Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules
Abstract
:1. Introduction
2. Experimental Setup
2.1. Photovoltaic System Description
2.2. Sohar Metrological Data
2.3. Performance Evaluation Criteria
2.4. ANN Approach and Design
3. Results and Discussion
- Energy production (E) and yields (SY), life cycle costs (LCC), and Cost of energy (CoE).
- Performance ratio (R), Efficiencies (η), losses (Ploss), and recovery period (PBP).
- Present worth (MC), the replacement cost percentage (RC), and capacity factor (CF).
3.1. Experimental Results
- Clean monocrystalline (PV1) always have the highest current, voltage, and power, while flexible module (PV5) has the lowest parameters. However, the polycrystalline current is higher than the flexible module and lower than the monocrystalline module;
- In the middle of the day, the current drop due to the dust increased from 24.24% to 28.57%, for the first and 35th days, respectively. The voltage drops are insignificant on the first day of the experiment for the three technologies. However, the flexible PV module showed the highest drop on the last day of the experiment, which could be due to the small PV size compared to the other two technologies;
- The power degradation for the three technologies is 30.24%, 28.94%, and 36.21%, for monocrystalline, polycrystalline, and flexible PV modules, respectively. In general, the monocrystalline is more affected by dust accumulation.
3.2. ANN Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Waeli, A.H.; Kazem, H.A.; Yousif, J.H.; Chaichan, M.T.; Sopian, K. Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renew. Energy 2020, 145, 963–980. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A. Prediction and evaluation of photovoltaic-thermal energy systems production using artificial neural network and experimental dataset. Case Stud. Therm. Eng. 2021, 27, 101297. [Google Scholar] [CrossRef]
- Yousif, J. Implementation of Big Data Analytics for Simulating, Predicting & Optimizing the Solar Energy Production. Appl. Comput. J. 2021, 1, 133–140. [Google Scholar]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy 2021, 233, 121240. [Google Scholar] [CrossRef]
- Appels, R.; Lefevre, B.; Herteleer, B.; Goverde, H.; Beerten, A.; Paesen, R.; De Medts, K.; Driesen, J.; Poortmans, J. Effect of soiling on photovoltaic modules. Sol. Energy 2013, 96, 283–291. [Google Scholar] [CrossRef]
- Rajput, D.S.; Sudhakar, K. Effect of dust on the performance of solar PV panel. Int. J. ChemTech Res. 2013, 5, 1083–1086. [Google Scholar]
- Guo, B.; Javed, W.; Figgis, B.W.; Mirza, T. Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar. In Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Klugmann-Radziemska, E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew. Energy 2015, 78, 418–426. [Google Scholar] [CrossRef]
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Ali, H.M.; Zafar, M.A.; Bashir, M.A.; Nasir, M.A.; Ali, M.; Siddiqui, A.M. Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan. Therm. Sci. 2017, 21, 915–923. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Tian, Z.; Dong, Y.; Zhou, Y.; Wang, X.; Wang, D. Experimental study on the effect of dust deposition on photovoltaic panels. Energy Procedia 2019, 158, 483–489. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Alwaeli, A.H. The impact of dust’s physical properties on photovoltaic modules outcomes. In Renewable Energy and Sustainable Buildings; Springer: Cham, Switzerland, 2020; pp. 495–506. [Google Scholar]
- Kazem, H.A.; Chaichan, M.T.; Alwaeli, A.H.; Sopian, K. A novel model and experimental validation of dust impact on grid-connected photovoltaic system performance in Northern Oman. Sol. Energy 2020, 206, 564–578. [Google Scholar] [CrossRef]
- Ziółkowski, J.; Oszczypała, M.; Małachowski, J.; Szkutnik-Rogoż, J. Use of artificial neural networks to predict fuel consumption on the basis of technical parameters of vehicles. Energies 2021, 14, 2639. [Google Scholar] [CrossRef]
- Leite Coelho da Silva, F.; da Costa, K.; Canas Rodrigues, P.; Salas, R.; López-Gonzales, J.L. Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector. Energies 2022, 15, 588. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Ahmadein, M.; Mosleh, A.O.; Sadasivuni, K.K.; Alsaleh, N.A. Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Stud. Therm. Eng. 2021, 28, 101671. [Google Scholar] [CrossRef]
- Amoatey, P.; Al-Hinai, A.; Al-Mamun, A.; Baawain, M.S. A review of recent renewable energy status and potentials in Oman. Sustain. Energy Technol. Assess. 2022, 51, 101919. [Google Scholar] [CrossRef]
- Kazem, H.A.; Yousif, J.; Chaichan, M.T.; Al-Waeli, A.H. Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems. Int. J. Energy Res. 2019, 43, 8572–8591. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A.; Alattar, N.N.; Elhassan, I.I. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Stud. Therm. Eng. 2019, 13, 100407. [Google Scholar] [CrossRef]
- Fathi, M.; Parian, J.A. Intelligent MPPT for photovoltaic panels using a novel fuzzy logic and artificial neural networks based on evolutionary algorithms. Energy Rep. 2021, 7, 1338–1348. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Q.; Ma, P. Photovoltaic generation power prediction research based on high quality context ontology and gated recurrent neural network. Sustain. Energy Technol. Assess. 2021, 45, 101191. [Google Scholar] [CrossRef]
- Moreira, M.O.; Balestrassi, P.P.; Paiva, A.P.; Ribeiro, P.F.; Bonatto, B.D. Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renew. Sustain. Energy Rev. 2021, 135, 110450. [Google Scholar] [CrossRef]
- Han, W.; Zheng, C.; Zhang, R.; Guo, J.; Yang, Q.; Shao, J. Modular neural network via exploring category hierarchy. Inf. Sci. 2021, 569, 496–507. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zhang, J.; Qiao, J. Design of a self-organizing reciprocal modular neural network for nonlinear system modeling. Neurocomputing 2020, 411, 327–339. [Google Scholar] [CrossRef]
- Azuatalam, D.; Paridari, K.; Ma, Y.; Förstl, M.; Chapman, A.C.; Verbič, G. Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation. Renew. Sustain. Energy Rev. 2019, 112, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Kazem, H.A.; Yousif, J.H.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. Long-term power forecasting using FRNN and PCA models for calculating output parameters in solar photovoltaic generation. Heliyon 2022, 8, e08803. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Clean. Prod. 2020, 276, 123187. [Google Scholar] [CrossRef]
- Ji, L.; Liang, X.; Xie, Y.; Huang, G.; Wang, B. Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages. Energy 2021, 225, 120323. [Google Scholar] [CrossRef]
Reference | Year | Country | % Reduction | Days of Experiment (Days) |
---|---|---|---|---|
Appels R et al. [5] | 2013 | Belgium | Ploss = 3% and 4% | 365 |
Rajput et al. [6] | 2013 | India | Ploss = 0.33% and efficiency reduction = 89% | 365 |
Guo et al. [7] | 2015 | Qatar | Ploss = 0.46%/day/10–20%/month | 365 |
Klugmann-Radziemska [8] | 2015 | Poland | Ploss = 0.8% | 365 |
Saidan et al. [9] | 2016 | Iraq | Ploss = 6.24%/day, 11.8%/week and 18.74%/month | 30 |
ALI et al. [10] | 2017 | Pakistan | Ploss = 20% and 16% efficiency reduction = 3.55% and 3.01%, | 90 |
Gholami et al. [11] | 2018 | Iran | Ploss = 21.47% | 70 |
Chen et al. [12] | 2018 | China | Ploss = 34% | 80 |
Hachicha et al. [13] | 2019 | UAE | Ploos = 12.7% | 150 |
Kazem et al. [14] | 2020 | Oman | Ploss = 0.05% | 365 |
Mono-Crystalline Photovoltaic | Polycrystalline Photovoltaic | Fixable Mono-Crystalline Photovoltaic | |||||
---|---|---|---|---|---|---|---|
Parameters | Value | Unit | Value | Unit | Value | Unit | |
Maximum power | 100 | W | 100 | W | 100 | W | |
Maximum power voltage (Vmp) | 18 | V | 18 | V | 18 | V | |
Maximum power Current (Imp) | 5.56 | A | 5.56 | A | 5.56 | A | |
Open circuit Voltage (Voc) | 21.5 | V | 22.0 | V | 21.5 | V | |
Current short circuit (Isc) | 6.22 | A | 6.06 | A | 6.20 | A | |
Maximum System Voltage | 1000 | V | 1000 | V | 600 | V | |
Maximum series Fuse | 15 | A | 15 | A | 15 | A | |
Operating Temperature | −20°–90° | C | −20°–85° | C | −40°–90° | C | |
Size | Length | 1200 | mm | 1200 | mm | 320 | mm |
Width | 540 | mm | 540 | mm | 240 | mm | |
Height | 35 | mm | 35 | mm | 3 | mm | |
Weight | 7.3 | kg | 7.3 | kg | 0.4 | kg |
Evaluation Matric | Equation | Variables | Meaning |
---|---|---|---|
Mean square error (MSE) | yi: experimental data fi: predicted data N: number of the exemplars | Determine the average squared difference between the estimated results and the actual data. | |
Mean absolute error (MAE) | yi: experimental data fi: predicted data N: number of the exemplars | Determine the average deviation of predicted results from observed data | |
Root mean square error (RMSE) | yi: experimental data fi: predicted data N: number of the exemplars | Measure the square root of the average of the square’s errors. | |
Coefficient of determination (R2) | yi: experimental data : mean of the experimental data fi: predicted data N: number of the exemplars | Evaluate the validity of performance results of predicted are indicated by a (R2) value that is close to 1. | |
Normalized mean squared error (NMSE) | P: number of processing elements N: number of the exemplars dij: experimental output | Determine the percentage of normalized MSE between the observed data and predicted results. | |
The correlation coefficient (r) | xi: x-variable values : mean of the xi values yi: y-variable values : mean of the yi values N: number of the exemplars | The degree to which the estimated data are aligned with a linear regression line. | |
Adjust (R2) | n: number of the exemplars k: number of the model variables | Calculate the percentage of variation explained by only the independent variables that affect the dependent variable |
Equation | Meaning |
---|---|
Specify the yield or factor (SY or YF), which is the AC energy output of the system divided by the peak power of the installed PV array at standard test conditions (STC) at a temperature of 25 °C. | |
Estimate the capacity factor (CF) benefits obtained from the system. | |
The full rated power (PR) for 24 h per day for a year, which used to evaluate the used PV system quality. | |
Life cycle cost (LCC) is the sum of the capital cost (Ccapital) plus all present costs (R) minuse (Csalvage) | |
Rated power (W) | |
The capital cost of a project | |
The maintenance cost (USD) | |
The maintenance cost of the rth | |
The system total maintenance cost | |
The replacement cost of the kth component (USD) | |
Cost of Energy | |
PV generated power | |
The cell temperature (°C) | |
PV electrical energy generated | |
The PV array | |
The PV system |
Variable | Observations | Obs. with Missing Data | Obs. without Missing Data | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
SolarRad. | 600 | 0 | 600 | 60.700 | 762.200 | 467.454 | 157.977 |
Pow-PV1 | 600 | 0 | 600 | 19.136 | 77.634 | 60.759 | 14.069 |
Pow-PV2 | 600 | 0 | 600 | 10.100 | 61.548 | 46.539 | 12.339 |
Pow-PV3 | 600 | 0 | 600 | 9.246 | 60.420 | 47.937 | 12.877 |
Pow-PV4 | 600 | 0 | 600 | 2.222 | 62.491 | 46.371 | 16.250 |
Pow-PV5 | 600 | 0 | 600 | 6.650 | 27.126 | 23.786 | 3.958 |
Pow-PV6 | 600 | 0 | 600 | 12.648 | 39.116 | 31.992 | 5.288 |
Performance | Pow-PV1 | Pow-PV2 | Pow-PV3 | Pow-PV4 | Pow-PV5 | Pow-PV6 |
---|---|---|---|---|---|---|
MSE | 0.13254 | 0.15142 | 0.12225 | 0.24770 | 0.2161 | 0.46565 |
RMSE | 0.36406 | 0.38912 | 0.34964 | 0.49769 | 0.46486 | 0.68238 |
NMSE | 0.06594 | 0.09803 | 0.06529 | 0.082361 | 0.77494 | 0.78537 |
MAE | 2.59588 | 2.62270 | 2.46235 | 3.38632 | 3.53922 | 4.56511 |
Min Abs Error | 0.04102 | 0.04285 | 0.05226 | 0.09093 | 0.11083 | 0.18580 |
r | 0.97264 | 0.96343 | 0.97485 | 0.97116 | 0.56483 | 0.55038 |
R2 | 0.94602 | 0.92819 | 0.95033 | 0.94315 | 0.31903 | 0.30291 |
Adj. R2 | 0.94592 | 0.92806 | 0.95024 | 0.94305 | 0.31789 | 0.30174 |
Reference | Year | Country | % Reduction Daily | Days of Experiment |
---|---|---|---|---|
Guo et al. [7] | 2015 | Qatar | Ploss = 0.46% | 365 |
Saidan et al. [9] | 2016 | Iraq | Ploss = 0.208% | 30 |
Gholami et al. [11] | 2018 | Iran | Ploss = 0.306% | 70 |
Hachicha et al. [13] | 2019 | UAE | Ploos = 0.084% | 150 |
Kazem et al. [14] | 2020 | Oman | Ploss = 0.05% | 365 |
Proposed Pow-PV2 | 2022 | Oman | Ploos = 1.008% (monocrystalline cell) | 30 |
Proposed Pow-PV4 | 2022 | Oman | Ploss = 0.964% (polycrystalline) | 30 |
Proposed Pow-PV4 | 2022 | Oman | Ploss = 1.207% (flexible) | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousif, J.H.; Kazem, H.A.; Al-Balushi, H.; Abuhmaidan, K.; Al-Badi, R. Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules. Energies 2022, 15, 4138. https://doi.org/10.3390/en15114138
Yousif JH, Kazem HA, Al-Balushi H, Abuhmaidan K, Al-Badi R. Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules. Energies. 2022; 15(11):4138. https://doi.org/10.3390/en15114138
Chicago/Turabian StyleYousif, Jabar H., Hussein A. Kazem, Haitham Al-Balushi, Khaled Abuhmaidan, and Reem Al-Badi. 2022. "Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules" Energies 15, no. 11: 4138. https://doi.org/10.3390/en15114138
APA StyleYousif, J. H., Kazem, H. A., Al-Balushi, H., Abuhmaidan, K., & Al-Badi, R. (2022). Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules. Energies, 15(11), 4138. https://doi.org/10.3390/en15114138