining other methods, such
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as adaptive MPC [10] and fuzzy MPC [11], improving the cost function [12] and delay
compensation, and so on [13,14].
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Figure 1. Model of two-port SOP. 
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where id1 and iq1 are the d- and q-axis currents of VSC1, respectively. u1d and u1q are the d- 
and q-axis grid voltages of VSC1, respectively. udc is DC-side voltage; L1, R1 and ω are 
inductance, resistance of VSC1 and voltage angle frequency, respectively. Sd1 and Sq1 are 
the d- and q-axis modulation switch functions of VSC1, respectively. Similarly, VSC2 has 
the same mathematical model in synchronous rotating frame. 

According to the current direction shown in Figure 1, the relationship between DC-
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where C is the capacitance of DC side, idc1 and idc2 are the DC-side currents from VSC1 and 
VSC2, respectively. ic is the DC-side current from capacitance; Sd2 and Sq2 are the d- and q-
axis modulation switch functions of VSC2, respectively. id2 and iq2 are the d- and q-axis 
currents of VSC2, respectively. 

By discretizing (1) [37], the discrete model of VSC1 can be obtained as: 
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where id1(k + 1) and iq1(k + 1) are the predicted d- and q-axis currents of VSC1 at (k + 1)th 
instant, respectively. u1Nd(k) and u1Nq(k) are the d- and q-axis voltages of VSC1, respec-
tively. id1(k) and iq1(k) are the d- and q-axis currents of VSC1 at (k)th instant, respectively. 
u1d(k) and u1q(k) are the d- and q-axis grid voltages of VSC1 at (k)th instant, respectively. 
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Figure 1. Model of two-port SOP.

Since the MPC of the inner loop is created by accurate model parameters, when distur-
bances of parameter mismatches and unmodelled dynamics occur in the SOP system in
actual operation, predictive errors may occur in the system, due to MPC being sensitive to
the parameters, which leads to bad performance of the system [15–17]. Thus, observers
are applied in the system to observe the disturbance of the system and considering the
disturbance as the compensation of the system to improve the robustness of SOP. Adaptive
observers are used in [18] to estimate the capacitors’ voltages, which have aa good per-
formance during disturbances. In [19], a Kalman filter is designed to predict the current
with reduced noises and estimate the disturbance due to the parameter variation, com-
bined with extended state modeling (ESM). In [20], an extended state observer is applied
to enhance the robustness of inductance to cater for the divergence caused by the stator
inductance mismatch.

Sliding mode theory is widely used in the design of controllers and observers due to its
fast response time and robustness [21–24]. In [25], a sliding-mode controller is designed for
a grid-connected NPC inverter to inject a controlled active power while minimizing supply
current harmonics, which has the advantages of fast dynamic response and low voltage
ripple. Sliding-mode observer is designed for disturbances’ estimation in [26], while sliding-
mode controllers are designed to solve the consensus problem in second-order nonlinear
multi-agent systems. However, due to its own discontinuity, first-order sliding-mode
theory has obvious chattering. Super-twisting algorithm (STA), as a second-order sliding-
mode theory, can reduce the chattering effectively, while maintaining the advantages of
traditional sliding mode [27–32]. In [33], a super-twisting controller is used in permanent
linear synchronous motor (PMLSM) to ensure the system convergence and eliminate the
chattering phenomenon, thus improving the system’s robustness. In [34], a super-twisting
nonlinear disturbance observer is proposed, which can estimate the uncertainties and
external disturbances. In [35], a super-twisting observer is designed to observe the lump
disturbance in the permanent magnet synchronous motor (PMSM) caused by parameter
mismatches and consider the disturbances as the compensation to the inner-loop, which
improves the robustness of the system.

In this paper, by introducing the theory of the super-twisting algorithm and three-
vector-based MPC, a super-twisting sliding-mode controller (STC) and TV-MPC with super-
twisting sliding-mode observer (STO) method is proposed to improve the performance
of the steady state and dynamic state, and to observe the disturbance correctly under
parameter mismatches, the disturbances observed by STO are applied to the TV-MPC as
the compensations of the inner-loop. The contributions of this article are listed as follows:
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(1) Compared with traditional outer-loop PI controller, the start-up time and dynamic
response of the DC-side voltage are improved by adopting the proposed method;

(2) Compared with signal-vector method, the current harmonics are improved by apply-
ing the TV-MPC method in SOP system;

(3) Parameter mismatches in the SOP system are considered and compensated for by
STO, which improves the adaptation of the SOP system to the disturbances.

The organization of this paper is as follows: Section 2 introduces the model of the
two-port SOP system. In Section 3, STO is designed to observe the disturbances. Section 4
designs the outer-loop DC-side voltage STC. Section 5 proposes the TV-MPC method of the
SOP system. Section 6 gives the simulation results. Future works are discussed in Section 7.
Finally, the conclusions are summarized in Section 8.

2. Mathematical Model of SOP

Since the structure of each port of the SOP is the same, in this paper, one port of the
voltage source converter (VSC) is selected to build the mathematical model. Taking VSC1
as an example, the model of one port of the SOP in synchronous rotating frame can be
expressed as [36]: {

L1
did1
dt = −R1id1 + ωL1iq1 + u1d − Sd1udc

L1
diq1
dt = −R1iq1 −ωL1id1 + u1q − Sq1udc

(1)

where id1 and iq1 are the d- and q-axis currents of VSC1, respectively. u1d and u1q are the
d- and q-axis grid voltages of VSC1, respectively. udc is DC-side voltage; L1, R1 andω are
inductance, resistance of VSC1 and voltage angle frequency, respectively. Sd1 and Sq1 are
the d- and q-axis modulation switch functions of VSC1, respectively. Similarly, VSC2 has
the same mathematical model in synchronous rotating frame.

According to the current direction shown in Figure 1, the relationship between DC-side
currents from VSC and from capacitance can be expressed as follows:

ic = C
dudc

dt
= idc1 + idc2 =

3
2
(−Sd1id1 + Sq1iq1) +

3
2
(−Sd2id2 + Sq2iq2) (2)

where C is the capacitance of DC side, idc1 and idc2 are the DC-side currents from VSC1 and
VSC2, respectively. ic is the DC-side current from capacitance; Sd2 and Sq2 are the d- and
q-axis modulation switch functions of VSC2, respectively. id2 and iq2 are the d- and q-axis
currents of VSC2, respectively.

By discretizing (1) [37], the discrete model of VSC1 can be obtained as:{
id1(k + 1) = (1− TsR1

L1
)id1(k) + Tsωiq1(k) +

Ts
L1
(u1d(k)− u1Nd(k))

iq1(k + 1) = (1− TsR1
L1

)iq1(k)− Tsωid1(k) +
Ts
L1
(u1q(k)− u1Nq(k))

(3)

where id1(k + 1) and iq1(k + 1) are the predicted d- and q-axis currents of VSC1 at (k + 1)th
instant, respectively. u1Nd(k) and u1Nq(k) are the d- and q-axis voltages of VSC1, respectively.
id1(k) and iq1(k) are the d- and q-axis currents of VSC1 at (k)th instant, respectively. u1d(k)
and u1q(k) are the d- and q-axis grid voltages of VSC1 at (k)th instant, respectively. Ts is the
sampling time.

Each port of SOP can work in a different mode. DC-side voltage and reactive power
are taken as the reference parameters in UdcQ mode, in order to ensure the steadiness of
the DC-side voltage, at least one port should work in UdcQ mode in the SOP system. In
PQ mode, the active power and reactive power are taken as reference parameters and are
most used in the SOP system. In addition, taking the DC-side voltage and frequency as
reference parameters the Udcf mode can also be applied in the SOP system when system
failure occurs in the system. In this paper, the UdcQ mode is applied in port1 and PQ mode
is applied in port2.
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3. Design of Super-Twisting Observer under Parameter Mismatch

In the actual operation of the SOP system, both sides work under large current and
voltage fluctuations frequently, which makes the parameter changes of resistance and
inductances. In this paper, a super-twisting observer (STO) is designed in the inner-loop
to observe the disturbances caused by parameter mismatches and unmodelled dynamics,
which maintains the strong robustness of the traditional sliding mode observer while
suppressinges the high frequency vibration effectively.

Considering the parameter mismatches and unmodelled dynamics, the model of VSC1
can be rewritten as follows:{

L1
did1
dt = −R1id1 + ωL1iq1 + u1d − (u1Nd − fd1)

L1
diq1
dt = −R1iq1 −ωL1id1 + u1q − (u1Nq − fq1)

(4)

where u1Nd and u1Nq are the d- and q-axis voltages of VSC1, respectively. fd1 and fq1 are
the d- and q-axis disturbances of VSC1 caused by parameter mismatches and unmodelled
dynamics, respectively. Due to disturbances’ change slowly in steady-state, fd1 and fq1 can
be written as: fd1 = − L1(L10∆R1−R10∆L1)

(L10(L10+∆L1))
id1 − L1∆L1

(L10(L10+∆L1))
(u1Nd − u1d) + εd1

fq1 = − L1(L10∆R1−R10∆L1)
(L10(L10+∆L1))

iq1 − L1∆L1
(L10(L10+∆L1))

(u1Nq − u1q) + εq1
(5)

where εd1 and εq1 are the d- and q-axis unmodelled dynamics disturbances of VSC1; L10
and R10 are offline parameters of inductance and resistance of VSC1, respectively; variable
matrix x1 is defined as:

f1
L1

= x1 (6)

where f 1 = [fd1, fq1]T, x1 = [xd1, xq1]T.
Errors of inductance parameters and resistance parameters ∆L1 and ∆R1 are uncertain

and bounded, the unmodelled dynamics disturbance εd1 and εd1 are bounded, which can
be written as: 

|∆L1| ≤ ϕL
|∆R1| ≤ ϕR
|εd1| ≤ ϕεd1∣∣εq1

∣∣ ≤ ϕεq1

(7)

where ϕL, ϕR and ϕεd1 and ϕεq1 are the known positive constants.
Due to the assumption above, the disturbance fd1 and fq1 are bounded and can be

assumed as: 
| fd1| ≤ ϕd1∣∣ fq1

∣∣ ≤ ϕq1
ϕd1 ≤ ϕ1
ϕq1 ≤ ϕ1

(8)

where ϕd1, ϕq1 and ϕ1 are known positive constants.
The sliding manifold is designed as:{

sd1 = îd1 − id1
sq1 = îq1 − iq1

(9)

where îd1 and îq1 are the d- and q-axis estimated current of VSC1.
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Proposition 1. If the sliding manifold is chosen as (9), the super-twisting observer can be designed
as follows: 

dîd1
dt = u1d

L1
− R1

L1
îd1 + ωîq1 − u1Nd

L1
+ dd

dîq1
dt =

u1q
L1
− R1

L1
îq1 −ωîd1 −

u1Nq
L1

+ dq

dd = −α1|sd1|
1
2 sgn(sd1) + x̂d1

dq = −α1
∣∣sq1
∣∣ 1

2 sgn(sq1) + x̂q1
x̂d1 = −

∫
β1sgn(sd1)dt

x̂q1 = −
∫

β1sgn(sq1)dt

(10)

where dd and dq are the d- and q-axis error dynamics of the disturbance; α1 and β1 are the designed
gains of observer.

The estimated disturbance f̂1 can be expressed as follows according to (6):

f̂1 = L1x̂1 (11)

Proof of Proposition 1. Taking VSC1 as analysis, the Lyapunov function is designed
as [38,39]:

V(γ) = γTMγ (12)

where γT =
[
|s1|

1
2 sgn(s1)

∫
β1sgn(s1)dt

]
, M = 1

2

[
4β1 + α2

1 −α1
−α1 2

]
, s1 = [sd1, sq1]T.

The time derivative of (12) is expressed as:

.
V(γ) = −|s1|−

1
2 γTM1γ + f1|s1|−

1
2 M2γ (13)

where M1 = α1
2

[
2β1 + α2

1 −α1
−α1 1

]
, M2 =

[
(2β1 +

α2
1

2 ) −α1
2

]
.

Using the bound of disturbance f 1 (8), bound of
.

V(γ) can be obtained as follows:

.
V(γ) ≤ −|S1|−

1
2 γTM3γ (14)

where M3 = α1
2

[
2α1 + α2

1 − ( 4β1
α1

+ α1)ϕ1 −(α1 + 2ϕ1)

−(α1 + 2ϕ1) 1

]
.

.
V(γ) is negative, and the system is strongly globally asymptotically stable when α1

and β1 are satisfied as follows: {
α1 > 2ϕ1

β1 > α1
5α1 ϕ1+4ϕ2

1
2(α1−2ϕ1)

(15)

Proofs of VSC2 are similar to the VSC1 side. The proof of the observer stability is
completed, which means the values of estimated current approach the values of system
current in finite time. �

Figure 2 illustrates the block diagram of STO. The initial values of the integrators are
set as 0.
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4. Design of Outer-Loop Super-Twisting Controller Design

In this paper, port1 is operated in UdcQ mode, which keeps the stability of the DC-side
voltage. However, in the traditional outer-loop PI controller, the constant parameters of
controller may lead to poor dynamic performance when the parameters of the system are
changed. As a second-order sliding mode controller, the super-twisting controller (STC) can
effectively suppress the chattering of the first-order sliding mode controller while having a
better dynamic performance compared with the PI controller. An outer-loop super-twisting
voltage controller is designed in this section.

The outer-loop system of VSC1 is composed of the DC voltage loop, the sliding
manifold is designed as:

S = udcre f − udc (16)

Uncertain disturbance δ is unknown, but can be assumed to be bounded as follows:

|δ| ≤ ρ (17)

where ρ is a known positive constant.

Proposition 2. In order to track the reference DC-side voltage, according to the theory of super-
twisting algorithm (STA), when udc is the system-state variable, STA of udc can be described as:

dudc
dt

= −k1|S|
1
2 sgn(S)−

∫
k2sgn(S) + δ (18)

where k1 > 0 and k2 > 0 are the controller gains.

When the grid voltages are three-phase balanced and the system is stable, the state of
the d- and q-axis currents of AC side id and iq can be written as:{

iq = 0
did
dt = 0

(19)

where iq = [iq1, iq2]T, id = [id1, id2]T.
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Substituting (19) into (2) and (1), which can be rewritten as:

C
dudc

dt
= −3

2
id1sd1 −

3
2

id2sd2 (20)

{
Sd1 = u1d−R1id1

udc

Sd2 = u2d−R2id2
udc

(21)

where u2d is the d-axis grid voltage of VSC2.
Substituting (21) into (20), id1 can be rewritten as:

id1 =
− 2

3 Cudc
dudc

dt
− id2(u2d − R2id2)

u1d − R1id1
(22)

when the system is stable, id1 = id1ref , (22) can be rewritten as:

id1re f =
− 2

3 Cudc
dudc

dt − id2(u2d − R2id2)

u1d − R1id1
(23)

Substituting (18) into (23), the output of the controller id1ref can be written as:

id1re f =
2
3 Cudc(k1|S|

1
2 sgn(S) +

∫
k2sgn(S)dt)− id2(u2d − R2id2)

u1d − R1id1
(24)

Proof of Proposition 2. The Lyapunov function is designed as:

V(ζ) = ζTPζ (25)

where ζT =
[
|S|

1
2 sgn(S)

∫
k2sgn(S)dt

]
, P = 1

2

[
4k2 + k2

1 −k1
−k1 2

]
.

The time derivative of (25) is expressed as:

.
V(ζ) = −|S|−

1
2 ζTP1ζ + δ|S|−

1
2 P2ζ (26)

where P1 = k1
2

[
2k2 + k2

1 −k1
−k1 1

]
, P2 =

[
(2k2 +

k2
1

2 )
−k1

2

]
.

Using the bound of disturbance δ (17), the bound of
.

V(ζ) can be obtained as follows:

.
V(ζ) ≤ −|S|−

1
2 ζTP3ζ (27)

where P3 = k1
2

[
2k1 + k2

1 − ( 4k2
k1

+ k1)ρ −(k1 + 2ρ)

−(k1 + 2ρ) 1

]
.

.
V(ζ) is negative and the system is strongly globally asymptotically stable when k1

and k2 are satisfied as follows: {
k1 > 2ρ

k2 > k1
5k1ρ+4ρ2

2(k1−2ρ)

(28)

When k1 and k2 are satisfied in the equation above, the error dynamic of DC-side
voltage approaches the ideal sliding manifold S = 0 in finite time. The proof is completed. �

Figure 3 shows the block diagram of outer-loop STC.
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Using the bound of disturbance δ (17), the bound of ζ ( )V  can be obtained as fol-
lows: 
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( )V ζ  is negative and the system is strongly globally asymptotically stable when k1 

and k2 are satisfied as follows: 
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

+ > −

1
2

1
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1

2
5 4
2( 2 )

k
k

k k
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 (28) 

When k1 and k2 are satisfied in the equation above, the error dynamic of DC-side volt-
age approaches the ideal sliding manifold S = 0 in finite time. The proof is completed. □ 

Figure 3 shows the block diagram of outer-loop STC. 

 
Figure 3. Block diagram of outer-loop STC. 

  

Figure 3. Block diagram of outer-loop STC.

5. Inner-Loop TV-MPC for SOP
5.1. Traditional MPC Method

In the SOP system consisting of two-level VSC, the switch states can be divided into
six active voltage vectors (V1, V2, V3, V4, V5, V6) and two zero vectors (V0, V7), as shown
in Figure 4. As shown in Figure 1, ‘1’ in Figure 4 means the switch Sx is on and S′x is off,
while ‘0’ means the switch Sx is off and S′x is on (x = 1, 2, 3, 4, 5, 6).
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Port1 is operated in UdcQ mode to ensure the stability of the DC-side voltage. In the
traditional MPC method, the PI controller is used in the outer-loop subsystem to output
d-axis reference current id1ref , which can be expressed as:

id1re f = kp(udcre f − udc) + ki

∫
(udcre f − udc)dt (29)

where kp and ki are the proportional and integral coefficients of PI controller, respectively.
udcref is the reference voltage of the DC side.

The PQ mode is used in Port2. With a stable grid voltage, a given reference current is
equivalent to a given reference power, which can transform the PQ mode control into a
problem of tracking the reference current.

Taking VSC1 for analysis, since two zero vectors V0 and V7 obtain the same voltage
vector, in traditional MPC, seven voltage vectors are substituted into (3) to calculate the
corresponding predicted currents, and each predicted current is substituted into the cost
function, the voltage vector with the smallest cost function value can be selected as the
optimal voltage vector and applied to the switch in the next sampling time. The cost
function can be designed as:

f =
∣∣∣id1re f − id1(k + 1)

∣∣∣+ ∣∣∣iq1re f − iq1(k + 1)
∣∣∣ (30)

where iq1ref is the q-axis current reference value of VSC1.
Similarly, VSC2 with given reference current, cost function values can be calculated

and the optimal voltage vector will be applied to the switch in the next sampling time.

5.2. TV-MPC Method

In the traditional MPC method, only one voltage vector can be used in a sampling
time and seven times of cost function calculations are required at both port, which leads
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to large current harmonics and control delays. Therefore, using the principle of deadbeat
control, a low-complexity TV-MPC method is proposed. By calculating the predicted
value of the reference voltage of VSC at the next sampling time, using Table 1 to judge the
sector and selecting a zero vector and two active voltage vectors in this sector as the vector
combination. The vector combination is applied to the VSC at the next sampling time.

Table 1. Voltage vector combination selection.

Sector Voltage Vector Combination

I V1, V2, V0 or V7
II V2, V3, V0 or V7
III V3, V4, V0 or V7
IV V4, V5, V0 or V7
V V5, V6, V0 or V7
VI V6, V1, V0 or V7

Taking VSC1 as the example, in the principle of deadbeat control, assuming the
predicted currents at (k + 1)th instant as follows:{

id1re f = id1(k + 1)
iq1re f = iq1(k + 1)

(31)

Substituting (31) into (3), the reference voltages of VSC1 u1Ndref and u1Nqref can be
written as: {

u1Ndre f =
L1
Ts
(id1(k)− id1re f )− R1id1(k) + L1ωiq1(k) + u1d(k)

u1Nqre f =
L1
Ts
(iq1(k)− iq1re f )− R1iq1(k)− L1ωid1(k) + u1q(k)

(32)

According to u1Ndref and u1Nqref , the sector can be determined. The optimal vector
combination u1opt, u2opt and u0opt include two active voltage vectors and one zero vector.
For the selected optimal vector combination, the action time of each vector in a sampling
time needs to be calculated. The principle of modulation MPC is applied, assuming the
voltage vector action time is inversely proportional to the cost function value. The action
time of voltage vectors t1, t2 and t0 can be calculated as:

t1 = n
f1

Ts

t2 = n
f2

Ts

t0 = n
f0

Ts

n = 1
f1
−1+ f2

−1+ f0
−1

(33)

where f 1, f 2 and f 0 are the values of cost function (30) corresponding to u1opt, u2opt and u0opt,
respectively. In this section, id1ref is calculated by STC (24).

VSC2 is similar to VSC1, the optimal voltage vectors with the corresponding action
times are output to the switches at the next sampling time, which will control the whole
SOP system.

5.3. TV-MPC with STO

After adding the disturbance observed by STO, (32) can be rewritten as follows:{
u1Ndre f =

L1
Ts
(id1(k)− id1re f )− R1id1(k) + L1ωiq1(k) + u1d(k) + f̂d1

u1Nqre f =
L1
Ts
(iq1(k)− iq1re f )− R1iq1(k)− L1ωid1(k) + u1q(k) + f̂q1

(34)

The new voltage combination can be selected by the reference voltage ud1ref and uq1ref .
By the new voltage combination, the values of cost function and action time of each vector
can be recalculated.
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After adding the disturbance, (3) can be rewritten as:{
id1(k + 1) = (1− TsR1

L1
)id1(k) + Tsωiq1(k) +

Ts
L1
(u1d(k)− u1Nd(k) + f̂d1)

iq1(k + 1) = (1− TsR1
L1

)iq1(k)− Tsωid1(k) +
Ts
L1
(u1q(k)− u1Nq(k) + f̂q1)

(35)

After substituting the rewritten predicted currents of (k + 1)th instant by new vector
combinations chosen by (34) into (30) the values of the cost function can be calculated.
Action times of each voltage vectors t1, t2 and t0 can be calculated by (33).

VSC2 is similar to VSC1, new voltage combinations and action times are output to
each side of switch and control the whole system of SOP.

Figure 5 is the block diagram of the STC and TV-MPC with STO for SOP.
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6. Simulations

In this paper, traditional MPC, TV-MPC and TV-MPC with STC were designed
to demonstrate the effectiveness of the proposed method and were simulated in MAT-
LAB/Simulation. TV-MPC and STO with STC was designed when parameter mismatches
occurred in the SOP system. Table 2 lists the parameters of the SOP system.

Table 2. Parameters of SOP.

Name Symbol Value

VSC1 grid voltage u1 220 V
VSC2 grid voltage u2 220 V

VSC1 resistance R1 0.03 Ω
VSC2 resistance R2 0.03 Ω

VSC1 inductance L1 3 mH
VSC2 inductance L2 3 mH

DC-side capacitance C 5000 µF f
Sampling time Ts 1 × 10−6 s
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6.1. Current Pefromance of Steady-State

The proposed current of VSC2 side is set as−40 A in simulations. Outer-loop controller
parameters are listed in Table 3. Steady-state currents of PI and MPC, PI and TV-MPC and
STC and TV-MPC are shown in Figure 6.

It can be seen that in VSC1 side, the total harmonic distortions (THDs) of a-phase of PI
and MPC, PI and TV-MPC and STC and TV-MPC are 1.07%, 0.43% and 0.58%, respectively.
While on VSC2 side, the THD of a-phase of PI and MPC, PI and TV-MPC and STC and
TV-MPC are 1.06%, 0.43% and 0.44%, respectively. Compared with PI and MPC, it is
obvious that PI and TV-MPC has a better steady-state current performance and reduces the
current ripple of each side. Current performances of STC and TV-MPC are similar to PI
and TV-MPC, maintaining the low current ripple of the system.

Table 3. Controller parameters.

Method Outer-Loop Controller Parameters

PI and MPC kp = 3.5, ki = 4.125
PI and TV-MPC kp = 3.5, ki = 4.125

STC and TV-MPC k1= 150, k2 = 3000
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6.2. DC Voltage Performance

Regulating the proposed DC-side voltage udcref at 850 V, in order to verify the effective-
ness of STC+TV-MPC in start-up response performance and dynamic state performance,
the reference current of VSC2 side is changed from 40 A to 80 A at 0.25 s. As is shown
in Figure 7a, the time used to track the proposed DC voltage under PI and MPC, PI and
TV-MPC and STC and TV-MPC are 0.108 s, 0.029 s and 0.016 s, respectively. It can be seen
that STC and TV-MPC track the proposed DC voltage faster than PI and MPC and PI and
TV-MPC without overshoot, which has a better start-up response performance.

Energies 2022, 15, 3657 14 of 20 
 

 

6.2. DC Voltage Performance 
Regulating the proposed DC-side voltage udcref at 850 V, in order to verify the effec-

tiveness of STC+TV-MPC in start-up response performance and dynamic state perfor-
mance, the reference current of VSC2 side is changed from 40 A to 80 A at 0.25 s. As is 
shown in Figure 7a, the time used to track the proposed DC voltage under PI and MPC, 
PI and TV-MPC and STC and TV-MPC are 0.108 s, 0.029 s and 0.016 s, respectively. It can 
be seen that STC and TV-MPC track the proposed DC voltage faster than PI and MPC and 
PI and TV-MPC without overshoot, which has a better start-up response performance. 

Changes of the DC-side voltage in dynamic state are shown in Figure 7b. It can be 
seen that the time used to recover the proposed DC-side voltage and voltage drops of STC 
and TV-MPC is much less than PI and MPC and PI and TV-MPC. 

As a result, it can be seen that STC and TV-MPC has better performance in start-up 
response and current change response. 

 
(a) 

 
(b) 

Figure 7. (a) DC-side voltage waveform of PI and MPC, PI and TV-MPC and STC and TV-MPC; (b) 
Detailed view of (a) in dynamic state. 

6.3. STC and TV-MPC with STO under Parameter Mismatches 
In order to prove the effectiveness of STC and TV-MPC with STO, the SOP system 

under parameter mismatches is simulated in this section. STO and STC parameters are 
listed in Table 4. 
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Changes of the DC-side voltage in dynamic state are shown in Figure 7b. It can be
seen that the time used to recover the proposed DC-side voltage and voltage drops of STC
and TV-MPC is much less than PI and MPC and PI and TV-MPC.

As a result, it can be seen that STC and TV-MPC has better performance in start-up
response and current change response.
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6.3. STC and TV-MPC with STO under Parameter Mismatches

In order to prove the effectiveness of STC and TV-MPC with STO, the SOP system
under parameter mismatches is simulated in this section. STO and STC parameters are
listed in Table 4.

Table 4. STO and STC parameters.

k1 k2 α1 β1 α2 β2

100 200 50,000 1,500,000 50,000 1,500,000

The proposed current of VSC2 side is set as 40 A, when parameter mismatches have
not occurred in the SOP system, Figure 8a shows the d-axis currents of SOP system id1, id2,
id1ref and id2ref . Figure 8b shows the q-axis currents of SOP system iq1, iq2, iq1ref and iq2ref .
The disturbances fd1, fq1, fd2 and fq2 estimated by STO are shown in Figure 8c. It can be seen
that when parameter mismatches have not occurred in SOP system, id1, iq1, id2 and iq2 can
track the reference currents correctly and the disturbances estimated by STO are small.
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When inductance mismatches have occurred in the SOP system, STO can observe the
disturbances caused by inductance mismatches. The SOP system starts at 0 s and ends at
0.8 s, while the observers are applied to the system at 0.4 s. When system inductances
become 5L1 and 5L2, as shown in Figure 9a, inductances’ mismatches influence the d-axis
currents obviously, Figure 9b shows the q-axis currents, when observers are applied to the
system at 0.4 s, currents can track the reference currents correctly. Figure 9c shows the
disturbances estimated by STO, it can be seen that after a short time, the estimated distur-
bances can be stabilized. When system inductances become 0.3L1 and 0.3L2, Figure 10a–c
present the d-axis current, q-axis current and disturbances estimated by STO, respectively,
it can be seen the STO can also estimate the disturbances correctly. These results verify the
effectiveness of proposed STO.
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Figure 11 shows the influences of resistance mismatches, when system resistances
become 3R1 and 3R2, Figure 11a,b show the d-axis and q-axis currents of SOP system, it can
be seen that resistance mismatches have less influence than inductance mismatches. As
shown in Figure 11c, disturbances caused by resistance mismatches can be observed by
STO. Therefore, it can be proved that the proposed STC and TV-MPC with STO can reduce
the currents error obviously when parameter mismatches have occurred in the SOP system.
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7. Discussion

For the better performance of the SOP system, increasing the number of ports, consid-
ering the faults that may occur in the system, taking Vf mode into consideration, and an
experimental study of the SOP system will be the future work.

8. Conclusions

In this paper, a STC and TV-MPC with STO was proposed to improve the operation
of the SOP system. Considering the disturbances caused by parameter mismatches and
unmodelled dynamics, the STO was designed to observe the disturbances, and steady-
state currents can track the reference currents correctly with the use of STO. In addition,
aiming at the problems such as long start-up time, overshoot and poor robustness caused
by traditional out-loop PI controller, an outer-loop STC was designed to improve the
performance of the DC-side voltage. Moreover, in order to reduce the current harmonics,
an inner-loop TV-MPC method was proposed. The simulation results show that STC and
TV-MPC with STO can reduce current harmonics effectively while the DC voltage has a
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better operation state, when parameter mismatches have occurred in the SOP system, STO
can observe the disturbances correctly, which prove the effectiveness and correctness of the
proposed method.
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