Design of High-Dynamic PMSM Servo Drive Using Nonlinear Predictive Controller with Harmonic Disturbance Observer
Abstract
:1. Introduction
2. Harmonics Problem of PMSM Servo Drive
2.1. Parameter Mismatch
2.2. Dead-Time Effects and Current Sampling Errors
3. Design of Nonlinear Predictive Speed Controller
3.1. Continuous-Time Predictive Model
3.2. Long-Horizon Optimization and Its Control Law
3.3. Asymptotic Stability Analysis
4. Harmonic Disturbance Observer
4.1. Modified Observer Targeting at Harmonics Estimation
4.2. Stability of Modified Observer
5. Proposed Scheme and Its Parameter Tuning
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
i, u, ψf, Ts | Current, voltage, flux linkage of rotor, control period |
ωe, ωm | Electric angular frequency, mechenical angular frequency |
R, L, Jm, Jload | Resistance, inductance, the moment of inertia, the moment of inertia of load |
pr, B, TL | Pole pairs, friction coefficient, load torque |
Lef, H, B, S | Core length of stator winding, magnetic field intensity, magnetic flux density, calculation area |
Miron, Mshaft, Riron, riron, Rshaft | Core mass, the shaft mass, the inner radius of core, the outer radius of the core, the inner radius of shaft |
x, u, χ, h | State vector, input vector, disturbance vector, output vector |
q, T | Weight coefficient, predictive horizon |
τ, L | Future time scale, Lie derivative |
, L | State variable of observer, coefficient matrix of observer |
Kp, Kd | Proportional and differential coefficien of PD controller |
Δ, o | Incremental quantity of variables, high-order infinitesimal variable |
A, B, C, d, q (subscript) | Variables under A-, B-, C-, d-, q-axis |
dc, s, 0 (subscript) | DC bus variables, stator variables, nominal value |
c, h (subscript) | Constant disturbances variables, harmonics variables |
dead (subscript) | Variables related to dead-time effects |
i, w (subscript) | Current control loop variables, speed control loop variables |
ref, ∧ (superscript) | Reference values, estimated values |
References
- Wu, G.; Huang, S.; Wu, Q.; Rong, F.; Zhang, C.; Liao, W. Robust Predictive Torque Control of N*3-Phase PMSM for High-Power Traction Application. IEEE Trans. Power Electron. 2020, 35, 10799–10809. [Google Scholar] [CrossRef]
- Ping, Z.; Wang, T.; Huang, Y.; Wang, H.; Lu, J.G.; Li, Y. Internal Model Control of PMSM Position Servo System: Theory and Experimental Results. IEEE Trans. Ind. Inform. 2020, 16, 2202–2211. [Google Scholar] [CrossRef]
- Tang, Z.; Akin, B. A New LMS Algorithm Based Deadtime Compensation Method for PMSM FOC Drives. IEEE Trans. Ind. Appl. 2018, 54, 6472–6484. [Google Scholar] [CrossRef]
- ZWang, Z.; Chen, J.; Cheng, M.; Chau, K.T. Field-Oriented Control and Direct Torque Control for Paralleled VSIs Fed PMSM Drives with Variable Switching Frequencies. IEEE Trans. Power Electron. 2016, 31, 2417–2428. [Google Scholar]
- Mendoza-Mondragón, F.; Hernández-Guzmán, V.M.; Rodríguez-Reséndiz, J. Robust Speed Control of Permanent Magnet Synchronous Motors Using Two-Degrees-of-Freedom Control. IEEE Trans. Ind. Electron. 2018, 65, 6099–6108. [Google Scholar] [CrossRef]
- Garcia, C.; Rodriguez, J.; Silva, C.; Rojas, C.; Zanchetta, P.; Abu-Rub, H. Full Predictive Cascaded Speed and Current Control of an Induction Machine. IEEE Trans. Energy Convers. 2016, 31, 1059–1067. [Google Scholar] [CrossRef]
- Cisneros, P.S.; Werner, H. A Velocity Algorithm for Nonlinear Model Predictive Control. IEEE Trans. Control. Syst. Technol. 2020, 29, 1310–1315. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T.; Kennel, R. Reformulation of the long-horizon direct model predictive control problem to reduce the computational effort. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3512–3519. [Google Scholar]
- Hang, J.; Wu, H.; Zhang, J.; Ding, S.; Huang, Y.; Hua, W. Cost Function-Based Open-Phase Fault Diagnosis for PMSM Drive System with Model Predictive Current Control. IEEE Trans. Power Electron. 2021, 36, 2574–2583. [Google Scholar] [CrossRef]
- Errouissi, R.; Ouhrouche, M.; Chen, W.H.; Trzynadlowski, A.M. Robust Cascaded Nonlinear Predictive Control of a Permanent Magnet Synchronous Motor with Antiwindup Compensator. IEEE Trans. Ind. Electron. 2012, 59, 3078–3088. [Google Scholar] [CrossRef]
- Chen, W.H.; Ballance, D.J.; Gawthrop, P.J.; O’Reilly, J. A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Liu, N.; Zhou, Z.; Yan, Y.; Shi, T. Steady-State Performance Improvement for LQR-Based PMSM Drives. IEEE Trans. Power Electron. 2018, 33, 10622–10632. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W.H.; Li, S.; Guo, L.; Yan, Y. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives—A. Survey. IEEE Trans. Ind. Electron. 2017, 64, 3273–3285. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Freeman, C.T.; Chai, S.; Rogers, E. Predictive-repetitive control with constraints: From design to implementation. J. Process. Control 2013, 23, 956–967. [Google Scholar] [CrossRef]
- Gupta, M.; Lee, J.H. Period-robust repetitive model predictive control. J. Process. Control 2006, 16, 545–555. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, C.; Yan, Y.; Wang, Z.; Shi, T. Disturbances Attenuation of Permanent Magnet Synchronous Motor Drives Using Cascaded Predictive-Integral-Resonant Controllers. IEEE Trans. Power Electron. 2018, 33, 1514–1527. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, F. Observer-Based Predictive Vector-Resonant Current Control of Permanent Magnet Synchronous Machines. IEEE Trans. Power Electron. 2019, 34, 5969–5980. [Google Scholar] [CrossRef]
- Gao, Y.; Chong, K.T. The Explicit Constrained Min-Max Model Predictive Control of a Discrete-Time Linear System with Uncertain Disturbances. IEEE Trans. Autom. Control 2012, 57, 2373–2378. [Google Scholar] [CrossRef]
- Köhler, J.; Soloperto, R.; Müller, M.A.; Allgöwer, F. A Computationally Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear Systems. IEEE Trans. Autom. Control 2021, 66, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Türker, T.; Buyukkeles, U.; Bakan, A.F. A Robust Predictive Current Controller for PMSM Drives. IEEE Trans. Ind. Electron. 2016, 63, 3906–3914. [Google Scholar] [CrossRef]
- Zhou, P.; Chai, T.Y.; Zhao, J.H. DOB Design for Nonminimum-Phase Delay Systems and Its Application in Multivariable MPC Control. IEEE Trans. Circuits Syst. II Exp. Briefs 2012, 59, 525–529. [Google Scholar] [CrossRef]
- Liu, H.; Li, S. Speed Control for PMSM Servo System Using Predictive Functional Control and Extended State Observer. IEEE Trans. Ind. Electron. 2012, 59, 1171–1183. [Google Scholar] [CrossRef]
- Chen, M.; Mei, R. Robust tracking control of uncertain nonlinear systems using disturbance observer. In Proceedings of the 2011 International Conference on System Science and Engineering, Macau, China, 8–10 June 2011; pp. 431–436. [Google Scholar]
- Chen, W.-H. Harmonic Disturbance Observer for Nonlinear Systems. J. Dyn. Syst. Meas. Control 2003, 125, 114–117. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y. Robust Model Predictive Direct Speed Control for SPMSM Drives Based on Full Parameters and Load Observer. In Proceedings of the 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Quanzhou, China, 31 May–2 June 2019; pp. 1–5. [Google Scholar]
- Zhang, X.; He, Y. Direct Voltage-Selection Based Model Predictive Direct Speed Control for PMSM Drives without Weighting Factor. IEEE Trans. Power Electron. 2019, 34, 7838–7851. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, S.; Zhang, C. Improved Model Predictive Current Control for SPMSM Drives with Parameter Mismatch. IEEE Trans. Ind. Electron. 2020, 67, 852–862. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, Y.; Sun, Y.; Qi, H.; Guo, X. Prediction Horizons Optimized Nonlinear Predictive Control for Permanent Magnet Synchronous Motor Position System. IEEE Trans. Ind. Electron. 2020, 67, 9153–9163. [Google Scholar] [CrossRef]
- Tarczewski, T.; Grzesiak, L.M. Constrained State Feedback Speed Control of PMSM Based on Model Predictive Approach. IEEE Trans. Ind. Electron. 2016, 63, 3867–3875. [Google Scholar] [CrossRef]
- Feng, W.; O’reilly, J.; Ballance, D.J. MIMO nonlinear PID predictive controller. IEE Proc. Control Theory Appl. 2002, 149, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Tavernini, D.; Vacca, F.; Metzler, M.; Savitski, D.; Ivanov, V.; Gruber, P.; Hartavi, A.E.; Dhaens, M.; Sorniotti, A. An Explicit Nonlinear Model Predictive ABS Controller for Electro-Hydraulic Braking Systems. IEEE Trans. Ind. Electron. 2020, 67, 3990–4001. [Google Scholar] [CrossRef]
- Errouissi, R.; Ouhrouche, M.; Chen, W.H.; Trzynadlowski, A.M. Robust Nonlinear Predictive Controller for Permanent-Magnet Synchronous Motors with an Optimized Cost Function. IEEE Trans. Ind. Electron. 2012, 59, 2849–2858. [Google Scholar] [CrossRef]
- Liu, X.D.; Li, K.; Zhang, Q.; Zhang, C. Single-loop Predictive Control of PMSM Based on Nonlinear Disturbance Observers. Proc. CSEE 2018, 38, 2153–2162. [Google Scholar]
- ZSong, Z.; Zhang, Z.; Komurcugil, H.; Lee, C.H. Controller-Based Periodic Disturbance Mitigation Techniques for Three-Phase Two-Level Voltage-Source Converters. IEEE Trans. Ind. Inform. 2021, 17, 6553–6568. [Google Scholar]
- Hao, Z.; Zhou, W.; Ji, T.; Huang, X.; Zhang, C. Multi-Objective Optimization of Double Primary Tubular Permanent Magnet Synchronous Linear Motor in Wide Temperature Range Environment Based on Pareto Front Method. IEEE Access 2020, 8, 207193–207203. [Google Scholar] [CrossRef]
- Wang, S.J.; Lin, S. K Analytical prediction of the incremental inductance of the permanent magnet synchronous motors. IEEE Trans. Magn. 2004, 40, 2044–2046. [Google Scholar] [CrossRef]
- Lian, C.; Xiao, F.; Gao, S.; Liu, J. Load Torque and Moment of Inertia Identification for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Observer. IEEE Trans. Power Electron. 2018, 34, 5675–5683. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, J.M. Dead Time Compensation Method for Voltage-Fed PWM Inverter. IEEE Trans. Energy Convers. 2010, 25, 1–10. [Google Scholar] [CrossRef]
- Linder, A.; Kanchan, R.; Stolze, P.; Kennel, R. Model-Based Predictive Control of Electric Drives; Cuvillier Verlag: Gottingen, Germany, 2010. [Google Scholar]
- Li, S.; Yang, J.; Chen, W.H.; Chen, X. Disturbance Observer-Based Control: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wang, H.; Zhang, S.; Liu, W.; Geng, Q.; Zhou, Z. Finite control-set model predictive direct speed control of a PMSM drive based on the Taylor series model. IET Electr. Power Appl. 2021, 15, 1452–1465. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Rated power | PN | 2.3 kW |
Number of pole-pairs | p | 2 |
Rated speed | nN | 1500 r/min |
Rated torque | TN | 15 Nm |
Rated current | IN | 10 A |
Permanent magnet flux | ψr | 0.33 Wb |
Stator resistance | Rs | 0.63 Ω |
Stator inductance | Ls | 4.0 mH |
Moment of inertia | Jm | 0.00272 kg⋅m2 |
Control period | Ts | 100 μs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Yao, S.; Ma, C.; Zhang, G.; Geng, Q. Design of High-Dynamic PMSM Servo Drive Using Nonlinear Predictive Controller with Harmonic Disturbance Observer. Energies 2022, 15, 4107. https://doi.org/10.3390/en15114107
Zhou Z, Yao S, Ma C, Zhang G, Geng Q. Design of High-Dynamic PMSM Servo Drive Using Nonlinear Predictive Controller with Harmonic Disturbance Observer. Energies. 2022; 15(11):4107. https://doi.org/10.3390/en15114107
Chicago/Turabian StyleZhou, Zhanqing, Shuaijiang Yao, Chaolei Ma, Guozheng Zhang, and Qiang Geng. 2022. "Design of High-Dynamic PMSM Servo Drive Using Nonlinear Predictive Controller with Harmonic Disturbance Observer" Energies 15, no. 11: 4107. https://doi.org/10.3390/en15114107
APA StyleZhou, Z., Yao, S., Ma, C., Zhang, G., & Geng, Q. (2022). Design of High-Dynamic PMSM Servo Drive Using Nonlinear Predictive Controller with Harmonic Disturbance Observer. Energies, 15(11), 4107. https://doi.org/10.3390/en15114107