Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid
Abstract
:1. Introduction
2. Synchronization Stability Analysis of the Physical Layer
2.1. Two-Layer Control Structure
2.2. Graph Theory
2.3. Physical Layer Model
2.4. Synchronization Stability Analysis
- Case 1: P/K = P/K. Because C > 0 is always true, it perfectly inherits the frequency synchronization capability of primary control;
- Case 2: P/K≠P/K and the conditions in (9) are satisfied. At this point, the synchronization of system frequency can still be achieved, but the synchronization capability is worse than the primary control. This is because as the deviation of P/KP/K increases, the conditions in (9) gradually approach the boundary.
- Case 3: P/K≠P/K and the conditions in (9) do not hold with the further increase in the maximum deviation between P/K. The microgrid frequency is not synchronized in this case.
3. Weight-Adaptive Robust Control
- To recovery the angular frequency to the nominal value.
- To ensure the synchronization stability of the physical layer. According to the analysis presented in Section 2.4, the ideal situation is to make the controllable parameters satisfy
3.1. Distributed Implementation of Control Objectives
3.2. Control Performance Analysis
3.2.1. Convergence Speed
3.2.2. Delay Robustness
3.3. Weight-Adaptive Robust Control
4. Case Studies
4.1. Study 1: The Realization of Control Objectives
4.2. Study 2: Convergence Speed
4.3. Study 3: Delay Robustness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aznavi, S.; Fajri, P.; Sabzehgar, R.; Asrari, A. Optimal management of residential energy storage systems in presence of intermittencies. J. Build. Eng. 2020, 29, 101149. [Google Scholar] [CrossRef]
- Kumtepeli, V.; Zhao, Y.; Naumann, M.; Tripathi, A.; Wang, Y.; Jossen, A.; Hesse, H. Design and analysis of an aging-aware energy management system for islanded grids using mixed-integer quadratic programming. Int. J. Energy Res. 2019, 43, 4127–4147. [Google Scholar] [CrossRef]
- Iris, C.; Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty. Omega 2021, 103, 102445. [Google Scholar] [CrossRef]
- Hussain, A.; Choi, I.S.; Im, Y.H.; Kim, H.M. Optimal Operation of Greenhouses in Microgrids Perspective. IEEE Trans. Smart Grid 2019, 10, 3474–3485. [Google Scholar] [CrossRef]
- Du, Y.; Tu, H.; Lukic, S. Distributed Control Strategy to AchieveSynchronized Operation of an Islanded MG. IEEE Trans. Smart Grid 2019, 10, 4487–4496. [Google Scholar] [CrossRef]
- Lassater, R.H. Smart distribution: Coupled microgrids. Proc. IEEE. 2011, 99, 1074–1082. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, W.; Qi, J.; Wang, X.; Zheng, W. Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Trans. Ind. Electron. 2019, 66, 1543–1551. [Google Scholar] [CrossRef]
- Karimi, M.; Wall, P.; Mokhlis, H.; Terzija, V. A New Centralized Adaptive Under-frequency Load Shedding Controller for Microgrids Based on a Distribution State Estimator. IEEE Trans. Power Del. 2017, 32, 370–380. [Google Scholar] [CrossRef]
- Babqi, A.J.; Yi, Z.; Etemadi, A.H. Centralized finite control set model predictive control for multiple distributed generator small-scale microgrids. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Serban, I.; Marinescu, C. Aggregate load-frequency control of a wind-hydro autonomous microgrid. Renew. Energy 2011, 36, 3345–3354. [Google Scholar] [CrossRef]
- Bidram, A.; Davoudi, A.; Lewis, F.L.; Guerrero, J.M. Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization. IEEE Trans. Power Syst. 2013, 28, 3462–3470. [Google Scholar] [CrossRef] [Green Version]
- Bidram, A.; Davoudi, A.; Lewis, F.L. A Multiobjective Distributed Control Framework for Islanded AC Microgrids. IEEE Trans. Ind. Informat. 2014, 10, 1785–1798. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Zhang, Z.; Chow, M.Y. Convergence Analysis of the Incremental Cost Consensus Algorithm Under Different Communication Network Topologies in a Smart Grid. IEEE Trans. Power Syst. 2012, 27, 1761–1768. [Google Scholar] [CrossRef]
- Morstyn, T.; Savkin, A.V.; Hredzak, B.; Agelidis, V.G. Multi-Agent Sliding Mode Control for State of Charge Balancing Between Battery Energy Storage Systems Distributed in a DC Microgrid. IEEE Trans. Smart Grid 2018, 9, 4735–4743. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.D.; Cintuglu, M.H.; Ma, T.; Mohammed, O.A. Multiagent-Based Optimal Microgrid Control Using Fully Distributed Diffusion Strategy. IEEE Trans. Smart Grid 2017, 8, 1997–2008. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, W. Novel Multiagent Based Load Restoration Algorithm for Microgrids. IEEE Trans. Smart Grid 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z. Distributed Optimal Resource Management Based on the Consensus Algorithm in a Microgrid. IEEE Trans. Ind. Electron. 2015, 62, 2584–2592. [Google Scholar] [CrossRef]
- Zuo, S.; Davoudi, A.; Song, Y.; Lewis, F.L. Distributed Finite-Time Voltage and Frequency Restoration in Islanded AC Microgrids. IEEE Trans. Ind. Electron. 2016, 63, 5988–5997. [Google Scholar] [CrossRef]
- Dehkordi, N.M.; Sadati, N.; Hamzeh, M. Distributed Robust Finite-Time Secondary Voltage and Frequency Control of Islanded Microgrids. IEEE Trans. Power Syst. 2017, 32, 3648–3659. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Z. Delay Effects on Consensus-Based Distributed Economic Dispatch Algorithm in Microgrid. IEEE Trans. Power Syst. 2018, 33, 602–612. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Z. Distributed Secondary and Optimal Active Power Sharing Control for Islanded Microgrids with Communication Delays. IEEE Trans. Smart Grid 2019, 10, 2002–2014. [Google Scholar] [CrossRef]
- Liu, W.; Gu, W.; Sheng, W.; Meng, X.; Xue, S.; Chen, M. Pinning-Based Distributed Cooperative Control for Autonomous Microgrids Under Uncertain Communication Topologies. IEEE Trans. Power Syst. 2016, 31, 1320–1329. [Google Scholar] [CrossRef]
- Tang, Z.; Hill, D.J.; Liu, T. A Novel Consensus-Based Economic Dispatch for Microgrids. IEEE Trans. Ind. Appli. 2018, 9, 3920–3922. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Yu, T.; Yang, B.; Xu, M. Robust collaborative consensus algorithm for decentralized economic dispatch with a practical communication network. Electr. Power Syst. Res. 2016, 140, 597–610. [Google Scholar] [CrossRef]
- Dong, J.; Xue, X. Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 2013, 11, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Simpson-Porco, J.W.; Dörfler, F.; Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 2013, 49, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Dörfler, F.; Bullo, F. Kron Reduction of Graphs With Applications to Electrical Networks. IEEE Trans. Circuits Syst. Regul. Pap. 2013, 60, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Song, H.H.; Han, L.K.; Wang, Y.C.; Wen, W.F.; Qu, Y.B. Kron Reduction Based on Node Ordering Optimization for Distribution Network Dispatching with Flexible Loads. Energies 2022, 15, 2964. [Google Scholar] [CrossRef]
- Cady, S.T.; Dominguez-Garcia, A.D.; Hadjicostis, C.N. A Distributed Generation Control Architecture for Islanded AC Microgrids. IEEE Trans. Control Syst. Technol. 2015, 23, 1717–1735. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, Z.; Xin, H.; Gan, D. Distributed Real-Time Optimal Power Flow Control in Smart Grid. IEEE Trans. Power Syst. 2017, 32, 3403–3414. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Boyd, S.; Kim, S.J. Distributed average consensus with least-mean-square deviation. Presented at the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, 24–28 July 2006. [Google Scholar]
- Jose, M.R.A.; Najmeh, B.; Juan, G.A.C.; Doris, S.; Juan, C.V.; Josep, M.G. Energy management system optimization in islanded microgrids: An overview and future trends. Renew. Sustain. Energy Rev. 2021, 149, 111327. [Google Scholar]
- Iris, C.; Jasmine, S. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Kafetzis, A.; Ziogou, C.; Panopoulos, K.D.; Papadopoulou, S.; Seferlis, P.; Voutetakis, S. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renew. Sustain. Energy Rev. 2020, 134, 110118. [Google Scholar] [CrossRef]
Kuramoto | Physical Layer |
---|---|
P/K | |
a | VVy/K |
DGs | DG1 | DG2 | DG3 | DG4 |
---|---|---|---|---|
0.55 | 0.55 | 1.1 | 1.1 | |
2.5 kW | 5 kW | 5 kW | 2.5 kW | |
Loads | load1 | load2/4 | load3 | load5 |
30 kW | 5 kW | 4 kW | 4 kW | |
Others | Lines | |||
0.7 | 1.0/0.7 | 0.1 Hz | 0.15 + j0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Song, H.; Liu, M.; Song, Z.; Qu, Y. Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid. Energies 2022, 15, 4136. https://doi.org/10.3390/en15114136
Yu G, Song H, Liu M, Song Z, Qu Y. Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid. Energies. 2022; 15(11):4136. https://doi.org/10.3390/en15114136
Chicago/Turabian StyleYu, Guoxing, Huihui Song, Meng Liu, Zongxun Song, and Yanbin Qu. 2022. "Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid" Energies 15, no. 11: 4136. https://doi.org/10.3390/en15114136
APA StyleYu, G., Song, H., Liu, M., Song, Z., & Qu, Y. (2022). Distributed Weight Adaptive Control for Frequency Regulation of Islanded Microgrid. Energies, 15(11), 4136. https://doi.org/10.3390/en15114136