Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve
Abstract
:1. Introduction
2. Experimental Measurements
2.1. The Porjus U9 Prototype
2.2. Experimental Setup
2.3. Measuring Program
3. Numerical Simulations Setup
3.1. Flow Modelling
3.2. Boundary Conditions
3.3. Geometry
3.4. Mesh Sensitivity Analysis
4. Results and Discussion
4.1. Runner Clearances
4.2. Epoxy Study
4.3. Runner Blade Angle
4.4. Best Efficiency Point (OP2)
4.4.1. Mean Values
4.4.2. Amplitude Spectrum Analysis
4.5. Part-Load Operation (OP1)
4.5.1. Mean Values
4.5.2. Amplitude Spectrum Analysis
4.6. RVR Decomposition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CtClr | constant clearance |
DTin | numerical pressure recorded on the draft tube wall (inner radius) |
DTout | numerical pressure recorded on the draft tube wall (outer radius) |
f* | dimensionless frequency |
FFT | Fast Fourier transform |
fr | runner frequency |
Hgross | gross head of the turbine |
k | kinetic energy |
LE | leading edge |
NoClr | no clearance |
OP1 and OP2 | operating points |
Pout | power output |
Ppl | plunging mode pressure |
Prot | rotating mode pressure |
RVR | rotating vortex rope |
SST | Shear Stress Transport |
TE | trailing edge |
VarClr | variable clearance |
y+ | dimensionless distance from the wall |
z | elevation |
β | runner blade angle |
pressure drop obtained between the inlet and the outlet of the numerical domain | |
νt | turbulent viscosity |
ω | turbulent frequency |
References
- Soltani Dehkharqani, A.; Engstrom, F.; Aidanpää, J.O.; Cervantes, M.J. Experimental investigation of a 10 MW prototype axial turbine runner: Vortex rope formation and mitigation. J. Fluids Eng. 2020, 142, 101212. [Google Scholar] [CrossRef]
- Trivedi, C.H.; Gandhi, B.; Cervantes, M.J. Effect of transients on Francis turbine runner life: A review. J. Hydraul. Res. 2013, 51, 121–132. [Google Scholar] [CrossRef]
- Farhat, M.; Natal, S.; Avellan, F.; Paquet, F.; Couston, M. Onboard measurements of pressure and strain fluctuations in a model of low head Francis turbine—Part 1: Instrumentation. In Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, 9–12 September 2002. [Google Scholar]
- Lowys, P.; Paquet, F.; Couston, M.; Farhat, M.; Natal, S.; Avellan, F. Onboard measurements of pressure and strain fluctuations in a model of low head Francis turbine—Part 2: Measurements and preliminary analysis results. In Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, 9–12 September 2002. [Google Scholar]
- Cervantes, M.J.; Trivedi, C.H.; Dahlhaug, O.G.; Nielsen, T.K. Francis-99 workshop 1: Steady operation of Francis turbines. J. Phys. Conf. Ser. 2015, 579, 011001. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, C.H.; Dahlhaug, O.G.; Selbo Storli, P.T.; Nielsen, T.K. Francis-99 workshop 3: Fluid structure interaction. J. Phys. Conf. Ser. 2019, 1296, 011001. [Google Scholar] [CrossRef]
- Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C. Experimental investigation of the draft tube inlet flow of a bulb turbine. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032010. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.; Coulaud, M.; Aeschlimann, V.; Lemay, J.; Deschênes, C. Method for experimental investigation of transient operation on Laval test stand for model size turbines. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 062006. [Google Scholar] [CrossRef] [Green Version]
- Mulu, B.G.; Cervantes, M.J. Experimental investigation of a Kaplan model with LDA. In Proceedings of the Water Engineering for Sustainable Environment: 33rd IAHR Congress, Vancouver, BC, Canada, 9–14 August 2009. [Google Scholar]
- Amiri, K.; Mulu, B.G.; Raisee, M.; Cervantes, M.J. Unsteady pressure measurements on the runner of a Kaplan turbine during load acceptance and load rejection. J. Hydraul. Res. 2016, 54, 56–73. [Google Scholar] [CrossRef]
- Trivedi, C.H.; Gogstad, P.J.; Dahlhaug, O.G. Investigation of the unsteady pressure pulsations in the prototype Francis turbines during load variation and startup. Renew. Sustain. Energy Rev. 2017, 9, 064502. [Google Scholar] [CrossRef]
- Unterluggauer, J.; Sulzgruber, V.; Doujak, E.; Bauer, C. Experimental and numerical study of a prototype Francis turbine startup. Renew. Energy 2020, 157, 1212–1221. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Min, Y.; Ma, J. Experimental investigation of characteristic frequency in unsteady hydraulic behavior of a large hydraulic turbine. J. Hydrodyn. 2009, 21, 12–19. [Google Scholar] [CrossRef]
- Trivedi, C.H.; Gogstad, P.J.; Dahlhaug, O.G. Investigation of the unsteady pressure pulsations in the prototype Francis turbines–part 1: Steady state operating conditions. Mech. Syst. Signal Process. 2018, 108, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.; Jobidon, N.; Lawrence, M. Optimization of turbine startup: Some experimental results from a propeller runner. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032022. [Google Scholar] [CrossRef]
- Presas, A.; Luo, Y.; Guo, B.; Wang, Z. Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends. Renew. Sustain. Energy Rev. 2019, 102, 96–110. [Google Scholar] [CrossRef]
- You, F.; Sun, L. Machine learning and data-driven techniques for the control of smart power generation systems: An uncertainty handling perspective. Engineering 2021, 7, 1239–1247. [Google Scholar] [CrossRef]
- Bordin, C.; Skjelbred, H.I.; Kong, J.; Yang, Z. Machine learning for hydropower scheduling: State of the art and future research directions. Procedia Comput. Sci. 2020, 176, 1659–1668. [Google Scholar] [CrossRef]
- Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N. Fatigue analyses of the prototype Francis runners based on site measurements and simulations. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 012014. [Google Scholar] [CrossRef] [Green Version]
- Mössinger, P.; Jung, A. Transient two-phase CFD simulation of overload operating conditions and load rejection in a prototype sized Francis turbine. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 092003. [Google Scholar] [CrossRef]
- Karlsson, M.; Nilsson, H.; Aidanpää, J.O. Influence of inlet boundary conditions in the prediction of rotor dynamic forces and moments for a hydraulic turbine using CFD. In Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 17–22 February 2008. [Google Scholar]
- Mössinger, P.; Jester-Zürker, R.; Jung, A. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine. J. Phys. Conf. Ser. 2017, 782, 012001. [Google Scholar] [CrossRef] [Green Version]
- Iovănel, R.G.; Dunca, G.; Bucur, D.M.; Cervantes, M.J. Numerical simulation of the flow in a Kaplan turbine model during transient operation from the best efficiency point to part load. Energies 2020, 13, 3129. [Google Scholar] [CrossRef]
- Tiwari, G.; Kumar, J.; Prasad, V.; Patel, V.K. Derivation of cavitation characteristics of a 3 MW prototype Francis turbine through numerical hydrodynamic analysis. Mater. Today Proc. 2020, 26, 1439–1448. [Google Scholar] [CrossRef]
- Li, D.; Song, Y.; Lin, S.; Wang, H.; Qin, Y.; Wei, X. Effect mechanism of cavitation on the hump characteristic of a pump-turbine. Renew. Energy 2021, 167, 369–383. [Google Scholar] [CrossRef]
- Hao, Y.; Tan, L. Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode. Renew. Energy 2018, 127, 368–376. [Google Scholar] [CrossRef]
- Ansys® CFX, Release 16.2, Help System, Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2015.
- Joshi, A.; Assam, A.; Nived, M.R.; Eswaran, V. A Generalised wall function including compressibility and pressure-gradient terms for the Spalart–Allmaras turbulence model. J. Turbul. 2019, 20, 626–660. [Google Scholar] [CrossRef]
- Ansys® CFX, Release 16.2, Help System, Modelling Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2015.
- Amiri, K.; Cervantes, M.J.; Mulu, B.G. Experimental investigation of the hydraulic loads on the runner of a Kaplan turbine model and the corresponding prototype. J. Hydraul. Res. 2015, 53, 452–465. [Google Scholar] [CrossRef]
- Wannassi, M.; Monnoyer, F. Numerical simulation of the flow through the blades of a swirl generator. Appl. Math. Model. 2016, 40, 1247–1259. [Google Scholar] [CrossRef]
- Sotoudeh, N.; Maddahian, R.; Cervantes, M.J. Investigation of rotating vortex rope formation during load variation in a Francis turbine draft tube. Renew. Energy 2020, 151, 238–254. [Google Scholar] [CrossRef]
- Bosioc, A.L.; Susan-Resiga, R.; Muntean, S.; Tanasa, C. Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone. J. Fluids Eng. 2012, 134, 1–11. [Google Scholar] [CrossRef]
- Lyon, D. The Discrete Fourier Transform, Part 4: Spectral Leakage. J. Object Technol. 2009, 8, 23–34. [Google Scholar] [CrossRef]
Parameter [Unit] | Value |
---|---|
Head | 55.5 |
Power | 10 |
Discharge | 20 |
Rotational speed | 600 |
Operating Point | Pout (MW) * | Torque (kN·m) |
---|---|---|
OP1 | 4.9 | 77.9 |
OP2 | 6.9 | 109.8 |
Study | Simulation Type | Numerical Domain | Domains Interfaces | Blade Clearances | Blade Epoxy | Blade Angle Adjustment [°] |
---|---|---|---|---|---|---|
Boundary condition | Steady | Penstock, Spiral Casing | Stage | - | - | - |
Clearance | Steady | 1 Stay vane, 1 Guide vane, 1 Runner blade, Draft tube | Stage | No | No | +0 |
Yes (constant) | ||||||
Yes (variable) | ||||||
Epoxy | Steady | 1 Stay vane, 1 Guide vane, 1 Runner blade, Draft tube | Stage | No | No | +0 |
Yes | ||||||
Runner blade angle | Steady | 1 Stay vane, 1 Guide vane, 1 Runner blade, Draft tube | Stage | No | No | +0 |
+2 | ||||||
+4 | ||||||
+6 | ||||||
+8 | ||||||
Unsteady | 1 Stay vane, 1 Guide vane, 1 Runner blade, Draft tube | Stage | No | No | +0 | |
+6 | ||||||
Unsteady | 1 Stay vane, 1 Guide vane, 6 Runner blades, Draft tube | Stage, Transient Rotor–Stator | No | No | +0 | |
+6 | ||||||
Mesh sensitivity | Steady | 1 Stay vane, 1 Guide vane, 1 Runner blade, Draft tube | Stage | No | No | +0 (β = −4.2°) |
Mesh Size [106 Element] | Hub Clearance [%D] | Shroud Clearance [%D] | |||
---|---|---|---|---|---|
LE | TE | LE | TE | ||
Geometry * | - | 0.02% | 0.55% | 0.09% | 0.004% |
No clearance (NoClr) | 1.12 | no clearance | |||
Constant clearance (CtClr) | 3.25 | 0.08% | 0.05% | ||
Variable clearance (VarClr) | 3.96 | 0.05% ** | 0.55% | 0.09% | 0.05% ** |
Single Runner Blade Passage | Full Runner | ||||
---|---|---|---|---|---|
Steady | Unsteady | ||||
Advection Scheme | High Resolution | Upwind | High Resolution | High Resolution | |
Δβ [°] | |||||
0 | yes | yes | yes | yes | |
+2 | yes | no | no | no | |
+4 | yes | no | no | no | |
+6 | yes | yes | yes | yes |
Domain | Element Type | Size [×106] | Min. Orthogonality Angle | Max. Expansion Factor | Aspect Ratio |
---|---|---|---|---|---|
Penstock and spiral casing | hexa | 3 | 20 | 22 | 2124 |
Stay vane and guide vane | hexa | 0.34 | 18.8 | 35 | 629 |
Runner | hexa | 1.16 | 48.7 | 10 | 3923 |
Draft tube | hexa | 3.18 | 30.5 | 9 | 7393 |
Simulation | R1 | R2 | R3 | R4 |
---|---|---|---|---|
Mesh size [×106] * | 0.16 | 0.43 | 1.12 | 2.36 |
Global size factor | 1.5 | 2 | 2.5 | 3 |
Edge refinement factor | 2.5 | 3 | 4 | 5 |
Min. orthogonality angle | 48.7 | 48.9 | 48.7 | 43.9 |
Max. expansion factor | 13 | 19 | 10 | 13 |
Aspect ratio | 727 | 1255 | 3923 | 11,677 |
y+(avg/max) | 97/2415 | 51/2234 | 25/1970 | 14/1484 |
Simulation | DT1 | DT2 | DT3 |
---|---|---|---|
Mesh size [×106] * | 1.01 | 1.89 | 3.18 |
Min. orthogonality angle | 30.8 | 30.6 | 30.5 |
Max. expansion factor | 11 | 10 | 9 |
Aspect ratio | 10,346 | 8624 | 7393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iovănel, R.G.; Dehkharqani, A.S.; Bucur, D.M.; Cervantes, M.J. Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve. Energies 2022, 15, 4121. https://doi.org/10.3390/en15114121
Iovănel RG, Dehkharqani AS, Bucur DM, Cervantes MJ. Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve. Energies. 2022; 15(11):4121. https://doi.org/10.3390/en15114121
Chicago/Turabian StyleIovănel, Raluca Gabriela, Arash Soltani Dehkharqani, Diana Maria Bucur, and Michel Jose Cervantes. 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve" Energies 15, no. 11: 4121. https://doi.org/10.3390/en15114121
APA StyleIovănel, R. G., Dehkharqani, A. S., Bucur, D. M., & Cervantes, M. J. (2022). Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve. Energies, 15(11), 4121. https://doi.org/10.3390/en15114121