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Abstract: This study presents applications of artificial neural networks and nonlinear optimization
techniques for fault location in transmission lines using simulated data in an electromagnetic transient
program and actual data occurring in transmission lines. The localization is performed by a modular
structure of 4 neural networks and by the minimization of objective functions descriptive of the
problem, defined according to the parameters of the line and the type of short circuit, submitted to
the methods Quasi-Newton, Ellipsoidal, and Real Polarized Genetic Algorithm. The results obtained
are compared statistically with those of a classical analytical method. The analysis of the variance
of location errors presented by the methods revealed, with 5% significance, statistical evidence that
allowed the conclusion that the type of method used affects fault location indication. In simulated
scenarios, minor errors were obtained with the neural network and larger with the analytical method.
For field oscillographic, the largest errors were in the neural network; there is no evidence to reject
the equality between the results of the analytical method and the nonlinear optimization techniques.
The Tukey test identified no differences between the nonlinear optimization methods applied to
the proposed objective functions, but the low computational cost associated with the Quasi-newton
method highlights it. The nonlinear optimization methods used for the localization function proved
to be promising for application in companies that operate electrical systems, providing localization
errors similar to those presented by the classical analytical method.

Keywords: fault location; transmission line; artificial neural network; nonlinear optimization;
statistical analysis

1. Introduction

Overhead transmission lines (TL) are integral components of an electric power system
that enable the supply of electric energy from its generation to the distribution networks.
Generally, a short circuit (fault) in a transmission line represents a phenomenon that is
difficult to predict, and such faults are characterized by the instant of occurrence, the type
classification: phase-to-ground (SPG), two-phase (DP), two-phase-to-ground (DPG), or
three-phase (TP), the location indication (dF), and the fault resistance value (RF). In the
event of a fault, the protection relay detects, identifies, and signals the event, commanding
the circuit breakers to remove the short-circuited line from service. Following its actuation,
automatic restart attempts are made. If successful, the line is reintegrated into the system;
however, if the attempts fail, the line needs to be shut down until repair work is performed,
which should ideally take place in the shortest time possible and with adequate reliability.
Therefore, indicating the point of occurrence of the defect with the most minor possible
error reduces the costs related to the shutdown.
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Since the 1970s, there has been ongoing research about locating faults in transmission
lines. However, it remains a considerable problem. The development of hardware has
allowed access to more measurement points with time synchronization via the global
positioning system (GPS), creating the possibility of applying new mathematical techniques
to problems involving the electric power system. In addition to avoiding the payment of
hefty fines to which electricity concessionaires are subject to regulatory agents, locating
faults rapidly and accurately directly reflects the quality of the electricity supply and the
stability of the system. To address the problem, according to the proposed location method,
scholars on the subject establish, as shown in Table 1, the location scenario, the origin
and type of signal used, and the characteristics related to the pre-processing of the data.
Existing methods typically use phasors of the voltages and currents of the transmission line
terminals. Some authors applied the wavelet transform to the sampled signals to extract
the detail coefficients and then the energy or frequencies.

Table 1. Signal characterization and preprocessing.

Signals References

Scenario
Simulated [1–27].
Simulated and Real [28–31].

Origin One Terminal [1–30].
Two Terminals/PMUs [3,7,13,14,18–21,31].

Sign
Current [14,17,23].
Voltage [19].
Current and Voltage [1–16].

Pre-processing

Phasors/Discrete Fourier
Transform/Least Squares [1,3,5–11,18,22,24,26,28,30,31].

Frequency Spectrum/Discrete Fourier
Transform/Least Squares [2,17,27,30].

Energy/detail coefficient of the Discrete
Wavelet Transform [4,12–16,19].

Time signals [15,21,23,25,29].

Several authors have addressed the issue of fault location in TL through artificial
neural networks (ANN). In [21], the authors compare these structures to a black box.
According to [7], there is no single neural network structure and the results obtained
with the technique highlight the possibilities presented by researchers, a situation verified
through the bibliographic survey, as shown in Table 2. Multilayer perceptron feedforward
networks are predominantly used, with supervised learning backpropagation and the
Levenberg Marquardt training algorithm. In most existing studies, with variations among
the authors, the training data were obtained by simulating faults along the transmission
line, with different values of RF, fault incidence angle, and equivalent impedance of the
sources generated through electromagnetic transient programs. Modular networks, such as
those used by [2,5,8,9,12,14,16,17,26,29–31], represent a possibility in solving the problem of
locating different types of faults in LTs, contributing to the reduction of computational effort.
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Table 2. Characterization of ANN in fault location studies.

ANN References

Model
Multi Layer Perceptron [1–7,9,11–14,18,19,23,25–27,29–31].
Others [3,12,16,20].

Feeding Feedforward [1,2,4,7–9,13,14,17,18,25–31].

Learning Backpropagation [1,2,7,9,11,13,14,18,23,25–27,29,31].

Training Levenberg-Marquardt [1,2,7,9,13,14,18,19,25–27,29,31].
Others [16,23].

Activation Function

Sigmoid [9,19,27,29].
Hyperbolic Tangent [1,13,14,31].
Logarithmic [19,25,27].
Gaussian [30].

Considering some recent work, in the study presented in [23], instantaneous fault
current measurements obtained by simulation are used in modular networks with training
guided by Bayesian regularization. Most of these tests in that study indicate the short
circuit distance with errors below 0.5% in relation to the simulated location. In [25], location
errors in the order of 10−5 were achieved by employing the magnitudes of the frequencies
of simulated fault voltage and current waves to feed the inputs of a single ANN. Moreover,
simulated voltage and current signals from one of the line terminals of the electrical system
in Great Britain were used in [26] as input in modular networks, obtaining errors of less than
0.7% in relation to the location of the short circuit. Current and voltage wave frequencies
from one of the terminals of a 230 kV and 100 km long transmission line, categorized into
5 groups, were used in [27] as inputs to an ANN for the location of simulated SPG type
faults, allowing to achieve errors of less than 0.4% in relation to the location of the fault.
From the survey of academic production, there is a predominance of the use of ANN in
simulated situations, and the results of an application of ANN to real cases of faults in TL
are presented only in [30], where reduced errors were achieved in a transmission line of the
electricity supply system in Iran. The situation is related to the difficulty of generalizing
ANN, which provides reduced errors in simulated fault location cases, but presents a lack
of performance when applied to real cases, indicating the difficulty of making the training
data represent the systems of the concessionaires assertively.

Regarding the use of optimization techniques, the Simplex method of linear optimiza-
tion, Nelder-Mead, was applied by [6] to an objective function to obtain the distance and
fault resistance of simulated cases. The Nelder-Mead and Broyden–Fletcher–Goldfarb–
Shanno numerical optimization methods were proposed in [10] to locate simulated faults
in transmission lines. Harmony Search optimization was presented by [15] to estimate the
distance from the substation to the fault point in simulated cases. Different optimization
techniques are applied by [21] to estimate the fault location from the minimization of
an objective function of a variable. In the authors’ analysis, although small localization
errors were achieved in all situations, the Teaching Learning Based Optimization technique
presented a shorter convergence time to obtain the results. A hybrid model that combines
the Relief algorithm (which performs the sequential comparison of the entire database, re-
turning a logical response associated with the operating functionality parameters) with the
Transformed Wavelet for fault detection and location is proposed [22]. The implementation
of genetic algorithms to the problem of fault location in TL is presented in [28] to compare
waveforms from digital fault recorders and simulated waves. The phasors obtained during
the fault were used to calculate the fitness value. The results of the proposal were not
satisfactory when applied to real faults. In [31], the authors proposed objective functions
based on symmetrical components that, applied to simulated and real faults in the Brazilian
electrical system and minimized by the ellipsoidal algorithm, provided promising results
for using the method in practical situations. In the context presented, this paper aims to:
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• to analyze the use of ANN and nonlinear optimization techniques (NLO) in the location
of TL faults for simulated and real cases of the Brazilian electric power transmission
system;

• to compare the results obtained by the analyzed methods with those provided by the
classical analytical method (AM), proposed in [32] and used by some electric utilities
in practical applications;

• apply a statistical analysis that allows evaluating the existence of differences between
the responses obtained by the methods in the fault location process.

The research proposal is related to evaluating and comparing the errors achieved by the
implemented methods so that the possibility of joint use can be verified to improve the fault
location process in TL. The application of more than one method can give engineering and
maintenance teams confidence in indicating the distance to failure. In practice, inaccurate
results drive repair personnel away from the point of failure and reduce confidence in the
process. The proposed methods, developed and applied in simulated and real situations
of faults in the Brazilian electrical system, allow statistical analysis of the variance and
application of the Tukey’s test to localization errors, validating the difference between the
results achieved by the different methods. Also, considering the bibliographic contribution
used, the present study made it possible to verify that:

• in simulated scenarios, smaller localization errors are obtained using ANN and larger
using the AM, leaving the NLO techniques with intermediate errors. In real scenarios,
different from the situation verified in simulations, greater errors were evidenced with
the use of ANN, with no statistical evidence to reject the equality between the fault
location performed by the AM and the NLO methods;

• the neural networks implemented in the proposed paper, based on techniques found
in the literature, proved to be incompatible for application in companies that oper-
ate electrical systems, providing location errors significantly greater than the other
methods, far from acceptable in practical situations (up to 5%);

• the Quasi-Newton (QN), Ellipsoidal (EL), and genetic (PRGA) of NLO methods were
used in the study. Among them, considering the precision and computational effort,
the QN method was the most suitable to be used in field applications, being able to be
used together with the AM for the defect location indication.

Notably, for the location methods presented, this study does not intend to evaluate the
sensitivity of the algorithms to factors such as current and potential transformer errors, line
model, errors inline parameters, synchronization, mutual inductance, transposition, and
phasor estimation method. Data are presented in equal conditions to all methods. Accord-
ingly, computer programs containing routines and mathematical techniques necessary to
provide the distance to the fault in relation to one of the line terminals were implemented.

Although the paper deals with fault location methods, preventive measures such
as transient earth voltage measurement to detect partial discharges [33,34], methods to
detect faulty insulators [35,36], AM modulation methods to detect sources of problems
in voltage parameters [37,38] and thermography [39] can be adopted to reduce or avoid
future problems.

2. Materials and Methods
2.1. Simulated Test System

Consider the three-line model of Figure 1, which represents the electrical system
of the faulty transmission line proposed for simulation, where L is the extension of the
transmission line, and dF is the distance from the fault point to Terminal S, which occurs
through a fault resistance (RF).
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Figure 1. A transmission line with a phase A to ground fault.

The process begins by defining the electrical system used and simulating short circuit
cases. A pilot project was developed for a real transmission line of a Brazilian utility that is
74.4 km in length with a capacity of 345 kV. Resistance (r) and reactance (x) data from the
terminal equivalent sources and the line are considered to be ideally transposed along its
length with lumped parameters, as listed in Table 3.

Table 3. Line parameters and equivalent fonts.

Element
Positive Sequence Zero Sequence

r1 (Ω) x1 (Ω) r0 (Ω) x0 (Ω)

Line 2.69 27.97 26.94 106.58
Local Source 4.001 34.110 4.069 33.603

Remote Source 6.332 53.845 2.731 39.363

The transmission line parameters were inserted into the Alternative Transients Pro-
gram (ATP) [40] to obtain simulated data, as shown in Figure 2, where the voltmeter and
ammeter represent the protection relay or digital disturbance recorder installed at each line
terminal. The simulator contained models of the electrical components of the electrical
power system and was used because it is a public domain software. After the simulation,
ATP exported a .txt file containing voltage and current data to be used in the various steps
that make up fault classification and location programs. The electric energy concessionaire
provided only the parameters R, L, and C of the transmission lines used in real case studies.
The authors chose to represent the transmission line by resistance and inductance to carry
out the studies. More complete models for transmission lines can be used, such as the one
by JMARTI [41] and LMARTI [42], as long as the line geometry and cable data are available.
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Figure 2. ATP model for short circuit simulation.

From the model, variations in the short circuit location, the RF value, and the different
types of faults were simulated represented in Figure 3: AG—phase A to ground, BG—phase
B to ground, CG—phase C to ground, ABG—phase A to phase B to ground, BCG—phase B
to phase C to ground, AB—phase A to phase B, BC—phase B to phase C, AC—phase A to
phase C and ABC—phase A to phase B to phase C.

Figure 3. Types of faults: (a) SPG (AG, BG, CG); (b) DP (AB, AC, BC); (c) TP (ABC); (d) DPG (ABG,
ACG, BCG).

As specified in Tables 4 and 5, the procedure resulted in the generation of 1368 failure
scenarios for the composition of the ANN training database and a further 336 cases for the
validation of the ANN and application of the three NLO techniques and the AM method.
As indicated in [43], the number of training and validation data respectively corresponds
to 80% and 20% of the data set. In the case of faults involving the ground, according to
references [44,45], higher values of fault resistance can be used to generate data for training
neural networks.

Table 4. Composition of fault scenarios: Training of ANN.

Training Data Total

dF (km) Every 5% of the line 19 locations

RF(Ω)
Cases SPG e DPG: 0-6-12-18-24-30-36-42 8 values
Cases DP e TP: 0-1-2-3-4-5 6 values

Number of scenarios
SPG e DPG: 2·3·8·19 = 912

1368 scenariosDP: 3·6·19 = 342
TP: 1·6·19 = 114
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Table 5. Composition of fault scenarios: validation of ANN, application in NLO techniques and in
the analytical method.

Validation and Application Data Total

dF (km) 4-11-17-26-41-53-59-68 8 locations

RF(Ω)
Cases SPG e DPG: 10-21-26-31-34 5 values
Cases DP e TP: 2.5-3.5-4.5 3 values

Number of scenarios
SPG e DPG: 2·3·8·5 = 240

336 scenariosDP: 3·3·8 = 72
TP: 1·3·8 = 24

2.2. Process Steps

The necessary procedures involve the steps indicated in the flowchart presented in
Figure 4. Data adequacy begins with reading both line terminals’ voltage and current
inputs. Subsequently, fault detection occurs, which entails the identification of the short
circuit start instant in the voltage and current waves, thereby allowing the separation of the
data corresponding to the pre-fault and fault periods.

Figure 4. Fault location process.

In the pre-processing of voltage and current signals, necessary for data preparation
prior to fault location, higher frequencies were removed by digital low-pass filtering Butter-
worth with a cut-off frequency of 100 Hz. After that, the sampling frequency was reduced
to the desired value of 16 points per cycle of the fundamental frequency (60 Hz in Brazil).
The voltages (VAS, VBS, VCS, VAR, VBR, VCR) and currents (IAS, IBS, ICS, IAR, IBR, ICR)
phasors associated with the fundamental frequency were estimated through the do least
squares method, as described in [46]. Figure 5 shows the voltage and current waves for an
AG fault at the sender terminal of the transmission line, which started at 0.049 s. Figure 6
shows the filtered waves, and Figure 7 shows the estimated phasor modules. Figure 8
demonstrates the process of selecting current phasors in phase A. Finally, the fault classifi-
cation, necessary for the NLO methods, was performed, and then the location process.
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Figure 5. Voltage and current input waves—AG fault.

Figure 6. Filtered voltage and current waves—AG fault.

Figure 7. The amplitude of voltage and current phasors—AG fault.
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Figure 8. Detail of selection of phasors from the missing phase A current signal, after low-pass
filtering.

Fault location occurs after the fault detection and classification steps. In this study,
it was estimated through ANN and NLO techniques applied to the objective functions
adapted from [31], as well as the analytical method proposed in [32], implemented through
MATLAB® software.

2.3. ANN for Fault Location

For fault location, ANN was implemented using the neural network toolbox in
MATLAB®, as described by [47]. In structuring the networks, the training was performed
separately according to the type of short circuit identified by the classification. Feedfor-
ward networks were used with supervised learning backpropagation and the Levenberg-
Marquardt training algorithm hyperbolic tangent activation function. In the feedforward
model, the network was arranged in layers, and the propagation of information followed
from the input to the output without feedback from previous units. The supervised learning
backpropagation and Levenberg Marquardt training algorithm were used to minimize the
error obtained by the difference between the response in the output layer and the desired
value from the correction of the weights in all layers, starting from output to input. The
organization of neurons and layers was defined experimentally, with 2 hidden layers of
30 and 20 neurons. After pre-processing the data simulated by ATP, the voltage (VAS, VBS,
VCS, VAR, VBR, VCR) and current (IAS, IBS, ICS, IAR, IBR, ICR) phasors amplitude from the
local and remote terminals of the line were used as the input data for training the ANN,
with the function of providing the estimated fault location as an output, according to the
selected modular structure, as indicated in Figure 9.

Figure 9. The Modular structure of fault location ANN.
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The voltage and current phasors from each validation file in Table 5 were inserted into
the trained networks to verify the generalization and adaptation capacity of the location
ANN, returning the distance of fault.

2.4. Nonlinear Optimization for Fault Location

The NLO problem used in this study involves minimizing a nonlinear objective
function f : D f ⊂ Rn → R, overall vectors x ∈ D f . Depending on the logic employed to
determine the solution to the problem, different minimization techniques can be applied
to the function f to provide a particular solution x∗ ∈ D f ⊂ Rn such that ∀ x ∈ D f ,
f (x∗) ≤ f (x). In this context, the fault location problem is related to the minimization
of one of the mono-objective functions, F(dF, RF), indicated in Table 6. These functions,
adapted from [31], contain fault location and fault resistance as variables, which are based
on the currents and voltages of the TL terminals and depend on the types of existing faults.
Therefore, the variables must be included in minimization algorithms. The subscripts 0 and
1 indicate, respectively, the values of zero and positive sequence, Z denotes the impedance
of the line in Ω/km, IS, IR, VS and VR denote the respective currents and voltages at the
local (S) and remote (R) terminals.

Table 6. Objective functions.

Type of Fault F(dF,RF)

AG, BG, CG
∣∣∣VS − dFZ1

(
IS +

(
Z0−Z1

Z1

)
IS0

)
− 3RF(IS1 + IR1)

∣∣∣2
AB, BC, CA |VS1 −VS2 − dFZ1(IS1 + IS2)− 2RF(IS1 + IR1)|2

ABG, BCG, CAG |VS1 −VS0 − dFZ1 IS1 + dFZ0 IS0 + 3RF(IS0 + IR0)|2

ABC |VS1 − dFZ1 IS1 − RF(IS1 + IR1)|2

The graphical and analytical analyses of the objective functions that describe the pro-
cess make it possible to place them as differentiable, convex, and unimodal representations
of two real variables, represented by F(dF, RF). As an example of the characteristics of the
function, the graph of a simulated AG fault event occurring 45 km away with RF of 20 Ω is
illustrated in Figure 10. NLO methods based on the search direction and the exclusion of
regions and population dynamics were applied to minimize the objective functions. The
NLO techniques are primarily distinguished by the logic used in the search for the solution
to the problem.

Figure 10. Objective function: fault AG (dF = 45 km, RF = 20 Ω).
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2.4.1. Search Direction Methods

The Quasi-Newton search direction method used in the research indicates the mini-
mum of the objective function. Information from previous searches is considered until the
algorithm satisfies some previously established stopping criterion. From the gradient infor-
mation, approximations are generated recursively to estimate the inverse of the hessian of
the objective function. There are different strategies for this approximation, and, among the
methods described by [48], the combination between the DFP (Davidson-Fletcher-Powell)
and BFGS (Broyden-Fletcher-Goldfarb-Shanno) methods was used, as indicated in lines
14, 15, and 16 of the algorithm presented in Algorithm 1. The vector r represents the
difference between the gradient vector of the objective function in the current position and
the previous position; the vector v is the difference between the current position and the
previous one, the coefficient γ indicates the weight of DFP and BFGS, and H represents the
approximation to the hessian of the objective function.

Algorithm 1 Quasi_Newton Algorithm (y,x)

The search direction methods perform local searches and are strongly dependent on
the derivative, the hessian of the objective function, or both at the points obtained at each
iteration. Consequently, it may present difficulties for their use. When applied to convex
functions, converge to the local minimum, which in these cases also represents the global
minimum, a condition verified for the adapted objective functions of [32]. However, if the
function were not convex, the local minimum cannot be considered the global minimum.
If the objective function were multi-modal, there would be several basins of attraction.
Thus, the problem of determining the global minimum would be complex using only
local information. This is because of the inability to recognize a global minimum, even
within a set of well-defined local minima. The graphic representation shown in Figure 11
exemplifies the sequence of points generated by the QN method for a simulated AG fault
at 29.76 km from the transmission line’s emitting terminal, with an RF of 20 Ω.
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Figure 11. Fault location and resistance: Quasi-Newton.

2.4.2. Region Exclusion Methods

The ellipsoidal method is a region exclusion method. Accordingly, in a convex set
with a non-empty interior, the minimum can be found in a finite number of steps through
projections in half-spaces and investigation of the subgradients of the objective function.
Intuitively, as described in [49], from an initial ellipsoid, which contains the point to be
reached, cuts were made to always generate ellipsoids of decreasing volumes for a fixed
ratio, which only depends on the dimension of space. The process is outlined by the
algorithm shown in Algorithm 2.

Algorithm 2 Ellipsoidal Algorithm (x,Q)

In the algorithm, n denotes the dimension of the initial point, Q represents the matrix
of the ellipse that surrounds the optimal point to be obtained at each iteration, and the
vector mk is the subgradient of the objective function at a given point belonging to the
domain of the function. A sequence of points is generated in which xk represents the
center of each ellipsoid. After a finite number of iterations, the smallest ellipsoid over the
sought point x∗ ∈ D f ⊂ Rn is obtained such that ∀ x ∈ D f , f (x∗) ≤ f (x) is given by the
center of the ellipsoid. In the Ellipsoidal algorithm, the graph in Figure 12 represents the
sequence of points generated by the EL method for the same fault simulated in Figure 11.
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At each iteration, the EL method returns the center of the ellipsoid generated in the process.
The exclusion of regions occurs from the subgradient without any direct dependence on
the derivatives of the objective function. However, the method requires the objective
function to be convex or quasi-convex and unimodal, which is also verified with the
adapted functions in [31]. If these conditions are not met, it will lead the algorithm to an
unpredictable situation.

Figure 12. Fault location and resistance: Ellipsoidal.

2.4.3. Population Methods

The search with population methods seeks to reach optimal solutions from a set of so-
lutions. The minimization of a function using a genetic algorithm represented schematically
in Algorithm 3 commences from the random generation of a set of points (individuals) that
form the initial population studied, representing possible solutions for a given problem.
Crossover and mutation genetic operators are applied sequentially during the iterative pro-
cess, followed by evaluation and selection processes to generate the surviving population.
The evaluation of each results in a value called fitness. The better the fitness value, the
greater the individual’s chance to remain in the surviving population.

Algorithm 3 Genetic Algorithm (x)

For the NLO desired in this study, the best fitness is associated with the set of solutions
(dF, RF) that minimize f : D f ⊂ Rn → R . The population evolution along the iterations
occurs according to an established stopping criterion that leads the set of individuals
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to a region close to the optimal point. Population methods do not use information in-
volving derivatives of the objective function for convergence. Instead, they operate with
parameter encoding and indicate optimal solutions from a set of solutions. Owing to its
non-deterministic character, the process is indicated for the treatment of functions and
constraints that are difficult to model, requiring statistical analysis to study their conver-
gence. In this study, we employed the polarized real genetic algorithm described in [50].
In PRGA, each optimization parameter is represented by a real variable, and the set of
parameters is stored in a vector that represents an individual. For the simulated AG fault
located 29.76 km from the emitting terminal of the transmission line, with an RF of 20 Ω,
the graph presented in Figure 13 refers to the last generation of the PRGA execution.

Figure 13. Fault location and resistance: PRGA.

The previously described NLO algorithms were applied to the minimization of the
objective functions adapted from [31]. Based on the type of fault, the estimated distance
to the point of occurrence of the short circuit in relation to the line terminal was obtained
for each of the scenarios specified in Table 5. A variation of the analytical method, which
disregards the capacitance of the TL, proposed in [32] was also implemented and applied
to the validation cases for comparisons of its results with those provided by the ANN and
NLO methods. In this method, fault location is obtained from descriptive functions of
the electrical circuit, capable of representing the voltage and current variations along the
transmission line from its two terminals.

3. Statistical Study

An analysis of possible statistical differences between the proposed location methods
and the types of fault that can occur in a fault event was developed by analyzing the
variance with two factors (Anova2) of the location errors presented by the methods using
Python [51]. The procedure, as described in [52], allows us to investigate the equality of
means in experiments with more than one factor. For the application of the process, the test
data must be obtained randomly, and the data must be adjusted to a normal distribution,
with mean µ = 0 and constant variance σ2. These requirements, used in the process of
formulating the Anova2 model, allow the generalization of a population from a sample.
Regarding the test, it is possible to verify the existence of evidence of variations between
the levels of factors that may interfere in the process, signaling the existence of at least one
level that differs from the others. In applying the method to the fault location problem, the
type of method and the type of fault that occurred were considered factors to be analyzed.
Internally, different levels were considered for each of these factors, as shown in Figure 14.
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Figure 14. Factors and levels of the location problem.

Mathematically, Anova2 can be expressed using Equation (1), and it is suitable for the
problem to be studied. Accordingly, µ is considered as the global average effect of errors
arising from the experimental location process, τi denotes the effect of the ith level of the
fault type factor, β j represents the effect of the jth level of the method type factor, (τβ)ij
indicates the effect of the interaction between the fault type and method type factors, i is
the number of levels of the fault type factor, j indicates the number of levels of the method
type factor, and k denotes the number of samples collected for each level.

yijk = µ + τi + β j + (τβ)ij + εijk


i = 1, . . . , a
j = 1, . . . , b

k = 1, 2, . . . , k
(1)

The test deals with the influence of the interaction between the two factors analyzed
and occurred on the hypothesis tests described in Equations (2)–(4). Each null hypothesis
(H0) supports the assumption that the averages of the errors of the levels are the same for
the analyzed factor. Moreover, with the alternative hypothesis (H1), the existence of at
least one different average is assumed. The test results conducted and interpreted in [52]
provide tools that allow us to either accept or reject a statistical hypothesis through the
evidence provided by the sample.{

H0 : τ1 = . . . = τi = 0;
H1 : ∃ i/ τi 6= 0

(2)

{
H0 : β1 = . . . = β j = 0;

H1 : ∃ j/ τj 6= 0
(3){

H0 : (τβ)ij = 0 ∀i, j;
H1 : ∃ i, j/ (τβ)ij 6= 0

(4)

When the Anova2 results reject H0 and, consequently, accept H1, there is statistical
evidence that at least one of the means of the levels differs from the others for the analyzed
factor. This conclusion, analyzed for the fault location problem, allows us to verify whether
the type of fault that occurred or the type of method used leads to a differentiation in the
efficiency of the location process. The rejection of H0 is performed by considering a certain
level of significance related to the probability of rejecting this hypothesis when it is true.
In statistical hypothesis tests, the rejection of H0 is considered to be significant when the
observed p-value is lower than the significance level defined for the study.

Although the Anova2 test indicates the existence of a discrepant level among the others,
it does not locate the observed difference. It is necessary to apply a test of comparison
of means between the levels to determine the best (or worst) level of the factor. As a
complement to the Anova2 study, the Tukey test was applied at a significance level of 5%.
The test involves building confidence intervals for all pairs of means in such a manner that
the set of all intervals has a certain degree of confidence.
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4. Results

In the fault location process, deterministic (QN, EL, AM) and non-deterministic (ANN
and PRGA) procedures were implemented and applied. In the application of ANN to the
problem, intelligent processes are used to recognize patterns simulated by the ATP related
to the identification of the fault location. These structures characterized by adaptation by
experiences, learning ability, generalization ability, data organization, etc., can provide
a satisfactory solution to the problem. We attempted to obtain the minimum point of
an objective function of two variables by applying the implemented NLO algorithms,
f (dF, RF), from the methods of QN, EL, and PRGA. Table 7 shows the number of iterations
performed and the execution time required by each algorithm to reach the result referring
to a given fault case.

Table 7. The number of iterations and execution time per method.

Method ANN PRGA QN EL AM

Number of iterations - 42 5 69 -
Time (s) 579 16 0.7 0.8 0.6

4.1. Fault Location: Simulated Cases

The quantities expressed in Table 8 refer to the number of simulated cases for validation
of ANN and the application of NLO techniques and the AM method, which depends on
the type of fault and the methods implemented. A statistical study is needed to compare
the methods used in this study. Owing to the stochastic characteristics of the location by the
ANN and by the PRGA, the means and variances of the location values of these methods
were obtained from 40 executions.

Table 8. Validation cases by fault type and method.

Type of Method ANN PRGA QN EL AM

Type of
Fault

DPG 4800 4800 120 120 120
SPG 4800 4800 120 120 120
DP 2880 2880 72 72 72
TP 960 960 24 24 24

Following the implementation and execution of the location step, the balancing of the
number of samples per class was applied for the adequacy of the data used. Accordingly,
24 samples were randomly selected from each of the possible combinations of the studied
factors, a number corresponding to the smaller quantity of samples of the relationship
between the fault event and the implemented methods, as listed in Table 8. Associated
with the Anova2 test, the results achieved in the balanced experiment allow the use of the
differences between the averages of the levels for the estimates of the main effects of the
factors and the interaction between them. When the experiment is unbalanced, differences
in factor level means may be associated with unbalanced observations rather than changes
in factor levels.

From Equation (5), the percentage errors of the results indicated for each fault location
were calculated, provided by the difference between the estimated value by each method
and the simulated value in relation to the length of the line.

e(%) =

∣∣∣∣ estimated location− simulated location
line length

∣∣∣∣x100 (5)

In simulated scenarios, regardless of the type of fault that occurred, the analysis of the
Box-plots of the percentage errors, represented in Figure 15, revealed the better performance
of the ANN.
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Figure 15. Location errors: simulated cases.

The verification of the existence of differences between the types of methods was
based on the Anova2 statistical test. Particularly, considering the results provided by
the AM method and the NLO methods, when conducting the analysis of variance for
the comparison of samples, it was assumed that the observations were independent and
normally distributed, maintaining the variance constant in each treatment. According
to [52], the graphic results expressed in Figure 16 made it possible to verify that these
assumptions were satisfied.

Figure 16. Assumptions for the application of the Anova2 model. (a) Data normality; (b) Data
randomness; (c) Homoscedasticity—Type of fault; (d) Homoscedasticity—Type of method.

In the quantile-quantile plot of Normal shown in Figure 16a, the configuration of
points approached a straight line, indicating that the residuals are normally distributed.
The residuals shown in Figure 16b were located approximately around a horizontal band,
signaling the validity of the independence assumption. Regarding the homoscedasticity of
the levels of the type of fault and type of method factors, Figure 16c,d present the residual
plots from randomly arranged points without a set pattern for level change, having adjusted
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values both for the type of fault factor and type of method factor. In addition to graphical
analysis, the verification of the premises for the application of Anova2 was based on
statistical tests, as indicated in [53]. In this sense, the randomness of the residues was
verified by applying the Durbin-Watson test (DW), with the result DW = 1.805907. The DW
test statistic is in the range between 0 and 4; values close to 2 indicate no correlation between
the residues, ensuring the randomness of the sample. The normality of the residues, with
5% significance, was verified by the Shapiro-Wilk hypothesis test (SW), with a p-value
result (SW) = 6.023376 × 10−2. To test the normal distribution, it is assumed that H0 is
symmetric, whereas H1 assumes that the variable distribution is asymmetrical. In the
Shapiro-Wilk test, the test’s significance was greater than 0.050, p-value > 0.050, indicating
that the residues follow a normal distribution. Regarding the homoscedasticity of the
residues, Bartlett’s test (B) was used, which is not affected by the sample size and should
be used when the residues present normal distribution, and also the Levene test (L), which,
although limited to balanced samples, does not require the assumption of normality. In
these tests, H0 indicates that the residue variances are homoscedastic, and H1 assumes that
at least one variance differs from the others. For the type of fault, the tests provided as a
result p-value (B) = 6.071991 × 10−1, p-value (L) = 3.748992 × 10−1 and for type of method
p-value (B) = 2.511740 × 10−1, p-value (L) = 5.339021 × 10−2.

As presented in Table 9, the application of the Anova2 test leads to the rejection of
the null hypothesis for both factors analyzed. Specifically, about the location methods
evaluated, the indication is that at a 5% significance level, the effects of the type of method
affect the percentage error for the fault location, with at least one of the location methods
that differ from the others. The result of the p-value (PR) obtained by the test statistic was
close to 5.816931 × 10−12, a value considerably lower than 5%. With the data from Table 9,
it is also possible to make inferences regarding the types of faults. However, this analysis
was not addressed in the proposal of this study.

Table 9. Anova2 testes: simulated cases.

sum_sq Df F PR(>F)

C(Type_Fault) 0.291482 3.0 17.384073 1.362907× 10−10

C(Type_Method) 0.332668 3.0 19.840463 5.816931× 10−12

Residual 2.107073 377.0 NaN NaN

As a complement to the Anova2 study in simulated cases, the Tukey test was applied
at a significance level of 5%, and the results expressed in Table 10 were obtained.

Table 10. Multiple comparisons of means: Tukey HSD, FWER = 0.05—simulated cases.

Group1 Group2 Meandiff Lower Upper Reject

PRGA EL −0.0162 −0.0457 0.0134 False
PRGA AM 0.0522 0.0226 0.0818 True
PRGA QN −0.0228 −0.0524 0.0068 False

EL AM 0.0684 0.0388 0.0980 True
EL QN −0.0067 −0.0362 0.0229 False

AM QN −0.0750 −0.1046 −0.0454 True

The Tukey test is interpreted based on the value of the minimum significant difference
(MSD), obtained from the distribution of the studentized amplitude, the mean square
of the residues of Anova2, and the sample size of the groups, in the confidence interval
determined. For the test, represented in Table 9 and Figure 17, the modulus of the mean
difference between the pairs of methods used In the fault’s location was greater than the
MSD value obtained for the pairs AM—QN, EL—AM, and PRGA—AM. The value 0 (zero)
is not contained in the confidence intervals of these pairs, indicating that the average
performance is significantly different between them. Furthermore, the percentage errors
provided by the AM method were greater than those provided by the three NLO methods.
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Figure 17. Tukey test: simulated cases.

4.2. Fault Location: Real Cases

The procedures used for the pilot study were applied in other TL. In addition to the
74.4 km transmission line used initially, the techniques for locating faults in three other
lines were implemented. Accordingly, the implemented methods were tested in seven real
cases of short circuits caused by atmospheric discharge (AD) and fire in the modeled lines,
as indicated in Table 11.

Table 11. Characterization: real fault scenarios.

Line Voltage (kV) Length (km) Type Location (km) Cause

1 345 74.40
AG 60.0 AD
BT 54.0 AD

2 500 105.58 AG 30.0 Fire

3 500 342.71
CT 317.0 AD
AG 76.0 Fire
CT 55.0 Fire

4 500 248.44 ACT 91.0 AD

The results achieved by the methods for the real cases are recorded in Table 12.

Table 12. Location results: real faults.

Line
Inspection Results

(km)
Fault Location (km)

ANN QN EL PRGA AM

1
60 55.6 65.4 65.4 65.4 64.4
54 33.5 54.4 54.4 54.4 54.3

2 30 24.0 23.6 23.6 23.6 29.7

3
317 306.4 311.0 311.0 311.0 324.0
76 103.0 78.4 78.4 78.4 82.7
55 60.5 55.7 55.7 55.7 56.6

4 91 124.0 91.5 91.5 91.5 94.1

Average Error (%) 9.2 2.4 2.4 2.4 1.7

Median Error (%) 6.8 1.2 1.2 1.2 1.4

For the statistical analysis of the results, the location errors were calculated from the
difference between the location estimated by the method and the actual distance from the
defect (provided by the inspection team) in relation to the length of the line where the
bending occurred. For the ANN and the PRGA, the errors were indicated from the average
error of the 40 executions.
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To identify the existence of differences in the location results that occurred depend-
ing on the type of method used, the verification of the randomness, normality, and ho-
moscedasticity supported the assumption that the observations are independent, normally
distributed, and maintain the same variance in each treatment, allowing the application of
the Anova2 model.

Using the results of the test application presented in Table 13, the null hypothesis of
equality between the methods was discarded, and the result of the p-value obtained by the
test statistic was close to 9.92 × 10−4, which is considerably less than 5%.

Table 13. Anova2 test: real cases.

sum_sq df F PR(>F)

C(Type_Fault) 266.130927 6.0 1.239680 0.321484
C(Type_Method) 944.311311 4.0 6.598127 0.000992
Residual 858.708488 24.0 NaN NaN

Tukey test results presented in Table 14 made it possible to identify a difference in the
location of faults performed by the ANN, which provided greater location errors than the
other methods.

Table 14. Multiple comparisons of means: Tukey HSD, FWER = 0.05—real cases.

Group1 Group2 Meandiff Lower Upper Reject

PRGA EL −1.0258 −10.5193 8.4678 False
PRGA AM −1.6714 −11.165 7.8221 False
PRGA QN −1.0259 −10.5195 8.4676 False
PRGA ANN 11.9857 2.4922 21.4793 True

EL AM −0.6457 −10.1392 8.8479 False
EL QN −0.0001 −9.4937 9.4934 False
EL ANN 13.0115 3.5179 22.505 True

AM QN 0.6455 −8.848 10.1391 False
AM ANN 13.6571 4.1636 23.1507 True
QN ANN 13.0116 3.5181 22.5052 True

In real cases, using the Tukey test, as shown in Table 14 and Figure 18, there was no
statistical evidence identified for the difference between the location of faults carried out
between the different optimization methods implemented, nor between these methods and
the classic analytical. The module of the mean difference between the pairs of methods used
was greater than the value of the MSD obtained for the pairs PRGA—ANN, EL—ANN,
AM—ANN, and QN—ANN. The value 0 (zero) is not contained in the interval’s confidence
of these peers, indicating that average performance is significantly different between them.
Furthermore, the worst performance was presented by the ANN.

Figure 18. Tukey’s test: real cases.
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An interesting point to be highlighted for the real cases is that, although the objective
functions for the optimization algorithm were developed for the short transmission line
model (with only the parameters of resistance and series inductance concentrated), there
was no significant difference in the errors obtained in relation to the analytical method,
which considers the long-line model. It is noteworthy that only seven cases were inves-
tigated (for lines of 74.4 km, 105.58 km, 248.44 km, and 342.71 km), requiring further
studies from a larger database. For the cases presented, the short line model used for the
transmission line was not preponderant for the results, probably due to other errors such
as those caused by current and potential transformer, line parameters, mutual inductance,
transposition, and phasor estimation method.

The neural networks, as they have been conventionally used, with voltage and current
phasors as input structures, provide reduced errors in simulated cases, but they own the
difficulty generalizing for the real fault location function. It should be mentioned that the
electrical system model in simulated cases is the same for training and validation, which
leads the network to obtain accurate results. The largest errors of the ANN in the real
fault location process are related to the values of the Thevenin equivalents (sources and
impedance) at the local and remote ends of the transmission line. Electrical systems are
dynamic, with load and generation varying 24 h a day. In order to generate the fault files
used in the training of location ANN on real cases, the Thevenin voltages and impedances
provided by the electric utility were inserted into the ATP, calculated from a short circuit
program that considers the static system with light or heavy load. However, the exact values
of these equivalents at the time of the fault cannot be determined, which compromises
the results of neural networks applied to real cases, contributing to unsatisfactory results.
To mitigate the problem, a neural network fault location method, in which the Thevenin
equivalents of the line terminals are not needed, is already being developed by the authors.
The proposal will enable the practical application of these structures to solve this type
of problem in conventional lines and on lines with series compensation, in which fault
location becomes more complex due to the non-linearity of the Metal Oxide Varistor, the
capacitor’s protection element.

5. Conclusions

This study aimed to present and statistically compare applications of artificial neural
networks, nonlinear optimization techniques, and a classical analytical method for the
problem of fault location in transmission lines in simulated and real scenarios. In the
simulated scenarios, the analysis of the percentage errors of the location revealed, with 5%
of significance, that the type of method used affects the indication of the location of the
short circuit. Smaller errors were observed with neural networks and larger ones with the
analytical method, leaving the nonlinear optimization methods with intermediate errors. In
real scenarios, unlike the situation verified in simulated environments, there was statistical
evidence of higher percentages of errors with neural networks, not rejecting the equality
between the location indicated by the analytical method and the nonlinear optimization
methods. The neural networks conventionally used for the location function proved incom-
patible for application in companies that operate electrical systems. No differences were
identified among the nonlinear optimization methods. The three methods implemented
and applied to the proposed function converged to the expected local minimum. However,
it should be noted that the low computational cost and fast response associated with the
Quasi-Newton method make it a prominent method. Moreover, the nonlinear optimization
methods used for the location function proved to be promising for application in compa-
nies that operate electrical systems, providing location errors similar to those presented
by the classical analytical method. In this sense, and based on the proposal of this study,
it is suggested to consider the application of the methods Quasi-Newton and analytic to
improve the answer to the problem of locating faults in transmission lines.
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