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Abstract: Organic-rich lacustrine shales are widely developed in China, and they have long been
simply regarded as homogeneous source rocks, which restricts the understanding of intrasource
oil accumulation. At present, the study of the LXF (Lower Member of the Xingouzui Formation)
in the Jianghan Basin as an unconventional oil reservoir is still in its infancy, and the hydrocarbon
accumulation mechanism is still unclear. Geochemical and mineralogical studies were carried out on
a suite of samples from the 100-m-thick sequence, i.e., LXF II Oil Bed, by using XRD, SEM, MICP, and
Rock-Eval pyrolysis. The results show that the II Oil Bed is rich in carbonate and poor in clay, so it
shows a good fracturing tendency. The high degree of heterogeneity in mineral composition leads to
frequent interbedding of different lithofacies. In the II Oil Bed, intercrystalline pores, interparticle
pores, and intraparticle pores are developed, and micro-fractures are often observed. However, the
main pore types, pore size distribution, and connectivity are quite different among lithofacies, and
the carbonate-rich lithofacies have better reservoir capacity. The OM (organic matter) abundance
of the II Oil Bed varies greatly and generally ranges from fair to very good. Coupled with its early-
mature to mature Type II OM, it is considered to have the characteristics required for oil generation.
Comprehensive analysis shows that the II Oil Bed has good shale oil exploration prospects, and
the enrichment of shale oil in the sequence is the result of multiple factors matching. Firstly, high
organic matter abundance is the material basis for shale oil enrichment. Secondly, thermal maturity
is a prerequisite, and the difference in burial depth leads to the differential enrichment of shale oil
in different areas. Thirdly, pores and micro-fractures developed in shale not only provide space for
hydrocarbon storage, but also form a flow-path network. Finally, multi-scale intrasource migrations
are key processes ranging from the scale of lithofacies to the intervals, which further results in the
differential shale oil enrichment in different lithofacies and intervals. Considering the hydrocarbon
generation capacity and reservoir quality, the prospective depth for shale oil exploration in the study
area is >1350 m. The findings of this study can help in the better-understanding of the shale oil
enrichment mechanism, and the optimization of future exploration strategies.

Keywords: shale oil; enrichment mechanism; lacustrine source rocks; Jianghan Basin

1. Introduction

With conventional oil and gas resources in short supply, unconventional resources
with huge potential are receiving widespread attention [1–5]. Shale oil is one of the
hotspots of unconventional oil and gas exploration [1]. Shale oil systems are defined as
organic-rich mudstone units that produce oil that retain in situ or migrate to adjacent
organic-lean rocks [1]. However, another definition strictly refers to the oil producible from
organic-rich shale or mudstones. In this study, the first definition was adopted. Shale oil
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resources in China are mainly distributed in the Mesozoic-Cenozoic strata of lacustrine
basins [6]. It is very different from North American marine shale oil due to the complex
structural conditions, unstable stratigraphic distribution, small sedimentary scale, rapid
facies changes, and various reservoir types of lacustrine basins [7–11]. However, at present,
the basic geological research on lacustrine shale is relatively weak and the conditions
for shale oil enrichment are not clear [12]. Therefore, although some lacustrine shales
may contain certain hydrocarbons, it is still unknown whether they have good shale oil
exploration potential. Recent studies have shown that some lacustrine shales are also
promising targets for shale oil exploration and development [13]. However, a large number
of studies still focus on marine shales [1,14,15]. In contrast, relatively few studies have been
conducted on lacustrine shale.

Shale oil enrichment is directly related to the properties of source rocks and reservoirs [6].
Therefore, total organic carbon (TOC) and reservoir quality are usually regarded as the
main factors for shale oil accumulation, representing hydrocarbon generation potential
and reservoir capacity, respectively [1]. However, further studies have found that they are
closely related to mineral composition, lithology, and sedimentary structure [13]. According
to the sedimentary theory, the influence of climate and tectonics on lacustrine sediments is
usually multi-scale and multi-faceted [8,16]. The formation and accumulation of lacustrine
shale oil also show strong heterogeneity at the multi-scale [17,18]. However, some organic-
rich lacustrine sediments are still simply regarded as homogeneous source rocks, which
restricts the understanding of intrasource oil accumulation.

In recent years, shale oil resources have been found in argillaceous dolomite of the
Junggar Basin and the Santanghu Basin [19,20], and recently, in the argillaceous dolomite
of the LXF (Lower Member of the Xingouzui Formation) in the Jianghan Basin, which
broadens the scope of shale oil exploration. However, in the exploration of the Jianghan
Basin over the past decades, the LXF has been simply regarded as the source rock of the
conventional reservoirs. However, the fact is that lacustrine shales exhibit a high degree of
heterogeneity on multi-scale. Due to the differences in hydrocarbon generation capacity,
hydrocarbon migration, and accumulation conditions caused by the OM type, lithofacies,
petrology, and petrophysics, hydrocarbons are expected to migrate from one sub-unit to
another. It is still unclear whether intrasource migration is one of the processes of lacustrine
shale oil enrichment, and whether it is related to the multi-scale heterogeneity of shale. In
addition, the lack of basic geological research has led to a poor understanding of the factors
controlling the differential shale oil enrichment in different regions. To fill this gap, this
paper focuses on the investigation of the mineralogy, lithology, and organic geochemistry
of the LXF. Through the comparative study of wells with different buried depths, we
reveal the control effect of thermal evolution on shale oil enrichment. Taking lithofacies as
the research object, the reservoir capacity, hydrocarbon generation potential of different
lithofacies, and intra-source migration effect are revealed through the study of pore and
geochemical characteristics. It is expected to be helpful for the optimization of future shale
oil exploration strategies, and provide references for the study of shale oil under similar
geological backgrounds.

2. Geological Setting

The Jianghan Basin is a Cretaceous-Oligocene rift basin with an area of ~28,760 km2,
and is divided into five depressions and three uplifts [21,22] (Figure 1A). Rifting in the
basin was caused by Pacific–Eurasia subduction and initiated during the Late Cretaceous
period [23,24]. Since the Paleogene, the basin has experienced two rifting stages caused by
the India–Eurasia collision [25].
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Figure 1. (A) Location and an overview map of the Jianghan Basin. (B) Simplified stratigraphic col-
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search Institute Sinopec Jianghan Oilfield Company, 2020. Fm = Formation. 
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mainly composed of pre-Cretaceous marine and continental sedimentary rocks [21,22]. 
From the Cretaceous to the Quaternary, the provenance was mainly from the northwest 

Figure 1. (A) Location and an overview map of the Jianghan Basin. (B) Simplified stratigraphic
column [21]. (C) The tectonic evolution of the study area, after the Exploration and Development
Research Institute Sinopec Jianghan Oilfield Company, 2020. Fm = Formation.

The basin is a polycyclic sedimentary basin with a basement of >7000 m, and is mainly
composed of pre-Cretaceous marine and continental sedimentary rocks [21,22]. From
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the Cretaceous to the Quaternary, the provenance was mainly from the northwest of the
basin, and the maximum thickness of strata was >10,000 m, with obvious cyclicity and
rhythmicity [22,26]. These overlying sedimentary rocks mainly include Cretaceous and
Cenozoic clastic rocks and evaporites [22,27], which can be divided into seven stratigraphic
units (Figure 1B). Among them, the Xingouzui Fm is one of the most important source
rocks in the Jianghan Basin [26,27].

During the deposition of the Xingouzui Fm, the sedimentary environment mainly
included shallow to semi-deep water [26]. The weak tectonic activity during the deposi-
tion resulted in quite stable stratigraphic development [22]. However, post-depositional
tectonic evolution has led to differences in the burial depth of the strata in different regions
(Figure 1C). The LXF was deposited in a saline lacustrine environment, mainly composed
of mudstone, shale, argillaceous dolomite, and dolomitic mudstone [22,26]. It was divided
into four beds from bottom to top (i.e., III Oil Bed, Clay Interlayer Bed, II Oil Bed, I Oil
Bed, and Gypsolyte Bed), in which the II Oil Bed with a thickness of ~100 m is the main
oil-bearing strata and one of the most promising shale oil exploration targets in the Jianghan
Basin [22,27].

3. Samples and Methods

Core samples of the target layers (i.e., the II Oil Bed) were obtained from five wells
(Figure 1A). Intensive sampling was performed to fully consider the heterogeneity. Bulk
geochemical and mineralogical analyses were performed on all samples. Thirty-three
samples were selected for MICP (mercury intrusion capillary pressure) experiments, and
42 samples for Soxhlet extraction.

The XRD (X-ray diffraction) analysis was measured with a D/max–2600/PC X-ray
Diffractometer with Cu–Kα radiation (40 kV, 25 mA). The quantitative analysis of the min-
eral composition further characterizes the basic features of the samples, and on this basis,
the lithofacies of shale are divided. MICP analyses were performed using a Micromeritics
9505 Instrument at a temperature of 15 ◦C and a humidity of 62%, according to the standard
SY/T 5346-2005. MICP analyses were used to characterize the pore characteristics of shale
reservoirs, and evaluate the reservoir capacity of different lithofacies.

Rock-Eval pyrolysis was performed using a Rock-Eval 6 Instrument. The initial
temperature was set at 300 ◦C (for 3 min), then increased to 650 ◦C at a rate of 25 ◦C/min.
The main geochemical parameters obtained from the Rock-Eval analysis include TOC (total
organic carbon), S1, S2, Tmax, and HI (hydrogen index), which were used to evaluate the
organic matter abundance, type, and maturity of source rocks. Forty-two samples were
crushed to a mesh size of 80–120, and about 120 g were taken for Soxhlet extraction for 72 h
under water-bath conditions. The content of extracts (soluble organic matter) obtained was
combined with Rock-Eval pyrolysis parameters to propose a new evaluation parameter to
characterize the state of OM in different lithofacies.

4. Results
4.1. Mineralogy and Lithofacies

The LXF II Oil Bed predominately consists of dolomite (0–91.4%; avg. 37.01%), clay
(1.3–55.7%; avg. 20.37%), and quartz (0.8–64.0%; avg. 15.75%), followed by feldspar
(0–28.4%; avg. 9.66%), analcime (0–30.3%; avg. 6.06%), and anhydrite (0–89.7%; avg. 5.25%)
(avg. = average). In addition, there are small amounts of pyrite (0–11.1%; avg. 1.89%) and
halite (0–3.1%; avg. 0.28%) (Figure 2A). In the clay mineral component, the main species
are I/S (illite/smectite mixed layer) (avg. 45.9%), illite (avg. 36.4%), and chlorite (avg.
17.2%), and trace C/S (chlorite/smectite mixed layer) (avg. 0.4%) (Figure 2B). The ternary
diagram shows that, compared with typical USA shales, the LXF II Oil Bed has higher
carbonate and lower clastic mineral contents, and belongs to a continental carbonate-rich
shale (Figure 2C). As a result, most of the samples belong to calcareous dolomite shale
(CDS) and mixed shale (MS), with only a few belonging to felsic shale (FS) or clay shale
(CS) (Figure 2C).
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Figure 2. Mineralogical and lithofacies characteristics of the LXF II Oil Bed in the Jianghan Basin.
(A) The proportion of main minerals. (B) Types of clay minerals. (C) Ternary diagram of lithofacies
division; data for comparison taken from [28,29]. (D) The proportion of various lithofacies in
different intervals.

The vertical variations in mineralogy are quite significant (Figure 3). The II Oil Bed
with a thickness of ~100 m has been subdivided top-down into five intervals (Figure 3),
mainly based on the following reasons: a. In terms of lithology, the 1st, 3rd, and 5th intervals
are characterized by frequent interbedding of argillaceous dolomite and dolomitic mud-
stone (Figure 4A,B); these three intervals are defined as dolomitic mixed shale sections
by the Jianghan Oilfield. In the 2nd and 4th intervals, dolomitic mudstone interbedded
frequently with massive mudstone (Figure 4C), which are defined as mudstone sections by
the Jianghan Oilfield. b. On the logging curve, the 1st, 3rd, and 5th intervals have a high-
frequency fluctuation, which is different from the 2nd and 4th intervals (Figure 3). c. In
lithofacies, the extensive variations of mineral composition result in the vertical variation
of lithofacies at the sub-meter scale. However, the 1st, 3rd, and 5th intervals are mainly
composed of CDS and MS, and CDS accounts for about 50%. Although the 2nd and 4th
intervals are still dominated by CDS and MS, they have more CS and FS (Figure 2D). Lami-
nation structures are observed in MS, whereas CDS typically exhibits massive structures
(Figure 4D,E). Lamination is generally interpreted as the deposition by suspension settling
in relatively still and mostly stratified anoxic bottom water [30], whereas when sediments
accumulate rapidly, they tend to be bedded or massive [13]. In addition, the formation of
lamination requires a periodic supply of different components [31]; if the sedimentary com-
ponents are relatively single, there is no obvious lamination or no lamination. Therefore,
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the large supply of terrestrial debris during the flood period or the rapid precipitation of
carbonate minerals during the dry period will lead to the absence of a clear lamination
structure, thus showing as bedded or massive [32]. Moreover, SEM images show that
solid OM are often present in MS, whereas the matrix pores of CDS are usually filled with
precipitated oil (Figure 4F,G). These differences between lithofacies imply that there may
be differences in shale oil enrichment.
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4.2. Reservoir Space

Shale pores not only provide space for hydrocarbon storage, but also form a flow-path
network. Therefore, their size, type, and connectivity are essential for shale oil resource
evaluation and development [33,34]. SEM images show that pores in the II Oil Bed are
present in various types, having a wide range in morphology and size (Figure 5). Inorganic
pores (intercrystalline pores, interparticle pores, and intraparticle pores related to the min-
erals) are dominant, with a few OM pores and micro-fractures (Figure 5). Dolomite grains
are generally <2 µm and display perfect rhombic or sub-rhombic shapes (Figure 5A), and
intercrystalline pores developed among them are the main reservoir space type (Figure 5B).
Some intercrystalline pores are also developed in pyrite aggregates (Figure 5C), and these
pores are interconnected. However, these aggregates are relatively isolated, and the pore
size is small, so the oil in these pores may be difficult to extract. Interparticle pores mainly
occur between clay platelets and detrital grains (Figure 5D). Intraparticle pores mainly
include dissolution pores (Figure 5E) and halite skeleton pores (Figure 5F), and the former
are usually related to the organic acids formed during hydrocarbon generation [35]. Only
a few scattered OM pores were observed (Figure 5D). Since their formation is usually
associated with hydrocarbon generation [1], the lack of OM pores may be the result of low
maturity. Fractures can provide effective reservoir space, and can significantly improve
fluid flow capacity. Therefore, they play an important role in shale oil exploration and
development [36]. Many hydrocarbon-filled fractures can be observed, which serve as
pathways for hydrocarbon migration (Figure 5G). In addition, clay shrinkage fractures were
also observed, which were formed by the clay mineral transformation during diagenesis or
low-grade metamorphism (Figure 5H), and some micro-fractures are now filled with halite
(Figure 5I). Inevitably, however, fractures may also be caused by drying during sample
preparation or dehydration after the core is collected to the surface [1].



Energies 2022, 15, 4038 8 of 18Energies 2022, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Representative pore types and fracture characteristics of the LXF II Oil Bed in the Jianghan 
Basin. (A) Dolomite grains smaller than 2 μm displaying perfect rhombic or sub-rhombic shape, 
among which, intercrystalline pores are developed. (B) Intercrystalline pores are usually filled with 
oil. (C) Intercrystalline pores within pyrite aggregate. (D) Interparticle pores between grains and 
clay platelets. Rare and scattered OM pores developed in OM. (E) Dissolution pores within feldspar. 
(F) Pores within halite skeleton. (G) Fractures filled with hydrocarbons. (H) Clay mineral shrinkage 
fracture. (I) Micro-fracture filled with halite. 

The above pore types are developed to various degrees in different lithofacies. Due 
to the high carbonate content, CDS mainly develops carbonate mineral intercrystalline 
pores and dissolution pores, whereas MS develops relatively more interparticle pores. In 
addition, the mercury intrusion/extrusion curves show that the CDS have lower entry 
pressures and higher mercury removal efficiency than MS, indicating better pore connec-
tivity (Figure 6A,B). 

Figure 5. Representative pore types and fracture characteristics of the LXF II Oil Bed in the Jianghan
Basin. (A) Dolomite grains smaller than 2 µm displaying perfect rhombic or sub-rhombic shape,
among which, intercrystalline pores are developed. (B) Intercrystalline pores are usually filled with
oil. (C) Intercrystalline pores within pyrite aggregate. (D) Interparticle pores between grains and
clay platelets. Rare and scattered OM pores developed in OM. (E) Dissolution pores within feldspar.
(F) Pores within halite skeleton. (G) Fractures filled with hydrocarbons. (H) Clay mineral shrinkage
fracture. (I) Micro-fracture filled with halite.

The above pore types are developed to various degrees in different lithofacies. Due
to the high carbonate content, CDS mainly develops carbonate mineral intercrystalline
pores and dissolution pores, whereas MS develops relatively more interparticle pores. In
addition, the mercury intrusion/extrusion curves show that the CDS have lower entry pres-
sures and higher mercury removal efficiency than MS, indicating better pore connectivity
(Figure 6A,B).
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4.3. Hydrocarbon Generation Potential

OM abundance can reflect the hydrocarbon generation potential of source rocks [37]. It
is usually evaluated by TOC and S1 + S2 [38], which range from 0.12–11.12% (avg. 1.09%)
and 0.1–82.35 mg HC/g rock (avg. 5.42 mg HC/g rock), respectively (Figure 7). It is
reported that, in the saline lacustrine environment, the source rocks with TOC > 0.6% are
fair, and the high hydrocarbon conversion efficiency makes it possible to generate large
amounts of hydrocarbons at the low-maturity stage [39]. The plot of TOC vs. S1 + S2
shows that most samples belong to a fair-to-very-good source rock, and the OM abundance
of the 1st, 3rd, and 5th intervals are higher (Figure 7). OM type determines whether
the source rock is oil- or gas-prone [37]. The HI values of the studied samples ranged
from 12.25–924.39 mg HC/g TOC (avg. 249.29 mg HC/g TOC) (HI = S2/TOC × 100 [38])
(Figure 8A). The plot of HI vs. Tmax shows that the sample points are widely distributed
within the region of Type II, with a certain amount of Type I and Type III (Figure 8A),
whereas the type index (TI) indicates that they are mainly Type II1 and Type II2 (Figure 8B).
The Ro and Tmax are usually applied to evaluate the OM maturity [37,40]. The studied
samples display Tmax of 402–447 ◦C (avg. 426 ◦C), indicating that most of them are
immature (Figures 8A and 9A), whereas Ro ranged from 0.48–1.07% (Figure 9B), supporting
that the samples have low-to-peak oil window maturity [40]. Ro value varies greatly in
different regions, reflecting the changes in thermal maturity or burial depth in different
regions. Overall, the II Oil Bed has good hydrocarbon generation potential in terms of the
quantity, quality, and maturity of OM.
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Figure 9. Geochemical profiles of wells with different buried depths. PI = S1/(S1 + S2);
HI = S2/TOC × 100; OSI = S1/TOC × 100. (A) Tmax vs. depth plot shows that Tmax are sup-
pressed below 1350 m. (B) Ro vs. depth plot shows that Ro increases with burial depth. (C) PI vs.
depth plot, PI = S1/(S1 + S2). (D) HI vs. depth plot, HI = S2/TOC × 100. (E) OSI vs. depth plot
showing obvious oil crossover effect below 1350 m, OSI = S1/TOC × 100.

5. Discussion
5.1. Brittleness and Reservoir Capacity

Rock brittleness is related to the mineral composition, and is an important index for
shale oil potential evaluation [41]. In comparison with the mineralogical data of typical
USA shales, the high carbonate and low clay content of the II Oil Bed is highlighted, which
will facilitate the formation of natural fractures and hydraulic stimulation in the production
process, as well as the development of dissolution pores [29,42], thus showing a good
fracturing tendency (Figure 2C).

The Laplace–Washburn equation was adopted to calculate the pore radii correspond-
ing to different pressures [43]. The pore size classification is based on the scheme proposed
by Zhang et al. (2017), i.e., macropores (>1000 nm), mesopores (100–1000 nm), II-micropores
(25–100 nm), and I-micropores (<25 nm) [27]. It is found that CDS mainly develops meso-
pores and a few macropores and II-micropores, whereas MS mainly develops II-micropores
and a few mesopores and I-micropores (Figure 6C,D). According to the grading evaluation
scheme established by Lu et al. (2018), CDS belongs to good Type2 reservoirs, whereas
MS belongs to poor Type3 reservoirs [44]. This indicates that high carbonate content is
conducive to the protection of pores and the formation of dissolution pores, thus forming
more macropores and mesopores with good connectivity, whereas in clay minerals, it is
easy to cause intergranular compaction and filling, with more developed micropores and
poor connectivity [13,27]. Intercrystalline pores usually contain oil, fully demonstrating
their effectiveness (Figure 5B). In addition, a recent study suggests that dissolution pores
are important reservoir spaces for shale oil in the LXF [45], and dolomite greatly improves
the porosity and permeability (the average porosity increased by dolomite dissolution
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is 2.34%) [45]. Therefore, the reservoir capacity and connectivity of CDS are better than
those of MS. Moreover, the pores developed in the II Oil Bed are large enough, and the
pore-fracture system formed by its combination with widespread fractures facilitates oil
flow and storage [33,46].

5.2. Applicability Evaluation of Bulk Geochemical Parameters
5.2.1. The “True” Organic Matter Abundance

Some studies have revealed the impact of intrasource migration on bulk geochemical
analysis [47]. The plot of TOC vs. S1 + S2 shows that some samples from the 1st, 3rd, and
5th intervals have low TOC, but high S1 + S2, which may be related to allochthonous hydro-
carbons [40]. The measured TOC in rocks includes the carbon in kerogen and hydrocarbons,
and the latter may contain both generated hydrocarbons and migrated hydrocarbons. The
kerogen organic carbon (TOCk) was utilized to evaluate the hydrocarbon generation ca-
pacity of different lithofacies (TOCk = TOC − 0.83 × extracts [48]). The results show that
the average TOCk values of CDS, CS, MS, and FS are 0.67, 2.91, 2.07, and 1.66, respectively
(Figure 10). For the two main lithofacies, MS has a stronger hydrocarbon generation capac-
ity than CDS. In addition, we propose a new evaluation parameter, “TOCs”, to characterize
the state of OM in different lithofacies, which represents the proportion of organic carbon
in soluble OM to TOC (TOCs = 0.83 × extracts/TOC × 100%). The average TOCs values
of CDS, CS, MS, and FS are 40.78%, 6.72%, 17.92, and 1.49%, respectively (Figure 10),
indicating that CDS contained more soluble OM, which is consistent with the observation
of SEM images (Figure 4F,G). Therefore, it is speculated that the 2nd and 4th intervals, with
more MS, have higher original OM content. On the contrary, the 1st, 3rd, and 5th intervals
contain more allochthonous OM.
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Figure 10. The kerogen organic carbon (TOCk) and the proportion of organic carbon in soluble OM
to TOC of different lithofacies show that MS has a stronger hydrocarbon generation capacity than
CDS. TOCk = TOC − 0.83 × extracts [48]. TOCs = 0.83 × extracts/TOC × 100%.

5.2.2. Paradox in Rock-Eval Pyrolysis and Visual Kerogen Compositions

The plot of S2 vs. TOC is useful to study the kerogen type [49,50], which shows a
wide range of variation for both, but a strong linear correlation between them (R2 = 0.94)
(Figure 11A). The “true” HI (HIL = 697 mg HC/g TOC) is close to that of the Type I kerogen,
indicating the important contribution of aquatic organisms (Figure 11A). Samples with low
HI (“true” HI < 200 mg HC/g TOC) are also observed (Figure 11B). These data deviate
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from the previous trend, showing a strong OM type heterogeneity, especially when the
TOC < 1% (Figure 11B).
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Figure 11. (A) S2 vs. TOC plot showing the OM quantity and quality (after [49,50]). (B) An enlarged
view of the blue box in (A).

Interestingly, samples with a low Tmax also have a correspondingly low TOC, reflect-
ing the existence of migrated hydrocarbons in many samples with TOC < 1% (Figure 12) [13].
If they are excluded, samples with TOC of 0–1% should have a more uniform HI and less
Type III kerogen. In addition, Figure 9A shows that Tmax values are suppressed below
1350 m, accompanied by a gradually increasing Ro (vitrinite reflectance) and PI (production
index), and decreasing HI, as well as an obvious oil crossover effect in the suppression
zone (Figure 9B–E). OM containing high hydrogen and bitumen content can cause Tmax
suppression [38,51]. It may be that these anomalously low Tmax are plotted in the Type III
region in Figure 8A, resulting in inconsistency with the maceral analyses. This explains
why a certain amount of Type III kerogen was identified by pyrolysis parameters rather
than by maceral analyses. In summary, the OM in the II Oil Bed is mainly Type II, and the
above phenomena indicate that the hydrocarbons generated in adjacent source rocks have
migrated to CDS.
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5.3. Shale Oil Potential and Enrichment Model

Recent studies suggest that shales with Type II kerogen should be given priority
in shale oil exploration [26,52]. Although Type I kerogen has the highest oil generation
capacity, it also has the highest oil expulsion efficiency [53], which may result in a low
residual oil content [26,52]. Moreover, Type I kerogen has low oxygen content, which is
necessary for the formation of organic acids and secondary pores [54,55]. In addition, there
is no consensus on the favorable maturity range for continental shale oil exploration, e.g.,
0.5–1.5%Ro [56], 0.7–1.1%Ro [57], and 0.5–1.0%Ro [58]. This is mainly due to the different
research objects and concerns of scholars. A recent study on lacustrine argillaceous dolomite
shows that the content of retained hydrocarbons reached the maximum when Ro was
between 0.6–1.3% [59]. Therefore, the II Oil Bed is currently in a favorable maturity range.

After the II Oil Bed deposition, the differential tectonic evolution leads to the variable
burial depths in different parts of the study area (Figure 1C). The southern part experienced
continuous subsidence, the maximum burial depth is >3000 m, and the source rock experi-
enced a mature stage, with Ro generally between 0.7–1.0%. On the other hand, the burial
depth of the northern part is generally <1000 m, and the minimum is only ~700 m, with
lower thermal maturity (~0.5%Ro). The positive correlation between thermal evolution
and burial depth indicates that it is controlled by burial depth, which is well-reflected in
wells with different burial depths (Figure 9B). Finally, the deeper buried southern part
entered the hydrocarbon generation threshold. According to the plot of Ro vs. depth, the
corresponding buried depth of Ro = 0.6 is 1350 m (Figure 9B), with an obvious oil crossover
effect and Tmax suppression (Figures 9A,E and 13).
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Figure 13. Control of thermal maturity on oil content is revealed by plotting the S1 vs. TOC of wells
with different burial depths.

With the increasing burial depth, the II Oil Bed underwent diagenesis, e.g., compaction,
clay mineral dehydration, dissolution, and hydrocarbon generation [6,60]. Especially after
the middle diagenetic stage (Ro > 0.6), the carbonate-rich lithofacies (CDS) in the salt
lake developed a high porosity zone dominated by secondary pores, which had obvious
porosity enhancement and evolved into favorable lithofacies [45,60,61]. On the other hand,
large quantities of hydrocarbons are generated in the OM-rich lithofacies (MS). Therefore,
the middle-high evolution and high porosity zones are very consistent with the free oil
window [60]. The latest research also shows that the pressure-induced “squeezing” effect
will enhance hydrocarbon expulsion in ductile lithologies [62]. The concept of intrasource
migration has also been well-known [14,63]. The oil generated by OM-rich lithofacies
may be retained in their pores, or continue to be migrated to adjacent reservoirs with high
porosity and permeability driven by abnormal pressure, forming a “self-generating and
self-storing” petroleum system [14,18]. In this process, fractures are the main pathways
for hydrocarbon migration (Figure 5G). Due to the high hydrocarbon generation potential
of OM-rich lithofacies, with the conversion of high-density, solid kerogen to low-density,
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liquid oil, the fluid volume expands, and the corresponding pore pressure increases [64],
which facilitates the formation of fractures and the efficient escape of hydrocarbons. On the
other hand, the carbonate-rich lithofacies are prone to develop secondary pores and natural
fractures, which exist as pre-existing reservoir spaces, and are later filled with oil migrating
from the generation site. However, in addition to lithofacies-scale intrasource migration,
we suggest that the intrasource migrations are multi-scale, encompassing intervals. Indeed,
small-scale intrasource migrations are often superimposed on larger ones, which results in
the enrichment of hydrocarbons in the 1st, 3rd, and 5th intervals, and an oil crossover effect
mainly occur in these intervals (Figure 13). In the sandwiched or interlayered configuration,
source rocks are in close contact with reservoirs, which allows hydrocarbons to be directly
charged nearby, and thus, have good oil-bearing properties. The intrasource migration of
petroleum can alter the composition of fluids remaining in, and expelled from, the source
rocks [65]. Thus, the most significant aspect for the petroleum industry is that this will
produce the optimal targets or potential sweet spots in shale oil exploration and production.
With the passage of geological time, hydrocarbons migrate and are expelled within the
shale system, and stratigraphic fractionation makes them contain more aliphatic fractions,
thereby improving the quality of oil [1,63]. The 1st, 3rd, and 5th intervals are a set of
attractive targets for oil production based on the fact that the overall mineral composition
indicates a high degree of brittleness, and is, therefore, conducive to hydraulic fracturing.
Therefore, in this study, we have not only identified a set of promising targets, but also
explained the differential enrichment of shale oil in the LXF, and presented a shale oil
enrichment model based on this case study.

6. Summary and Conclusions

The LXF II Oil Bed in the Jianghan Basin is rich in carbonate and poor in clay minerals,
so it shows a good fracturing tendency. Pores in the II Oil Bed are present as various types,
having a wide range in morphology and size, and the carbonate-rich lithofacies have a
better reservoir capacity. In terms of the quantity and quality of OM, the II Oil Bed is a
good source rock. Given its OM abundance generally ranges from fair to very good, with
early-mature to mature Type II OM, the II Oil Bed is considered to have the characteristics
required for oil generation.

The enrichment of shale oil in the II Oil Bed is the result of multiple factors matching.
The strong heterogeneity of mineral composition also causes different lithofacies within
the sequence to appear in the form of interbeds. Due to the differential post-depositional
tectonic evolution, there are differences in the burial depth and thermal maturity between
areas, which further controls the differential enrichment of shale oil in different areas. Pores
and micro-fractures developed in shale not only provide space for hydrocarbon storage, but
also form a flow-path network. Multi-scale intrasource migrations are key processes, and
small-scale intrasource migrations are often superimposed on larger ones, which results
in the differential shale oil enrichment in different intervals. Multiple factors in the shale
oil enrichment model collectively account for the good productive potential of shale oil
sweet-spot intervals (i.e., 1st, 3rd, and 5th intervals).

Through the comprehensive analysis of geological parameters, it is considered that
the II Oil Bed has good shale oil exploration prospects. When evaluating planar shale oil
sweet spots, emphasis should be placed on thickness, thermal maturity, or burial depth.
Considering the hydrocarbon generation capacity and reservoir quality, the prospective
depth for shale oil exploration in the study area is below 1350 m.

The advantages of this study are that it reveals the roles of thermal maturity and
lithofacies in shale oil enrichment; it also proposes a new parameter to characterize the
occurrence state of OM, and clarifies that multi-scale intrasource migration is a key process
in shale oil enrichment. The disadvantages are that there is no quantitative evaluation of
migrated hydrocarbons; however, the influence of oil content on the pore characterization
of shale reservoirs has not been excluded.
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Nomenclature

OM organic matter
TOC total organic carbon, %
S1 free hydrocarbons, mg HC/g Rock
S2 kerogen cracking hydrocarbons, mg HC/g Rock
Tmax the temperature at which S2 generation rate is maximum, ◦C
HI hydrogen index, HI = S2/TOC × 100, mg HC/g TOC
PI production index, PI = S1/(S1 + S2)
OSI oil saturation index, OSI = S1/TOC × 100, mg HC/g TOC
TOCk kerogen organic carbon, TOCk = TOC − 0.83 × extracts
TOCs proportion of organic carbon in soluble OM to TOC, TOCs = 0.83 × extracts/TOC × 100%
Ro vitrinite reflectance, %
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