Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR
Abstract
:1. Introduction
2. Core Model of Interval Prediction
2.1. Phase Space Reconstruction
2.2. Broad Learning System
2.3. Quantile Regression
3. Adaptive Rolling Error Correction Model Based on PSR-BLS-QR
3.1. Adaptive Rolling Error Correction
3.2. Interval Evaluation Indexes
- Prediction Interval Coverage Probability (PICP)
- 2.
- Prediction Interval Normalized Average Width (PINAW)
- 3.
- Optimal Correction Index
3.3. The Process of Interval Prediction
- The abnormal data of different datasets need be checked and corrected before training and testing;
- PSR is used to reconstruct the wind power time series and the input and output data of BLS model are constructed;
- Eighty percent of the input and output data is selected as training data and the rest is used for testing;
- The optimal parameters of the BLS model are found by the grid search method and the training data is used for training the model of BLS;
- Based on the training predicted value and the training actual value, the quantile regression model is used to determine the quantile coefficients of different confidence intervals, and the original wind power interval can be determined;
- The nonparametric kernel density error distributions of different power interval segments of upper and lower prediction boundaries under different confidence intervals are established respectively. Moreover, the optimal error correction power of different power interval segments of upper and lower prediction boundaries under different confidence intervals can be found by the optimal error correction index;
- BLS and QR are used to predict the new wind power curves to obtain the original power interval of wind power. The original power interval is corrected to obtain the final wind power interval according to the prediction power value.
4. Analysis of Examples
4.1. Datasets and Data Division
4.2. The Best Delay Amount and Embedding Dimension
4.3. The Effect of BLS Model
4.4. Error Correction
4.5. Comparison of Interval Prediction Methods
5. Conclusions
- The implicit characteristic information of the one-dimensional wind power is mined, and the correlation between the data can be constructed;
- Due to the superiority of the BLS model compared with other models, it improves the interval prediction by about 4% accuracy at a narrower interval width compared with the traditional prediction model, and the running time of BLS has obvious advantages;
- The adaptive error rolling correction model is used to make adaptive error corrections to further improve the interval prediction accuracy at the same or narrower interval width. Compared with the traditional interval prediction methods, the interval prediction accuracy can be improved by about 6–14%.
Author Contributions
Funding
Conflicts of Interest
References
- Niu, X.; Wang, J. A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting. Appl. Energy 2019, 241, 519–539. [Google Scholar] [CrossRef]
- Bhaskar, K.; Singh, S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3, 306–315. [Google Scholar] [CrossRef]
- Alkesaiberi, A.; Harrou, F.; Sun, Y. Efficient wind power prediction using machine learning methods: A comparative study. Energies 2022, 15, 2327. [Google Scholar] [CrossRef]
- Hong, D.Y.; Ji, T.Y.; Li, M.S.; Wu, Q.H. Ultra-short-term forecast of wind speed and wind power based on morphological high frequency filter and double similarity search algorithm. Int. J. Electr. Power Energy Syst. 2019, 104, 868–879. [Google Scholar] [CrossRef]
- Yang, X.Y.; Xing, G.; Ma, X.; Fu, G. A model of quantile regression with kernel extreme learning machine and wind power interval prediction. Acta Energ. Sol. Sin. 2020, 41, 300–306. [Google Scholar]
- Wang, H.Z.; Wang, G.B.; Li, G.Q.; Peng, J.C.; Liu, Y.T. Deep belief network based deterministic and probabilistic wind speed forecasting approach. Appl. Energy 2016, 182, 80–93. [Google Scholar] [CrossRef]
- Naik, J.; Dash, P.K.; Dhar, S. A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-Kernel Robust Ridge regression. Renew. Energy 2019, 136, 701–731. [Google Scholar] [CrossRef]
- Shrivastava, N.A.; Khosravi, A.; Panigrahi, B.K. Prediction Interval Estimation of Electricity Prices Using PSO-Tuned Support Vector Machines. IEEE Trans. Ind. Inform. 2015, 11, 322–331. [Google Scholar] [CrossRef]
- Han, L.; Jing, H.; Zhang, R.; Gao, Z. Wind power forecast based on improved Long Short Term Memory Network. Energy 2019, 189, 116300. [Google Scholar] [CrossRef]
- Mei, F.; Gu, J.Q.; Pei, X.; Zheng, J.Y. Photovoltaic interval prediction based on adaptive rolling matching prediction correction mode. Electr. Power Autom. Equip. 2022, 42, 92–98. [Google Scholar]
- Li, C.; Tang, G.; Xue, X.; Chen, X.; Wang, R.; Zhang, C. The short-term interval prediction of wind power using the deep learning model with gradient descend optimization. Renew. Energy 2020, 155, 197–211. [Google Scholar] [CrossRef]
- Liu, L.Y.; Meng, S.L.; Wu, J.J. Dynamic economic dispatch based on wind power forecast error interval. Electr. Power Autom. Equip. 2016, 36, 87–92. [Google Scholar]
- Zhang, Z.; Qin, H.; Liu, Y.; Yao, L.; Yu, X.; Lu, J.; Jiang, Z.; Feng, Z.-K. Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation. Energy Convers. Manag. 2019, 196, 1395–1409. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Zhao, Y.; Li, Q.; Wang, F. Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution. Energy Convers. Manag. 2020, 224, 113346. [Google Scholar] [CrossRef]
- Khosravi, A.; Mazloumi, E.; Nahavandi, S.; Creighton, D.; Van Lint, J.W.C. Prediction intervals to account for uncertainties in travel time prediction. IEEE Trans. Intell. Transp. Syst. 2011, 12, 537–547. [Google Scholar] [CrossRef]
- Chen, X.; Dong, Z.; Meng, K.; Xu, Y.; Wong, K.P.; Ngan, H.W. Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Trans. Power Syst. 2012, 27, 2055–2062. [Google Scholar] [CrossRef]
- Mei, F.; Gu, J.; Lu, J.; Lu, J.; Zhang, J.; Jiang, Y.; Shi, T.; Zheng, J. Day-ahead nonparametric probabilistic forecasting of photovoltaic power generation based on the LSTM-QRA ensemble model. IEEE Access 2020, 8, 166138–166149. [Google Scholar] [CrossRef]
- Van der Meer, D.W.; Shepero, M.; Svensson, A.; Widén, J.; Munkhammar, J. Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes. Appl. Energy 2018, 213, 195–207. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; De Falco, P.; Hong, T. Multivariate quantile regression for short term probabilistic load forecasting. IEEE Trans. Power Syst. 2020, 35, 628–638. [Google Scholar] [CrossRef]
- He, Y.; Liu, R.; Li, H.; Wang, S.; Lu, X. Short-term power load probability density forecasting method using kernel-based support vector quantile regression and copula theory. Appl. Energy 2017, 185, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Quan, H.; Srinivasan, D. An improved quantile regression neural network for probabilistic load forecasting. IEEE Trans. Smart Grid 2019, 10, 4425–4434. [Google Scholar] [CrossRef]
- He, F.; Zhou, J.; Mo, L.; Feng, K.; Liu, G.; He, Z. Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest. Appl. Energy 2020, 262, 114396. [Google Scholar] [CrossRef]
- Zhang, W.; Quan, H.; Srinivasan, D. Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination. Energy 2018, 160, 810–819. [Google Scholar] [CrossRef]
- Huang, H.; Xu, Q.G.; Zhang, Y.Q.; Shi, H.W. Weight-LSSVM Financial crisis warning model based on KPCA dimension reduction. Tatistics Decis. Mak. 2020, 36, 180–184. [Google Scholar]
- Li, C.; Cai, W.; Yu, C.; Zhao, R.; Zhang, Q. Electricity consumption behaviour analysis based on adaptive weighted-feature K-means-AP clustering. IET Gener. Transm. Distrib. 2019, 13, 2352–2361. [Google Scholar] [CrossRef]
- Wang, Y.F.; Fu, Y.C.; Xue, H. Improved prediction method of PV output power based on optimised chaotic phase space reconstruction. IET Renew. Power Gener. 2020, 14, 1831–1840. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, H.; Zheng, H. Short-term photovoltaic power forecasting based on similar weather clustering and IHGWO-WNN-AdaBoost model. High Volt. Eng. 2021, 47, 1185–1194. [Google Scholar]
- Wang, X.; Huang, K.; Zheng, Y.; Li, L.X.; Lang, Y.B.; Wu, H. Short-term forecasting method of photovoltaic output power based on PNN/PCA/SS-SVR. Autom. Electr. Power Syst. 2016, 40, 156–162. [Google Scholar]
- Shi, T.; Mei, F.; Lu, J.; Lu, J.; Pan, Y.; Zhou, C.; Wu, J.; Zheng, J. Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting. Energies 2019, 12, 4349. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, J.; Peng, B. A hybrid neural genetic method for load forecasting based on phase space reconstruction. Kybernetes 2010, 39, 1291–1297. [Google Scholar]
- Zhou, D.X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 2020, 48, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Elia, Wind Power Data. Available online: http://www.elia.be/en/griddata/power-generation/wind-power (accessed on 1 January 2020).
Model | Average Prediction Index | Set 1 | Set 2 | Set 3 | |||
---|---|---|---|---|---|---|---|
March | June | September | December | ||||
BPNN | PICP | 56.1 | 53.6 | 56.7 | 57.5 | 57.9 | 55.9 |
PINAW | 0.101 | 0.104 | 0.102 | 0.103 | 0.103 | 0.101 | |
Time/s | 23.2 | 45.6 | 10.2 | 11.3 | 11.6 | 10.9 | |
LSTM | PICP | 56.1 | 54.1 | 57.1 | 57.8 | 57.6 | 56.8 |
PINAW | 0.101 | 0.105 | 0.102 | 0.103 | 0.103 | 0.102 | |
Time/s | 44.5 | 90.1 | 17.3 | 17.6 | 15.1 | 16.0 | |
RBF | PICP | 58.2 | 54.5 | 56.9 | 57.1 | 57.3 | 56.8 |
PINAW | 0.101 | 0.105 | 0.101 | 0.102 | 0.103 | 0.101 | |
Time/s | 162.2 | 302.5 | 50.1 | 50.2 | 50.1 | 50.1 | |
BLS | PICP | 60.8 | 59.4 | 62.3 | 63.2 | 63.3 | 61.4 |
PINAW | 0.099 | 0.103 | 0.101 | 0.102 | 0.102 | 0.101 | |
Time/s | 0.7 | 1.9 | 0.4 | 0.4 | 0.4 | 0.4 | |
KELM | PICP | 56.6 | 55.1 | 57.6 | 58.1 | 58.6 | 56.9 |
PINAW | 0.100 | 0.103 | 0.101 | 0.103 | 0.103 | 0.100 | |
Time/s | 1.5 | 3.5 | 0.8 | 0.9 | 0.8 | 0.8 | |
XGBoost | PICP | 57.4 | 56.3 | 58.6 | 59.3 | 60.0 | 57.3 |
PINAW | 0.102 | 0.104 | 0.102 | 0.104 | 0.104 | 0.102 | |
Time/s | 7.5 | 20.3 | 6.2 | 5.9 | 6.7 | 6.3 |
Confidence Interval | BPNN | LSTM | RBF | BLS | ELM | XGBoost |
---|---|---|---|---|---|---|
10% | [20, 15, 10] | 30 | 0.1 | [5, 10, 19] | [500, 0.5, 0.5] | 25 |
20% | [17, 11, 8] | 35 | 0.1 | [4, 15, 21] | [500, 0.5, 0.5] | 25 |
30% | [18, 14, 10] | 32 | 0.1 | [6, 3, 18] | [500, 0.5, 0.5] | 25 |
40% | [15, 7, 3] | 30 | 0.1 | [10, 8, 18] | [500, 0.5, 0.5] | 20 |
50% | [18, 15, 7] | 35 | 1 | [15, 7, 10] | [600, 1, 0.5] | 20 |
60% | [14, 9, 7] | 37 | 1 | [8, 8, 12] | [600, 1, 1] | 30 |
70% | [15, 12, 10] | 35 | 1 | [12, 12, 20] | [600, 1, 1] | 30 |
80% | [18, 14, 10] | 30 | 1 | [4, 9, 25] | [600, 1, 1] | 20 |
90% | [18, 15, 8] | 32 | 1 | [7, 14, 19] | [600, 1, 1] | 20 |
Confidence Interval | BPNN | LSTM | RBF | ||||||
---|---|---|---|---|---|---|---|---|---|
PICP | PINAW | Running Time/s | PICP | PINAW | Running Time/s | PICP | PINAW | Running Time/s | |
10% | 21.9 | 0.017 | 25.3 | 23.3 | 0.018 | 38.5 | 24.2 | 0.018 | 164.5 |
20% | 32.5 | 0.035 | 23.1 | 33.4 | 0.036 | 49.6 | 31.3 | 0.035 | 164.6 |
30% | 43.8 | 0.068 | 24.2 | 45.7 | 0.067 | 48.7 | 46.7 | 0.068 | 160.1 |
40% | 52.1 | 0.084 | 20.5 | 55.8 | 0.083 | 40.3 | 55.1 | 0.082 | 160.3 |
50% | 59.5 | 0.103 | 23.9 | 61.3 | 0.104 | 36.1 | 65.3 | 0.102 | 168.6 |
60% | 68.7 | 0.124 | 20.9 | 69.5 | 0.129 | 55.2 | 70.0 | 0.132 | 160.4 |
70% | 69.9 | 0.138 | 21.7 | 72.9 | 0.131 | 50.1 | 73.3 | 0.137 | 160.1 |
80% | 76.4 | 0.151 | 24.4 | 78.3 | 0.154 | 36.2 | 76.5 | 0.152 | 160.1 |
90% | 80.3 | 0.181 | 25.1 | 80.9 | 0.179 | 45.7 | 81.6 | 0.180 | 161.2 |
Average | 56.1 | 0.101 | 23.2 | 56.1 | 0.101 | 44.5 | 58.2 | 0.101 | 162.2 |
Confidence Interval | BLS | KELM | XGBoost | ||||||
PICP | PINAW | Running Time/s | PICP | PINAW | Running Time/s | PICP | PINAW | Running Time/s | |
10% | 28.1 | 0.018 | 0.9 | 22.2 | 0.018 | 1.1 | 23.9 | 0.019 | 7.6 |
20% | 36.5 | 0.036 | 0.8 | 30.1 | 0.036 | 1.3 | 32.8 | 0.035 | 7.4 |
30% | 49.1 | 0.069 | 0.5 | 44.3 | 0.068 | 1.4 | 45.1 | 0.069 | 7.4 |
40% | 57.8 | 0.081 | 0.7 | 53.2 | 0.080 | 1.1 | 51.9 | 0.084 | 6.9 |
50% | 65.6 | 0.096 | 0.7 | 60.1 | 0.098 | 1.7 | 61.5 | 0.102 | 8.1 |
60% | 70.1 | 0.125 | 0.8 | 69.2 | 0.131 | 1.6 | 68.8 | 0.134 | 7.6 |
70% | 76.1 | 0.136 | 0.9 | 71.2 | 0.139 | 1.7 | 72.3 | 0.139 | 7.8 |
80% | 79.3 | 0.151 | 0.8 | 77.8 | 0.155 | 1.8 | 78.0 | 0.157 | 7.3 |
90% | 84.6 | 0.178 | 0.5 | 81.2 | 0.179 | 1.6 | 82.3 | 0.183 | 7.3 |
Average | 60.8 | 0.099 | 0.7 | 56.6 | 0.100 | 1.5 | 57.4 | 0.102 | 7.5 |
Datasets | Before Error Correction | After Error Correction | Correction Improvement | |||
---|---|---|---|---|---|---|
PICP | PINAW | PICP | PINAW | |||
Set 1 | 60.8 | 0.099 | 68.9 | 0.100 | 12.3% | |
Set 2 | 59.4 | 0.103 | 67.2 | 0.103 | 13.1% | |
Set 3 | March | 62.3 | 0.101 | 70.5 | 0.102 | 12.2% |
June | 63.2 | 0.102 | 71.4 | 0.102 | 13.0% | |
September | 63.3 | 0.102 | 72.3 | 0.103 | 13.3% | |
December | 61.4 | 0.101 | 69.3 | 0.102 | 11.9% |
Confidence Interval | Before Error Correction | After Error Correction | ||
---|---|---|---|---|
PICP | PINAW | PICP | PINAW | |
10% | 28.1 | 0.018 | 35.8 | 0.023 |
20% | 36.5 | 0.036 | 45.9 | 0.042 |
30% | 49.1 | 0.069 | 56.7 | 0.072 |
40% | 57.8 | 0.081 | 66.7 | 0.088 |
50% | 65.6 | 0.096 | 75.9 | 0.118 |
60% | 70.1 | 0.125 | 79.9 | 0.123 |
70% | 76.1 | 0.136 | 82.3 | 0.131 |
80% | 79.3 | 0.151 | 86.9 | 0.145 |
90% | 84.6 | 0.178 | 90.3 | 0.168 |
Average | 60.8 | 0.099 | 68.9 | 0.100 |
Method | Average Prediction Index | Set 1 | Set 2 | Set 3 | |||
---|---|---|---|---|---|---|---|
March | June | September | December | ||||
Method 1 | PICP | 55.7 | 53.4 | 60.1 | 62.8 | 63.1 | 60.5 |
PINAW | 0.101 | 0.106 | 0.103 | 0.104 | 0.104 | 0.103 | |
Method 2 | PICP | 60.9 | 55.9 | 62.3 | 63.6 | 66.1 | 63.1 |
PINAW | 0.100 | 0.103 | 0.102 | 0.103 | 0.103 | 0.102 | |
The Proposed Method | PICP | 68.9 | 67.2 | 70.5 | 71.4 | 72.3 | 69.3 |
PINAW | 0.100 | 0.103 | 0.102 | 0.102 | 0.103 | 0.102 |
Confidence Interval | Method 1 | Method 2 | The Proposed Method | |||
---|---|---|---|---|---|---|
PICP | PINAW | PICP | PINAW | PICP | PINAW | |
10% | 21.1 | 0.014 | 27.5 | 0.017 | 35.8 | 0.023 |
20% | 29.6 | 0.032 | 34.1 | 0.034 | 45.9 | 0.042 |
30% | 37.9 | 0.063 | 48.1 | 0.066 | 56.7 | 0.072 |
40% | 42.9 | 0.075 | 56.3 | 0.079 | 66.7 | 0.088 |
50% | 56.3 | 0.097 | 66.7 | 0.104 | 75.9 | 0.118 |
60% | 69.6 | 0.127 | 72.1 | 0.129 | 79.9 | 0.123 |
70% | 73.8 | 0.139 | 76.9 | 0.137 | 82.3 | 0.131 |
80% | 81.5 | 0.167 | 80.3 | 0.156 | 86.9 | 0.145 |
90% | 93.1 | 0.191 | 86.8 | 0.181 | 90.3 | 0.168 |
Average | 55.7 | 0.101 | 60.9 | 0.100 | 68.9 | 0.100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Xu, C.; Ma, L.; Xue, F. Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR. Energies 2022, 15, 4137. https://doi.org/10.3390/en15114137
Ran X, Xu C, Ma L, Xue F. Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR. Energies. 2022; 15(11):4137. https://doi.org/10.3390/en15114137
Chicago/Turabian StyleRan, Xu, Chang Xu, Lei Ma, and Feifei Xue. 2022. "Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR" Energies 15, no. 11: 4137. https://doi.org/10.3390/en15114137
APA StyleRan, X., Xu, C., Ma, L., & Xue, F. (2022). Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR. Energies, 15(11), 4137. https://doi.org/10.3390/en15114137