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Abstract: Currently, the primary method for determining the object coordinates is positioning using
Global Navigation Satellite Systems (GNSS) supported by Inertial Navigation Systems (INS). The
main goal of this solution is to ensure high positioning availability, particularly when access to
satellite signals is limited (in tunnels, areas with densely concentrated buildings and in forest areas).
The aim of this article is to determine whether the GNSS/INS system supported by the RTK receiver
is suitable for the implementation of selected geodetic and construction tasks in railway engineering,
such as determining the place and extent of rail track deformations (1 cm (p = 0.95)), the process of a
rapid stocktaking of existing rail tracks (3 cm (p = 0.95)) and for design and construction works (10 cm
(p = 0.95)), as well as what the impact of various terrain obstacles have on the obtained positioning
accuracy of the tested system. During the research, one INS was used, the Ekinox2-U by the SBG
Systems, which was supported by the Real-Time Kinematic (RTK) receiver. GNSS/INS measurements
were conducted on three representative sections varying in terms of terrain obstacles that limit the
access to satellite signals during mobile railway measurements in Tricity (Poland). The acquired data
allowed us to calculate the basic position accuracy measures that are commonly used in navigation
and transport applications. On this basis, it was concluded that the Ekinox2-U system can satisfy the
positioning accuracy requirements for rapid stocktaking of existing rail tracks (3 cm (p = 0.95)), as
well as for design and construction works (10 cm (p = 0.95)). On the other hand, the system cannot be
used to determine the place and extent of rail track deformations (1 cm (p = 0.95)).

Keywords: positioning accuracy; Global Navigation Satellite System (GNSS); inertial navigation
system (INS); Real-Time Kinematic (RTK); railway measurements

1. Introduction

Mobile Global Navigation Satellite System (GNSS) measurements in railway engineer-
ing were initiated by Cezary Specht and Władysław Koc in 2009 [1] during an inventory
of a railway route on a section between Kościerzyna and Kartuzy (Poland) [2]. The study
used four GNSS geodetic receivers and Aktywna Sieć Geodezyjna EUPOS (ASG-EUPOS), a
newly-established GNSS geodetic network (the first in Poland). The results of this campaign
confirmed the high applicability of this measurement method and showed the limitations of
the GNSS signal availability in built-up areas. During subsequent studies, a continuous in-
crease was noted in terms of the accuracy and availability of mobile satellite measurements,
resulting primarily from the improvement in operational and technical characteristics of
the two main GNSS systems (Global Positioning System (GPS) and GLObal NAvigation
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Satellite System (GLONASS)), the construction of other GNSS systems (BeiDou Naviga-
tion Satellite System (BDS) and Galileo), the development of new methods for generating
correction data (Real Time Network (RTN)) and the establishment of new GNSS geode-
tic networks in Poland (SmartNet, TPI NETpro and VRSNet.pl). Starting from the first
measurement campaign, the study was conducted in two main directions, i.e., geodetic,
which involved increasing the positioning accuracy and availability of mobile GNSS mea-
surements, as well as design, which aimed at developing new design and operational
methods [3]. The research was culminated by the implementation of a research project
entitled “Development of an innovative method for determining the precise trajectory of
a railway vehicle” (InnoSatTrack) in the years 2018–2021. The aim of this project was to
develop an innovative method for determining the rail track axis trajectory using mobile
photogrammetric methods, GNSS, Inertial Navigation System (INS) and 3D laser scan-
ning [4–6]. The obtained results will be used to more efficiently reproduce the coordinates
of the existing rail track infrastructure [7–9]. Another purpose of the study was to develop
methods for more accurate positioning/locating railway vehicles in real-time (the position
and velocity) using GNSS/INS systems [3]. The final aim of the project was to develop a
data acquisition and processing system from all measurement systems [10]. The system was
implemented into an online application based on the most recent technology for handling
the following layers: business, database access and presentation.

Worldwide research results indicate that an increase in the number of measurement
systems and their variability in terms of methods leads to an improvement in the precision
of determining the course of a rail route, as well as its modelling [11–15]. In order to
determine this clearly, in the years 2009–2021, the authors of this article assessed the
availability of three accuracy levels: deformation (1 cm (p = 0.95)), stocktaking (3 cm
(p = 0.95)) and design (10 cm (p = 0.95)), that were required to perform various construction
and geodetic tasks in railway engineering [16]. Since the individual tasks realized in
railway engineering have different positioning accuracy requirements, it is important
to know which GNSS/INS system is suitable for what task. Hence, it was decided to
determine the usefulness of the GNSS/INS system supported by the Real-Time Kinematic
(RTK) receiver for railway measurements.

For several years now, GNSS/INS systems have been increasingly used in railway
applications. Chen et al. [17] used these systems to study the railway track irregularity for
high-speed lines. This made it possible to identify the railway track irregularity with a
relative accuracy of 1 mm. Similar tests and results were carried out by Li et al. [18], during
which they obtained that the accuracy of the deformation monitoring is 1 mm in the horizontal
plane and 1.5 mm in the vertical plane. Other studies were conducted by Zhang et al. [19]. On
their basis, they observed that the accuracy of the railway track irregularity is 0.67 mm (Root
Mean Square (RMS)) and 0.16 mm (relative error). Zhou et al. [15] performed kinematic
measurements of the railway track centerline position using multisensor data fusion from
GNSS, INS and an odometer. Research has shown that errors do not exceed 0.6 cm in
the horizontal plane and 1.1 cm in the vertical plane. Data fusion from different sensors
is also used by other authors. Thanks to the data from GNSS, INS and an odometer,
Zhang et al. [20] were able to determine the geometrical parameters of railway tracks with
an accuracy of 0.2 mm. GNSS/INS systems are also tested in places where there is no access
to GNSS signal reception. Reimer et al. [21] used data from GNSS, INS and an odometer to
determine the railway track axis position for a tunnel with a length of 57 km. Measurements
carried out indicated that the position error did not exceed 15 m. Inertial navigation
systems are commonly used in navigation and transport applications. The most important
of them include: tests using Autonomous Ground Vehicles (AGV) [22–24], Unmanned
Aerial Vehicles (UAV) [25–27] and Unmanned Surface Vehicles (USV) [28,29]; locating
mobile phones [30], indoor [31], terrestrial [32] and space [33]; navigation, geodetic [34–36]
and hydrographic surveys [37–39]; and rail transport [40,41] and road transport [42–44].
Moreover, they are used in the case of preventing intentional interference [45,46] and in
urban areas in which the multipath effect occurs [47–49].
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At the beginning of the 21st century, the establishment of active national networks
by the geodetic authorities of individual countries intended to offer the users services,
either for a fee or free of charge (including in real-time), became the dominant global
trend [50]. Among the most commonly used positioning methods may include the RTK
and RTN techniques. The main difference between them is that for the RTK method, the
correction data are compiled exclusively on the basis of registrations from a single reference
station, while, for the RTN method, observations from at least a few reference stations
are used. Another advantage of the RTN technique is that the coordinate positioning
accuracy does not decrease with the distance from the reference station so that the results
are not inferior to those obtained by the RTK technique [51]. GNSS geodetic networks
are primarily used in agriculture and forestry, engineering construction, geodesy and
geodynamics [52,53], hydrography and hydrology [54,55], metrology [56], navigation and
transport applications [57–59], as well as spatial information systems [60,61]. Moreover,
work is currently underway to determine the position coordinates with high accuracy in
areas with numerous terrain obstacles [62,63].

For the above reasons, the aim of this article is to determine whether the GNSS/INS
system supported by the RTK receiver is suitable for the implementation of selected geodetic
and construction tasks in railway engineering, such as determining the place and extent of
rail track deformations (1 cm (p = 0.95)), the process of a rapid stocktaking of existing rail
tracks (3 cm (p = 0.95)) and for design and construction works (10 cm (p = 0.95)), as well
as what the impact of various terrain obstacles have on the obtained positioning accuracy
of the tested system. To achieve this goal, the publication should be divided as follows:
Section 2 describes the measurement equipment (inertial navigation system manufactured
by the SBG Systems) that was used when carrying out the GNSS/INS surveys (including its
calibration and configuration). Moreover, the section presents the method for conducting
GNSS/INS measurements and specifies how the data recorded during the study were
processed. Section 3 specifies the accuracy characteristics of the GNSS/INS system on three
representative sections varying in terms of terrain obstacles that limit the access to the GNSS
signal. It then discusses whether the system used is suitable for the purposes of railway
measurements. The paper concludes with final (general) conclusions that summarise
its content.

2. Materials and Methods
2.1. Measurement Equipment

As part of the InnoSatTrack research project, on 9 June 2021, surveys were conducted in
Tricity. One of the aims was to determine the usefulness of GNSS/INS systems for railway
measurements. To this end, one inertial navigation system was used: Ekinox2-U by the SBG
Systems, which is comprised of the following components: an Inertial Measurement Unit
(IMU) (Figure 1a); two antennas: an AERO GPS and GNSS Survey Antenna AT1675-382
(Figure 1b); a SplitBox computer system (Figure 1c); a modem enabling the reception of
RTK/RTN corrections (Figure 1d); sbgCenter software (Figure 1e); and Qinertia software
(Figure 1f) [64,65].
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Figure 1. Components of the GNSS/INS system, model Ekinox2-U, by the SBG Systems: IMU
(a), GNSS antennas (b), SplitBox computer system (c), modem enabling the reception of RTK/RTN
corrections (d), sbgCenter software (e) and Qinertia software (f) [64,65].

Moreover, the GNSS/INS system has functions which are important for the purpose
of carrying out railway measurements [64,65]:

• The Ekinox2-U system enables operation in two modes:

# Post-Processing (PP)—post-processed data using Inertial Explorer (IE) with at
least Precise Point Positioning (PPP) data;

# RTK—Real-Time Kinematics with a typical 1 cm accuracy position.

• The recording frequency for the data on angles, accelerations and position coordinates
should be as high as possible. It is recommended that the IMU’s data should be
recorded with a max frequency of 200 Hz.

As regards the accuracy characteristics of the GNSS/INS system, model Ekinox2-U
are presented in Table 1 [65]. Note that the GNSS/INS system can be successfully used
to carry out selected construction and geodetic tasks in railway engineering. As regards
the access to the GNSS signal, it can be used (in both RTK and PP modes) to determine
the rail track deformations. Based on the GNSS research conducted in the years 2009–2021
on railway lines [16], the authors assumed that the max horizontal position error for this
group of measurements was no more than 1 cm. However, in the event of GNSS signal
loss (up to 10 s), the Ekinox2-U system can be used in the process of a rapid stocktaking of
existing rail tracks (3 cm (p = 0.95)).

Table 1. Accuracy characteristics of the GNSS/INS system, model Ekinox2-U, by the SBG Sys-
tems [65].

RMSE

Time That Has Elapsed Since the GNSS Signal Was Not Available

0 s 10 s 30 s

RTK PP RTK PP RTK PP

2D position (m) 0.010 0.010 0.350 0.030 4.000 1.500

Height (m) 0.020 0.020 0.150 0.030 0.500 0.500

Pitch, roll (◦) 0.050 0.020 0.100 0.020 0.150 0.040

Course (◦) 0.050 0.040 0.100 0.050 0.150 0.070

2.2. Calibration and Configuration of the GNSS/INS System

Before the measurements are started, the GNSS/INS system needed to be configured.
To this end, a 6-metre metal support structure was used, on which the following were
installed: an IMU, two external GNSS antennas (“Primary” and “Secondary”) mounted on
geodetic tribrachs, a SplitBox system and a modem enabling the reception of RTK/RTN
corrections (Figure 2). According to the SBG Systems manufacturer’s recommendations, it
was established that the distance between the GNSS antennas would be 5 m (it should be
at least 4 m in order to ensure an accurate course measurement of a vehicle in motion). The
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IMU was placed at the centre of the section connecting the two GNSS antennas, while the
SplitBox system and the modem were also mounted on the metal support structure but
between the “Secondary” antenna and the IMU.

Energies 2022, 15, x FOR PEER REVIEW 5 of 17 
 

 

the SplitBox system and the modem were also mounted on the metal support structure 

but between the “Secondary” antenna and the IMU. 

 

Figure 2. The arrangement of the GNSS/INS system on the metal support structure. 

In the next stage, it was possible to perform the GNSS/INS system calibration in mo-

tion. To this end, a Melex electric vehicle was used, on which a metal support structure 

was installed along with the tested inertial navigation system (Figure 3a). Before starting 

the calibration of the inertial navigation system, several parameters of the GNSS/INS sys-

tem had to be set in the sbgCenter software, including, inter alia, the movement profile. 

Given the nature of the railway measurements, it was decided to select the “Automotive” 

mode dedicated to vehicle applications, i.e., those in which there are slight (slow) changes 

in the movement direction and the object’s velocity is less than 3 m/s. In addition, it was 

necessary to determine the axis orientation of the GNSS/INS system. A left-handed or-

thogonal coordinate system was adopted, whose zero point was present on the IMU’s 

cover. The axes of the system were oriented in such a way that the x-axis ran towards the 

front of the Mobile Measurement Platform (MMP), the y-axis was oriented towards the 

left side of the platform, while the z-axis ran towards the bottom part of the MMP. In order 

to be able to calibrate the inertial navigation system, it was necessary to determine the 

geometric relationships between the IMU and two GNSS antennas with an accuracy not 

worse than 20 cm. After performing the steps described above, the correctness of the per-

formed GNSS/INS system configuration can be verified using the sbgCenter software 

(Figure 3b). 

  

(a) (b) 

Figure 3. Melex electric vehicle used for the calibration of the GNSS/INS system (a) and the config-

uration window for the Ekinox2-U system in the sbgCenter software (b). 

Figure 2. The arrangement of the GNSS/INS system on the metal support structure.

In the next stage, it was possible to perform the GNSS/INS system calibration in
motion. To this end, a Melex electric vehicle was used, on which a metal support structure
was installed along with the tested inertial navigation system (Figure 3a). Before starting
the calibration of the inertial navigation system, several parameters of the GNSS/INS
system had to be set in the sbgCenter software, including, inter alia, the movement profile.
Given the nature of the railway measurements, it was decided to select the “Automotive”
mode dedicated to vehicle applications, i.e., those in which there are slight (slow) changes
in the movement direction and the object’s velocity is less than 3 m/s. In addition, it
was necessary to determine the axis orientation of the GNSS/INS system. A left-handed
orthogonal coordinate system was adopted, whose zero point was present on the IMU’s
cover. The axes of the system were oriented in such a way that the x-axis ran towards
the front of the Mobile Measurement Platform (MMP), the y-axis was oriented towards
the left side of the platform, while the z-axis ran towards the bottom part of the MMP. In
order to be able to calibrate the inertial navigation system, it was necessary to determine
the geometric relationships between the IMU and two GNSS antennas with an accuracy
not worse than 20 cm. After performing the steps described above, the correctness of the
performed GNSS/INS system configuration can be verified using the sbgCenter software
(Figure 3b).
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Then, it was possible to calibrate the GNSS/INS system. It is advised that the calibra-
tion should be carried out in motion for 15 min at an average speed of at least 10 km/h.
Moreover, the movement direction needed to be constantly changed in order to calibrate all
sensors such as accelerometers and gyroscopes. Movement in circles, ovals, or the so-called
“eights” is recommended (Figure 4a). The calibration of the inertial navigation system was
completed after 15 min of driving the Melex. During it, it was possible to precisely (from
±0 cm to ±3 cm) to determine the geometric relationships between the IMU and two GNSS
antennas (Figure 4b).
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After saving the above settings, the railway measurement campaign within Tricity
was commenced in an unchanged form.

2.3. Location of GNSS/INS Measurements

Upon completion of the installation and implementation works, a measurement cam-
paign was carried out on the rail tracks located in Tricity on the following lines: LK9
(Gdańsk Południe-Gdańsk Główny), LK202 (Gdańsk Główny-Gdańsk Wrzeszcz), LK248
(Gdańsk Wrzeszcz-Gdańsk Osowa) and LK201 (Gdańsk Osowa-Gdynia Główna). Due
to the heavy traffic on the above routes and the necessity to adapt to the timetable, the
data were recorded in sections of a considerable length. The few stops of the MMP were
used to control and monitor the GNSS/INS data recording. The measurement sections,
also referred to as sessions, are shown in Figure 5. During the stops at the railway stations
Gdańsk Wrzeszcz and Gdańsk Osowa, the measurements were conducted in the stationary
mode. On the other sections, the recording was carried out in the kinematic mode used for
the purposes of this paper.



Energies 2022, 15, 4094 7 of 17
Energies 2022, 15, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 5. Sections of the GNSS/INS data recording in the kinematic mode: Gdańsk Południe-Gdańsk 

Wrzeszcz (a), Gdańsk Wrzeszcz-Gdańsk Osowa (c), Gdańsk Osowa-Gdynia Chylonia (e) and Gdy-

nia Chylonia-Gdańsk Południe (f), as well as in the stationary mode: Gdańsk Wrzeszcz (b) and 

Gdańsk Osowa (d). 

2.4. Realization of GNSS/INS Measurements 

The measurement platform was separated from the towing vehicle by an additional 

empty carriage, which minimised the impact of terrain obstacles (in that case, the locomo-

tive cab) on the recording of satellite data in the AERO GPS and GNSS Survey Antenna 

AT1675-382 receivers (Figure 6a). In the middle part of the carriage, the GNSS/INS system 

was installed on the metal support structure. At both the front and the rear of the MMP, 

a single metal support structure was mounted, on which three Trimble R10 receivers along 

with geodetic tribrachs were located. Meanwhile, the controllers that regulate GNSS re-

ceiver operation were placed in two yellow boxes (Figure 6b). During this mobile meas-

urement campaign, the geodetic receivers were intended to be used to assess the useful-

ness of navigation satellite systems for application in rail transport. 

  

(a) (b) 

Figure 6. MMP (a) with the equipment used (b) during the railway measurement campaign con-

ducted on 9 June 2021. 

Figure 5. Sections of the GNSS/INS data recording in the kinematic mode: Gdańsk Południe-Gdańsk
Wrzeszcz (a), Gdańsk Wrzeszcz-Gdańsk Osowa (c), Gdańsk Osowa-Gdynia Chylonia (e) and Gdynia
Chylonia-Gdańsk Południe (f), as well as in the stationary mode: Gdańsk Wrzeszcz (b) and Gdańsk
Osowa (d).

2.4. Realization of GNSS/INS Measurements

The measurement platform was separated from the towing vehicle by an additional
empty carriage, which minimised the impact of terrain obstacles (in that case, the locomo-
tive cab) on the recording of satellite data in the AERO GPS and GNSS Survey Antenna
AT1675-382 receivers (Figure 6a). In the middle part of the carriage, the GNSS/INS sys-
tem was installed on the metal support structure. At both the front and the rear of the
MMP, a single metal support structure was mounted, on which three Trimble R10 receivers
along with geodetic tribrachs were located. Meanwhile, the controllers that regulate GNSS
receiver operation were placed in two yellow boxes (Figure 6b). During this mobile mea-
surement campaign, the geodetic receivers were intended to be used to assess the usefulness
of navigation satellite systems for application in rail transport.
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2.5. Processing of GNSS/INS Data

The recorded GNSS/INS data were elaborated in the PP mode using the Qinertia
software [66]. In order to carry out calculations, it was necessary to acquire synchronous
satellite data from the nearest reference station located in Gdańsk (marked as GDSK), being
part of the GNSS geodetic network VRSNet.pl of 9 June 2021, from the GPS time period from
05:00:00 to 15:00:00. The observation files are made available in the Receiver Independent
Exchange System (RINEX) format [67] and contain observations from satellites of the GPS,
GLONASS and Galileo systems recorded by the station’s receiver with a frequency of
1 Hz. It was then necessary to enter the input parameters that were determined during the
calibration of the GNSS/INS system. In turn, it was necessary to select one of the following
three methods for processing data:

• Tight coupling Post-Processing Kinematic (PPK)—allows the highest GNSS/INS mea-
surement accuracy to be obtained under conditions that are difficult in terms of satellite
visibility. In order to be able to process GNSS/INS data using this method, it is neces-
sary to have IMU data, raw GNSS data and the data from the GNSS geodetic network
reference station;

• Loosely coupling—enables the determination of the IMU’s coordinates when no GNSS
signal is available. In order to be able to process GNSS/INS data using this method,
it is necessary to have IMU data and the data from the GNSS geodetic network
reference station;

• PPK—allows the highest GNSS measurement accuracy to be obtained under conditions
that are difficult in terms of satellite visibility. In order to be able to process GNSS data
using this method, it is necessary to have raw GNSS data and the data from the GNSS
geodetic network reference station.

Processing the GNSS/INS data in the PP mode was followed by the selection of three
representative measurement sections on the Gdańsk-Gdynia route. They were selected
in such a manner so as to enable the assessment of the Ekinox2-U system’s accuracy in
sections varying in terms of terrain obstacles that limit the access to the GNSS signal:

• Section no. 1 (no terrain obstacles) was located on the railway line between the
Radunia-Containers Ltd. in Gdynia and the Trasa Kwiatkowskiego (Figure 7a). Section
no. 1 was approx. 2 km long. The measurement travel comprised long (several hun-
dred metres), straight sections surrounded by virtually no terrain obstacles, the only
exceptions being containers and bushes. The passage was performed on 9 June 2021
from 10:07:07 to 10:16:09 Coordinated Universal Time (UTC) (the duration of approx.
9 min).

• Section no. 2 (high building density) was located on the railway line between the
Gdynia Główna railway station and the Gdańsk Osowa railway station (Figure 7b).
Section no. 2 was approx. 15 km long. The measurement travel comprised circular
curves with large turning angles. The second test section ran through numerous
terrain obstacles, including multi-storey buildings and trees more than a dozen metres
high. The passage was performed on 9 June 2021 from 08:35:03 to 09:05:50 UTC (the
duration of approx. 31 min).

• Section no. 3 (no access to GNSS signal) was located on the railway line in a tunnel
in the centre of Gdańsk between the Gdańsk Śródmieście railway station and the
Gdańsk Główny railway station (Figure 7c). Section no. 3 was approx. 600 m long.
The measurement travel comprised a long circular curve with a small turning angle
under the tunnel, where no GNSS signal was received. Two passages were performed
on 9 June 2021 from 06:41:47 to 06:43:02 UTC (the duration of 75 s) and from 11:58:47
to 11:59:55 UTC (the duration of 68 s).
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Figure 7. The division of the route into test sections: no. 1 (a), no. 2 (b) and no. 3 (c).

Each test section was subjected to an identical analysis of the obtained measurement
results in order to formulate global conclusions. The IMU’s position errors were computed
by the Qinertia software for two modes of the GNSS/INS system operation, i.e., PP and
RTK. Subsequently, the errors were exported to text files. The files were then uploaded
to the Mathcad software, where the position accuracy measures (RMS, Distance Root
Mean Square (DRMS), Twice the Distance Root Mean Square (2DRMS), Circular Error
Probable (CEP), Spherical Error Probable (SEP) and R68 and R95) were determined. From
the perspective of navigation and transport applications linked to the process of controlling
the object’s movement, the most important position accuracy measures are 2DRMS(2D)
and R95(2D) [5,68].

3. Results

Table 2 shows the IMU’s position accuracy results obtained in section no. 1.

Table 2. Predictable accuracy of the Ekinox2-U system during the GNSS/INS measurements in
section no. 1.

Statistics of Position Error
Type of Processing Data

Type of Registered Data
RTK PP

Number of measurements 108,401 542
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RMS(φ) 0.019 m 0.007 m
RMS(λ) 0.019 m 0.005 m
RMS(h) 0.019 m 0.017 m

DRMS(2D) 0.027 m 0.009 m
2DRMS(2D) 0.054 m 0.018 m
DRMS(3D) 0.033 m 0.020 m
CEP(2D) 0.027 m 0.007 m
R68(2D) 0.027 m 0.005 m
R95(2D) 0.028 m 0.017 m
SEP(3D) 0.033 m 0.009 m
R68(3D) 0.033 m 0.018 m
R95(3D) 0.035 m 0.020 m

Note that the obtained position accuracy results in section no. 1 are higher for the data
processed in the PP mode than for those processed in the RTK mode (Table 2). For example,
the 2DRMS(2D) value is three times smaller for the data obtained in the PP mode (1.8 cm)
than those obtained in the RTK mode (5.4 cm). What is more, the R95(2D) value is over
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1.5 times smaller for the data acquired in the PP mode (1.7 cm) than those obtained in the
RTK mode (2.8 cm).

Based on Figure 8, it should be stated that the variability of the 1D, 2D, and 3D position
errors recorded in real-time is low along the entire section of the route. They fall within
the following ranges: 1.8–2.3 cm (for the 1D position error), 2.6–2.9 cm (for the 2D position
error) and 3.2–3.7 cm (for the 3D position error).
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no. 1.

Considerably lower values of the 1D position error (approx. 1 cm) can be observed for
the data processed in the PP mode (Figure 9). This error is up to two times smaller than that
for the data recorded in the RTK mode. Moreover, it is worth noting that the 2D position
error values in the PP mode are slightly lower than those in the RTK mode. They virtually
do not exceed the value of 3 cm, while in the second half of section no. 1, they range from 1
to 1.5 cm.
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Table 3 shows the IMU’s position accuracy results obtained in section no. 2.
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Table 3. Predictable accuracy of the Ekinox2-U system during the GNSS/INS measurements in
section no. 2.

Statistics of Position Error
Type of Processing Data

Type of Registered Data
RTK PP

Number of measurements 369,401 369,401
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Note that the obtained position accuracy results in section no. 2 are higher for the data
processed in the PP mode than for those processed in the RTK mode (Table 3). For example,
the 2DRMS(2D) value is three times smaller for the data obtained in the PP mode (32.6 cm)
than those obtained in the RTK mode (96.1 cm). What is more, the R95(2D) value is over
2.5 times smaller for the data acquired in the PP mode (24.6 cm) than those obtained in the
RTK mode (60 cm).

Figure 10 shows the high variability of the 2D and 3D position error values for the
data recorded in the RTK mode, which is due to the type of terrain obstacles found along
section no. 2. In the forested area (GPS time: 290,400–291,300 s) and the urbanised area
(GPS time: 291,301–291,900 s), stepwise changes in the 2D and 3D position errors ranging
from 0 to 3 m are noticeable. As regards the height accuracy, it also changes stepwise within
the range from 0 to 20 cm.
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A considerably lower variability in the 2D and 3D position error values can be observed
for the data processed in the PP mode (Figure 11). In the forested area, the 2D and 3D
position errors range from 20 to 30 cm. On the other hand, in the urbanised area, the 2D
and 3D position errors oscillate around 10 cm, with a few exceptions reaching 20 to 30 cm.
As regards the height accuracy, it is definitely more stabilised than the 2D and 3D position
errors. In the forested area, it ranges from 10 to 14 cm, while in the urbanised area, the 1D
position error is approx. 6 cm.
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Table 4 shows the IMU’s position accuracy results obtained in section no. 3.

Table 4. Predictable accuracy of the Ekinox2-U system during the GNSS/INS measurements in
section no. 3.

Statistics of Position Error

Type of Processing Data

Type of Registered DataFirst Trip Second Trip

RTK PP RTK PP

Number of measurements 15,001 15,001 13,601 13,601
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(Table 4). For example, the 2DRMS(2D) value is nearly 10 times smaller for the data obtained
in the PP mode (54.3 and 85.9 cm) than those obtained in the RTK mode (4.829 and 5.86 m).
Moreover, the R95(2D) value is a dozen or so times smaller for the data obtained in the PP
mode (32.8 and 64 cm) than those obtained in the RTK mode (4.811 and 5.886 m).

Figure 12 shows the high variability in the 2D and 3D position error values for the
data recorded in the RTK mode. During the second trip through the tunnel, the 2D and 3D
position errors increased linearly with the time elapsed since the moment the access to the
GNSS signal was lost. At the end of the tunnel, these errors reached a value of approx. 5 m.
As regards the 1D position error, it increased definitely slower than the 2D and 3D position
errors. At the end of the tunnel, the error reached a value of approx. 20 cm.
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It is worth noting that the position errors for the data processed in the PP mode are
from a few to several times smaller than those for the data recorded in the RTK mode
(Figure 13). For example, for approx. 15 s at both the entry to and exit from the tunnel, the
2D and 3D position errors increased from a few centimetres to over 30 cm. On the other
hand, the 1D error ranged from 4 to 10 cm over the entire section of the route.
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4. Discussion

The position error values obtained by the Ekinox2-U system are similar to (or even
smaller than) the accuracy characteristics recommended by the SBG Systems. As for the
non-built-up area, the 2DRMS(2D) measure was 5.4 cm (RTK) and 1.8 cm (PP), while the
R95(2D) measure was 2.8 cm (RTK) and 1.7 cm (PP). As regards the area in which numerous
terrain obstacles were found, e.g., multi-storey buildings or trees several metres tall, the
2DRMS(2D) measure was 96.1 cm (RTK) and 32.6 cm (PP), while the R95(2D) measure was
60 cm (RTK) and 24.6 cm (PP). For the tunnel, where there was no access to the GNSS signal
for more than 60 s, the 2DRMS(2D) measures were 4.829–5.86 m (RTK) and 54.3–85.9 cm
(PP), while the R95(2D) measures were 4.811–5.886 m (RTK) and 32.8–64 cm (PP).

Also note that the GNSS/INS data, which were converted in the post-processing mode,
allowed the measurement accuracies to be considerably higher than in real-time. Where
there was access to the GNSS signal, the 2DRMS(2D) and R95(2D) values increased by
1.5–3 times. However, where there was no access to the GNSS signal, the analysed position
accuracy results decreased by up to several times.

5. Conclusions

This study has shown that the rapid development of GNSS/INS techniques, mani-
festing itself in recent years in the construction of new positioning systems and the mod-
ernisation of existing ones, as well as the implementation of new technical solutions for
positioning, makes them usable for increasingly precise position determination, as well as
in the kinematic mode.

Research has shown that GNSS/INS systems, which are supported by RTK receivers,
can be used to carry out selected geodetic and construction tasks in railway engineering.
The obtained measurement results indicate that the Ekinox2-U system can satisfy the accuracy
requirements in the process of a rapid stocktaking of existing rail tracks (3 cm (p = 0.95)), as
well as for design and construction works (10 cm (p = 0.95)), which is, however, determined
by the type of terrain obstacles found in the test area. On the other hand, the system cannot
be used to determine the place and extent of rail track deformations (1 cm, (p = 0.95)). The most
important advantage of GNSS/INS systems over methods based only on GNSS systems is
a significant increase (up to several times) in the positioning accuracy in signal-obstructed
areas, such as tunnels.
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