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Abstract: Pollution flashover occurs when soluble and nonsoluble materials cover the surface of
an insulator, and this may ultimately cause a reduction in its performance. In this paper, the
common type of sodium chloride (NaCl) was used as a soluble pollutant (ESDD) and kaolin as a
nonsoluble pollutant (NSDD). Samples of silicone rubber (SiR) insulators were selected for this study
and fabricated at the Advanced High Voltage Engineering Research Centre (AHIVEC) at Cardiff
University. The samples were preconditioned and polluted according to standard specifications.
Additionally, the AC voltage ramp technique was used to achieve flashover (FOV) voltage with
different pollution levels. The aim of this work was to investigate the effect of nonsoluble materials on
flashover characteristics to understand their interaction with dry-band arcs by using FOV electrical
equations and experimental data. The test results show that the FOV voltage of the silicone rubber
insulator substantially decreased with the increase in both ESDD and NSDD values. It was also
identified from these results that the dry-band arcs were considerably influenced by both ESDD and
NSDD levels. This impact can be quantified by determining the variation of discharge parameters (N,
n). Based on the FOV equations and experimental data, a mathematical model was suggested, taking
into account the effect of both ESDD and NSDD.

Keywords: pollution insulators; nonsoluble deposit density; flashover characteristics; arc parameters

1. Introduction

One of the major problems facing HV electrical grid engineers is the disturbance
generated by insulator arcing due to pollution flashover (FOV), especially in harsh envi-
ronments [1,2]. Pollution FOV of insulators is a complex phenomenon and has become
a significant aspect in the design of HV overhead lines and substations [2,3]. This phe-
nomenon can be affected by many parameters such as insulator material, insulator profile,
pollution level, and atmospheric conditions (air pressure, temperature, humidity, fog, rain,
snow, ice, etc.) [1,3–6].

The chemical constitution of the pollution layer is one of the key factors affecting
the FOV characteristics and performance of insulators [7,8]. Sodium chloride (NaCl) is
commonly utilized as the key reference indicator for conductive pollution materials [9,10].
The pollution degree is defined by the equivalent salt deposit density (ESDD) and represents
the concentration of NaCl that, when dissolved in demineralized water, gives the same
volumetric conductivity as that of the natural deposit removed from a given surface of the
insulator divided by the area of the surface, generally expressed in mg/cm2. However,
in the real field, the pollution constitution depends on the local environment where NaCl
is not the predominant salt, as established by many researchers [7,8,11–15]. On the other
hand, the pollution layer contains insoluble materials consisting mainly of ferrite, silica,
and alumina [4,9,13,15–18]. The pollution index for insoluble or nonsoluble materials is
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defined as nonsoluble deposit density (NSDD) and represents the amount of nonsoluble
residue removed from a given surface of the insulator, divided by the area of the surface,
expressed in mg/cm2 [9]. Several studies have been performed to understand the effect
of NSDD on the FOV performance of ceramic, glass, and polymeric insulators in artificial
pollution tests, and the general conclusion is that FOV voltage decreases when NSDD
increases for the same ESDD [14,16,17]. In the case of polymeric insulators, it has been
reported that NSDD decreases hydrophobic performance and FOV voltage [19–22].

From a modeling point of view, it has been established that the variation of pollution
FOV voltage with ESDD can be described as [4]

VFOV = α · ESDDβ (1)

where coefficients α and β depend on the test conditions, and β < 0.
On the other hand, the flashover equation is based on the Obenaus model [23,24].

The model consists of a cylindrical discharge (partial arc) of axial length X in series with a
linear resistance rp representing the pollution layer, supplied by a voltage V (Figure 1) and
expressed as follows

V = XNI−n + rp(L − X)I (2)

where I is the leakage current flowing across the pollution layer, rp represents the linear
resistance of the unabridged part of the pollution, and L is the total leakage length of the
insulator. N and n are discharge characteristic parameters. Usually, the values of N and n
are considered depending upon the experimental conditions in which the discharge burns.
For example, Hampton [25] considers that the discharge burns in an environment rich in
water vapor, while Wilkins [26] proposes that the discharge burns in a dry-air medium.
Slama et al. [27] demonstrated that the parameters N and n are not constant and depend on
the electrical equivalent circuit consisting of the polluted insulator, the discharge, and the
thermal parameters of the discharge.
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Figure 1. Equivalent electrical circuit based on Obenaus model. V: applied voltage, Vd(X): discharge
voltage, Vp(X): pollution voltage, I: leakage current, X: discharge length, L-X: nonshunted insulator
creepage length.

The critical flashover voltage is

VFOV = LN
1

1+n r
n

1+n
p (3)

In this study, the relationship between the variation of FOV voltage, the coefficients
α and β, the parameters N and n, and the amount of NSDD was investigated. For this
purpose, AC clean fog tests were carried out on artificially polluted silicone rubber (SiR)
insulators. The soluble pollutant was simulated by NaCl, and different amounts of NSDD
(kaolin) levels were applied. The influence of NSDD values on FOV characteristics was
investigated to establish a mathematical model of the influence of both ESDD/NSDD on
FOV voltage. This study aims to improve the understanding of polluted FOV insulators to
enable better selection of outdoor insulation used in high-voltage systems.
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2. Experimental Arrangements
2.1. Insulator Preparation

Four-shed insulators were used in this investigation, which were fabricated at the
AHIVEC by using the following facilities: room-temperature vulcanized (RTV-2), two-
component SiR (herein referred to as x-A/B), a fiberglass core with metallic end fittings
at both ends, a 3D-printed mold, and an oven. The details of the used facilities are well
described in [28–30]. The electrical and mechanical properties of the liquid SiR used in this
study are given in Table 1, and the fabrication process is the same as that used in [28–30].
Table 2 gives the geometrical parameters of the insulators. Figure 2 illustrates an example
of the SiR insulator fabricated and used for the purpose of this study.

Table 1. Characteristics of x-A/B bicomponent SiR materials.

Property Inspection Method x-A/B

Permittivity IEC 60250 2.9
Dielectric strength (kV/mm) IEC 60243 23
Tracking resistance IEC 60587 1 A 3.5
Dissipation factor IEC 60250 3 × 10−4

Tensile strength (N/mm2) ISO 37 6.50
Hardness shore ISO 868 30
Tear strength (N/mm) ASTM D 624 B 20
Elongation at break ISO 37 500
Volume resistivity IEC 60093 1015

Table 2. Dimensions of tested insulators.

Parameters Dimensions (mm)

Creepage distance 375
Fitting separation 175
Shed diameter 90
Shed separation 46
Trunk diameter 28
Inner core diameter 18
Form factor 2.7
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2.2. Experimental Setup

The experimental setup consists of a fog chamber where the polluted insulators are
suspended and wetted with fog generated. High voltage is supplied with the Hipotronics
AC Dielectric test (150 kVA, 75 kV, 50 Hz, 2 A). The applied voltage is controlled manu-
ally or by using a program to follow a predetermined voltage pattern with the panel by
adjusting the primary voltage (0–840 V). A digital display control panel allows reading
the RMS applied voltage, and an RC divider (10,000:1) records the voltage waveform. The
measurement is realized through a shunt that is connected to a data acquisition system
(DAQ). The DAQ is connected to a personal computer with an IEEE interface to monitor
and record the voltage and leakage current signals using a developed LabVIEW program.
Postprocessing software is used for data analysis. More details about the experimental
setup are given in [28–32].

2.3. Artificial Pollution of Insulators

The pollutant was prepared according to the IEC 60507 solid-layer method [9], con-
sisting of a Triton X-100 wetting agent (1 g), tap water (1 L), kaolin (40 g), and an ade-
quate concentration of sodium chloride (NaCl) to achieve the volume conductivity value
needed. The volume conductivity was selected to represent different salt deposit density
(ESDD) levels. In this investigation, the ESDD values are 0.12 mg/cm2, 0.38 mg/cm2 and
1.0 mg/cm2, and the nonsoluble (NSDD) values of kaolin are 0.11 mg/cm2, 0.23 mg/cm2,
and 0.52 mg/cm2.

Before the test, all insulators were carefully cleaned and allowed to dry naturally
indoors to avoid any pollution or dust. Then, before application of the pollutant, the
insulator was preconditioned with brushed dry kaolin according to the recommendations of
Cigré WG C4.303 [33] and left for at least 1 h. This step is used to reduce the hydrophobicity
of the silicone rubber. The insulator was then polluted by spraying the pollutant on the
insulator surface, ensuring application to all parts of the insulator surface, and then the
insulator was left to dry for 24 h. Next, the insulator was mounted in the fog chamber. The
polluted insulator was wetted with a fog flow rate of 3 L/h, which is sufficient to achieve
maximum conductance of the pollution layer within 10–40 min from the instant the fog is
applied depending on the used ESDD [31].

2.4. Flashover Ramp Test Method

The used test technique, a high-voltage ramp, is the same as that proposed in previous
work [28,29] with a predetermined voltage ramp of 6.5 kV/min. This rate allows exciting
the FOV event within a 5 to 10 min time gap. Fog generation is applied at the same time
as the applied voltage and kept running until the end of the test. When FOV occurs, the
protection interrupts the voltage supply. The tested insulator is then left to cool naturally
for 5 min, and then a new ramp test is started until the required number of FOVs is realized
(5 tests). During the test, video and infrared cameras are used to monitor the flashover
event and discharge activity on the insulator surface.

3. Experimental Results, Analysis, and Discussion
3.1. Flashover Test Results

Figure 2 illustrates the variation of VFOV vs. ESDD for a different NSDD. According to
this figure, for the same ESDD, VFOV decreases with the increase in NSDD. The relationship
between VFOV and ESDD was fitted to determine the values of the coefficients α and β for
each NSDD. Table 3 illustrates the values of α and β and shows that these coefficients vary
with the amount of NSDD: α decreases while β increases.

In Figure 3, VFOV is plotted as a function of NSDD for a different ESDD. According
to this figure, NSDD drastically impacts VFOV where the VFOV ratio corresponding to the
minimum and maximum NSDD (0.11 mg/cm2 and 0.52 mg/cm2) for each ESDD level is,
respectively, 1.83 and 1.7.
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Table 3. Values of parameters α and β.

NSDD α β

0.11 35.308 −0.211
0.23 30.598 −0.239
0.52 20.992 −0.262

Energies 2022, 15, x FOR PEER REVIEW 5 of 15 
 

 

2.4. Flashover Ramp Test Method 

The used test technique, a high-voltage ramp, is the same as that proposed in 

previous work [28,29] with a predetermined voltage ramp of 6.5 kV/min. This rate allows 

exciting the FOV event within a 5 to 10 min time gap. Fog generation is applied at the 

same time as the applied voltage and kept running until the end of the test. When FOV 

occurs, the protection interrupts the voltage supply. The tested insulator is then left to cool 

naturally for 5 min, and then a new ramp test is started until the required number of FOVs 

is realized (5 tests). During the test, video and infrared cameras are used to monitor the 

flashover event and discharge activity on the insulator surface. 

3. Experimental Results, Analysis, and Discussion 

3.1. Flashover Test Results 

Figure 2 illustrates the variation of VFOV vs. ESDD for a different NSDD. According 

to this figure, for the same ESDD, VFOV decreases with the increase in NSDD. The 

relationship between VFOV and ESDD was fitted to determine the values of the coefficients 

α and β for each NSDD. Table 3 illustrates the values of α and β and shows that these 

coefficients vary with the amount of NSDD: α decreases while β increases. 

Table 3. Values of parameters α and β. 

NSDD α β 

0.11 35.308 −0.211 

0.23 30.598 −0.239 

0.52 20.992 −0.262 

In Figure 3, VFOV is plotted as a function of NSDD for a different ESDD. According to 

this figure, NSDD drastically impacts VFOV where the VFOV ratio corresponding to the 

minimum and maximum NSDD (0.11 mg/cm2 and 0.52 mg/cm2) for each ESDD level is, 

respectively, 1.83 and 1.7. 

 

Figure 3. Effect of NSDD level on the averaged flashover voltage of the conventional insulator with 

different ESDD values. 
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Figures 4 and 5 illustrate examples of the instantaneous leakage current and voltage dur-
ing the FOV test for two pollution levels (ESDD1 = 0.12 mg/cm2 and ESDD2 = 0.23 mg/cm2)
and two NSDD levels (NSDD1 = 0.11 mg/cm2 and NSDD2 = 0.52 mg/cm2). The current and
VFOV related to NSDD1 are lower than those corresponding to NSDD2, whatever the ESDD.
This can be explained by the fact that the greater the amount of insoluble materials, the greater
the moisture absorption, and the greater the pollution conductive layer.

Figures 6 and 7 illustrate the infrared and thermal recording during the FOV tests
related to Figure 4. The first observation is that the dry bands (DBs) appear at the region
between the shed and the trunk. Next, dry-band discharges (DbDs) and dry-band arcs
(DBAs) developed and elongated along the trunk and the sheds. The inception of DBs is
not the same, and the ESDD is kept constant. In Figure 6, the DBs are incepted at the trunk
region and are followed, after a certain time, by DbDs and DBAs. In Figure 7, DbDs and
DBAs appear quickly just after the inception of DBs at the trunk. This is clearly observed
in Figures 8 and 9, which show the visual DbD and DBA activity at the polluted insulator
with ESDD1, NSDD1, and NSDD2.
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Figure 6. Infrared recording and thermal activity during the FOV test with ESDD1 = 0.12 mg/cm2

and NSDD1 = 0.11 mg/cm2.

Based on these observations, one can deduce that NSDD considerably affects the
resistance of the pollution layer and can be considered a key parameter for the calculation
of FOV voltage.
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Figure 7. Infrared recording and thermal activity during the FOV test with ESDD1 = 0.12 mg/cm2

and NSDD2 = 0.23 mg/cm2.
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Figure 8. Visual observation of DbDs and DBAs activity with ESDD1 = 0.12 mg/cm2 and
NSDD2 = 0.11 mg/cm2.
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NSDD2 = 0.23 mg/cm2.

3.2. Effect of NSDD on the Leakage Resistance and Surface Resistivity

Based on the conclusion of the previous section, special attention is paid to the low-
voltage leakage resistance of the different polluted insulators before DB creation related to
the FOV tests. Figures 10 and 11 illustrate the corresponding instantaneous low-voltage
leakage resistance before the FOV tests of the examples in Figures 4 and 5. The leakage resis-
tances are different and depend on the NSDD level, even though the ESDD level is the same.
For ESDD1 = 0.12 mg/cm2, the minimum resistances are: R_Min-NSDD1 = 10.75 MΩ and
R_Min-NSDD2 = 4.77 MΩ. For ESDD2 = 0.38 mg/cm2, R_Min-NSDD1 = 10.63 MΩ, R_Min-NSDD2
= 2.325 MΩ. These examples show that the minimum leakage resistance is greatly influ-
enced by NSDD, and this influence increases with both ESDD and NSDD. Indeed, the ratio
of the leakage resistance corresponding to NSDD1 and NSDD2 is 1.01 for ESDD1, while it
is 2.05 for ESDD2.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 9. Visual observation of DbDs and DBAs activity with ESDD1 = 0.12 mg/cm2 and NSDD2 = 

0.23 mg/cm2. 

3.2. Effect of NSDD on the Leakage Resistance and Surface Resistivity 

Based on the conclusion of the previous section, special attention is paid to the low-

voltage leakage resistance of the different polluted insulators before DB creation related 

to the FOV tests. Figures 10 and 11 illustrate the corresponding instantaneous low-voltage 

leakage resistance before the FOV tests of the examples in Figures 4 and 5. The leakage 

resistances are different and depend on the NSDD level, even though the ESDD level is 

the same. For ESDD1 = 0.12 mg/cm2, the minimum resistances are: R_Min-NSDD1 = 10.75 MΩ 

and R_Min-NSDD2 = 4.77 MΩ. For ESDD2 = 0.38 mg/cm2, R_Min-NSDD1 = 10.63 MΩ, R_Min-NSDD2 = 

2.325 MΩ. These examples show that the minimum leakage resistance is greatly 

influenced by NSDD, and this influence increases with both ESDD and NSDD. Indeed, 

the ratio of the leakage resistance corresponding to NSDD1 and NSDD2 is 1.01 for ESDD1, 

while it is 2.05 for ESDD2. 

 

Figure 10. Leakage resistance during the low-voltage (840 V) test with ESDD1. Figure 10. Leakage resistance during the low-voltage (840 V) test with ESDD1.



Energies 2022, 15, 3782 10 of 14
Energies 2022, 15, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 11. Leakage resistance during the low-voltage (840 V) test with ESDD2. 

Table 4 gives the average minimum resistance corresponding to each NSDD for the 

used ESDD. According to this table, the surface resistance depends on the amount of 

insoluble matter density in the pollution layer, even though the ESDD is the same. This 

can be related to the influence of the porosity of the layer that changes with the kaolin 

density. The greater the density, the greater the humidity absorption. The direct effect is 

that the resistance decreases with the increase in the moisture contained (trapped) in the 

pollution layer. On the other hand, the results of Table 4 show that the variation of the 

minimum resistance is clearly observable at the extremes: ESDD1 = 0.12 mg/cm2 and 

ESDD3 = 1.0 mg/cm2. 

Table 4. Average minimum resistance corresponding to each NSDD for the used ESDD. 

ESDD 

(mg/cm2) 

R_minNSDD1 

(MΩ) 

R_minNSDD2 

(MΩ) 

R_minNSDD3 

(MΩ) 

0.12 1.62 1.03 0.73 

0.38 1.57 0.88 0.57 

1.00 1.20 0.60 0.20 

By considering that the pollution layer is uniform and continuous at the insulator 

surface, the resistance can be expressed as [9] 

( )
( )

 
0 2

L

p s s f

dx
R x K

D x
= =   (4) 

where rs is the surface resistivity, D(x) is the partial diameter until the path dx, and Kf is 

the form factor. Then, the surface resistivity can be deduced from Equation (4). 

Table 5 gives the average minimum surface resistivity deduced from Equation (4) 

corresponding to each ESDD with a different NSDD. 

  

Figure 11. Leakage resistance during the low-voltage (840 V) test with ESDD2.

Table 4 gives the average minimum resistance corresponding to each NSDD for the
used ESDD. According to this table, the surface resistance depends on the amount of
insoluble matter density in the pollution layer, even though the ESDD is the same. This
can be related to the influence of the porosity of the layer that changes with the kaolin
density. The greater the density, the greater the humidity absorption. The direct effect
is that the resistance decreases with the increase in the moisture contained (trapped) in
the pollution layer. On the other hand, the results of Table 4 show that the variation of
the minimum resistance is clearly observable at the extremes: ESDD1 = 0.12 mg/cm2 and
ESDD3 = 1.0 mg/cm2.

Table 4. Average minimum resistance corresponding to each NSDD for the used ESDD.

ESDD (mg/cm2)
R_minNSDD1

(MΩ)
R_minNSDD2

(MΩ)
R_minNSDD3

(MΩ)

0.12 1.62 1.03 0.73
0.38 1.57 0.88 0.57
1.00 1.20 0.60 0.20

By considering that the pollution layer is uniform and continuous at the insulator
surface, the resistance can be expressed as [9]

Rp(x) = ρs

L∫
0

dx
2πD(x)

= ρs · K f (4)

where rs is the surface resistivity, D(x) is the partial diameter until the path dx, and Kf is the
form factor. Then, the surface resistivity can be deduced from Equation (4).

Table 5 gives the average minimum surface resistivity deduced from Equation (4)
corresponding to each ESDD with a different NSDD.
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Table 5. Average minimum surface resistivity corresponding to each ESDD for various NSDD.

ESDD (mg/cm2)
Average Minimum Surface Resistivity (MΩ)

NSDD1 (mg/cm2) NSDD2 (mg/cm2) NSDD3 (mg/cm2)

0.12 4.07 2.59 2.10
0.38 3.60 2.22 1.30
1.00 3.04 1.52 0.40

Based on the values in Table 5, the variation of the surface resistivity with ESDD can
be approximated with a power function

ρs = A · ESDDB (5)

The values suggest that parameters A and B depend on the amount of NSDD and can
be approximated with the following equations

A = 1.5897 · NSDD−0.429

B = −1.3516 · NSDD − 1.0072
(6)

3.3. Modeling

The pollution resistance covering the insulator is an important parameter for the
calculation of flashover parameters. In the case of long-rod insulators, an approximation
of the form factor can be made by considering the insulator’s equivalent diameter. Then,
Equation (1) can be rewritten as

Rp = ρs
L

2πDeq
(7)

The form factor will be
K f =

L
2πDeq

(8)

Equations (7) and (8) indicate that the insulator can be reduced to an equivalent
cylinder with a length L and an equivalent diameter Deq.

One can deduce that the per-unit resistance is

rp =
ρs

Deq
(9)

By combining (3) and (9)

VFOV = L
[

N
(

ρs

Deq

)n] 1
1+n

(10)

Equation (10) gives the flashover voltage as a function of the pollution surface resistiv-
ity and form factor.

By combining (5) and (10), it yields

VFOV = L ·
{

N

[
A(ESDD)B

Deq

]n} 1
1+n

(11)

Equation (11) shows that the flashover voltage depends on the pollution level, form
factor, NSDD amount, and arc characteristics.

By comparing (1) and (11), one deduces

α = L ·
[(

N·A
Deq

)n] 1
1+n

β = B n
n+1

(12)
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According to Equation (12), α depends on the geometrical characteristics of the insu-
lator, the discharge parameters N and n, and the amount of NSDD, while β depends on
parameter n and the amount of NSDD.

For the estimation of the variation of the discharge parameters N and n with NSDD,
Equation (12) should be rewritten as a function of A, B, α, and β

n = β
B−β

N =

[(
α
L
)B ·

(
Deq
A

)β
] 1

B−β (13)

Equation (13) shows that the discharge parameters are closely related to the NSDD amount.

3.4. Estimation of Discharge Parameters

Based on Equations (12) and (13), the discharge parameters N and n are deduced and
summarized in Table 6 for each used NSDD.

Table 6. Values of parameters n and N for fog rate 3 l/h.

NSDD N n

0.11 149.45 0.214
0.23 133.60 0.211
0.52 83.61 0.173

Based on Table 6, discharge parameters N and n vary with the insoluble amount:
both N and n decrease with NSDD. The results are in accordance with the results ob-
served in [8,34] and confirmed by [11,17]. This can be related to the effect of the pollution
constituent on the discharge temperature, as proposed in [8,27].

Figure 12 illustrates the comparison between the measured average flashover voltages
and the calculated flashover voltages based on Equation (11). The calculated values are
close to the experimental values.
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4. Conclusions

This paper was aimed at the experimental study of the effect of NSDD on the FOV
performance of SiR insulators to establish a mathematical model of FOV voltage, taking
into account the effect of both ESDD and NSDD. The experimental results showed that for
the same ESDD, VFOV decreases with the increase in NSDD. By plotting VFOV and ESDD,
it was found that coefficients α and β vary with the amount of NSDD.

The infrared and thermal recording during FOV tests showed that DBs appear at the
region between the shed and the trunk. Next, the DbDs and the DBAs developed and
elongated along the trunk and the sheds. The inception of DBs and the development of
DbDs and DBAs are closely related to the NSDD amount.

The surface resistance depends on the amount of insoluble matter density in the
pollution layer, even though the ESDD is the same. Then, the variation of the surface
resistivity with ESDD and NSDD was proposed.

The link between FOV voltage equations based on the Obenaus model and the em-
pirical equations based on ESDD was established. The equivalence between the discharge
parameters N and n and the coefficients α and β was proposed. Based on the model and
the experimental results, it was deduced that N and n are not constant and depend on the
NSDD amount.

Author Contributions: Conceptualization, M.E.A.S. and A.K.; methodology, M.E.A.S. and A.K.; A.K.;
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resources, A.M.H.; data curation, M.E.A.S. and A.K.; writing—original draft preparation, M.E.A.S.
and A.K.; writing—review and editing, M.E.A.S., A.K., M.A. and A.M.H.; visualization, M.E.A.S.,
A.K., M.A. and A.M.H. All authors have read and agreed to the published version of the manuscript.
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