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Abstract: This paper proposes the full simulation model for the electrical analysis of all-electric
ship (AES) based on a medium voltage DC power system. The AES has become popular both in
the commercial and the military areas due to a low emission, a high fuel consumption efficiency,
and a wide applicability. In spite of many advantages, it is complex and difficult to construct the
whole system with many mechanical and electrical components onboard. Full electrical analysis is
essentially required to simplify the design of the AES, a control and optimization of a ship electric
system. The proposed full simulation model of the AES includes the mechanical and the electrical
elements by using the MATLAB/Simulink. The mechanical elements are comprised of a steam
turbine and a hydrodynamic model of a ship which is adopted by an average value model that is
based on the characteristic equation of the mechanical system. The electrical elements are developed
by full detailed models which consist of generators, a propulsion motor, a battery, and a power
electronics system. In order to design the distribution of the ship, the presented simulation model
combined the mechanical and the electrical systems. The consistency of the developed individual
models and the integrated AES was verified through the results of the presence or absence of the
energy storage system for the speed acceleration and deceleration, loss of prime mover, and full
propulsion load rejection.

Keywords: all-electric ship (AES); simulation; shipboard; medium DC power system; ship operating
condition

1. Introduction

The all-electrical ship (AES) is becoming an advanced technology that will dominate
the future shipbuilding industry. The conventional ship directly generates a rotating
force by a prime mover with a propeller that is connected to a high-speed reduction gear.
Hence in the past, the efficiency of the propeller system was a critical factor. However,
nowadays, as ships become faster and larger, vibration and noise have become the main
problems [1–5]. Unlike conventional propulsion system, the AES is directly applied from
a power supply to the high-output propulsion motor. Adopting an electric ship system
offers many advantages: space utilization, a reduction of vibration and noise, and reduced
fuel consumption of the ship. Furthermore, automation and reliability are increased,
which makes the electric propulsion system suitable to reduce labor and the installation
of equipment.

Moreover, a medium voltage DC system offers higher energy efficiency by reducing
the number of energy conversion steps to feed a large percent of DC loads, higher power
density, lower losses, and greater space flexibility. In addition, it is easier to integrate energy
storage systems in a DC power system than an AC power system [6,7].

Despite the benefits that are offered by the AES, the electric ship network is infinite,
and different from a land electric system. Since the AES operates in various conditions, the
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electric load and the fluctuation of power consumption change within wide ranges. As
such, understanding the interaction between the mechanical and the complex electrical
components of the AES is challenging. Also, experimental verification is complicated
since the capacity of the ship components is large and complex. A large number of
simulation studies have been conducted on the electrical analysis of the AES with a variety
of conditions [8–14]. The papers in [8–11] have studied transient responses according to
the generator output and load regulation of AES. The paper in [12] deals with the effect
of variation of AES parameters. The paper in [13] suggests the general design method
for AES. The paper in [14] improves the stability of AES using SMES/battery. The paper
in [15] proposes the optimal operation strategy under fault conditions. Therefore, this
paper proposes a full simulation model for the electrical characteristic analysis of the AES
with medium voltage DC system according to the operating conditions and the insertion of
the energy storage system.

2. System Configuration and Modeling

Figure 1 shows the full simulation block diagram of the AES. The full simulation
model is made with the mechanical and the electrical components that include the power
generation system, propulsion system, power electronics system, energy storage system,
and power management system, listed in Table 1. The detailed simulation model of the
mechanical components and the electrical model are referred to [16–33]: the system turbine,
the three-phase synchronous generator, the exciter and the governor [16–18], the three-
phase diode rectifier, the three-phase PM motor, the DC/AC inverter, the DC/DC buck
converter, DC/AC inverter and bi-directional DC/DC converter [19–21], the hydrodynamic
model of the ship [22–24], the li-ion battery [25–28], the ship service load [28,29], the
distribution system, and the power management system [30–32]. The main DC bus feeds
the propulsion motor through a DC/AC PWM inverter. The rated power of the propulsion
motor is approximately 90% of the total generation power. Other ship service loads are
connected to the secondary low voltage bus through DC/DC converters and a DC/AC
inverter. The detailed parameters are referred in the Appendix A.

Table 1. Parameters of the simulation elements.

System Components (Unit)

Power Generation

− System turbine (2)
− Three-phase synchronous generator (2)
− Exciter & Governor (2)
− Three-phase diode rectifier (2)

Propulsion System

− Three-phase PM motor (2)
− DC/AC inverter (2)
− Hydrodynamics model of ship (1)

Power Electronics System
− DC/DC buck converter (1)
− DC/AC inverter (1)

Energy Storage System
− Li-ion battery (1)
− Bi-directional DC/DC converter (1)

Ship service load, Distribution system, Power management system
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Figure 1. Full simulation model of the AES implemented in MATLAB/Simulink.

2.1. Power Generation System

The power generation system serves as an electrical power supply for the AES. It is
composed of two steam turbines, two three-phase synchronous generators, two exciter-
governors, and two three-phase diode rectifiers.

The steam turbine extracts thermal energy from the pressurized steam. And this steam
causes mechanism work on a rotating shaft. [16].

MATLAB/Simulink provides the preset model of the steam turbine which embodies
the transfer function of the heat and the flow [16,22,29]. The output torque of the steam
turbine Tm can be expressed as Equation (1), where k is the coefficient of the turbine torque
and Q is the flow rate.

Tm = ∑ kQ (1)

The three-phase synchronous generator is used by adopting the modified preset model
in MATLAB/Simulink. The three-phase diode rectifier is chosen to provide a constant DC
voltage. It cannot control the generator output voltage. The voltage is regulated by the
excitation system. The excitation system ensures the quality of the generator voltages and
the reactive power. The applied excitation system is IEEE standard type of DC1A [17,18].

The governor regulates the fuel injection to control the turbine speed. This is integrated
into the power generation system.

Figure 2 shows the waveforms of the simulation results of the power generation system.
Figure 2a shows the output power of the propulsion motor which was driven by the ramped
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reference. According to the demand of the load power, Figure 2b–d shows the output power
of the steam turbine, DC bus voltage, and the frequency of the generator, respectively.
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Figure 2. Simulation results of the power generation system: (a) Output power of the propulsion
motor; (b) Output power of the steam turbine; (c) DC bus voltage; and (d) Frequency of the generator.

2.2. Propulsion System

The propulsion system generates the driving force for all-electric ships. It consists
of two controllable DC/AC PWM inverters, two propulsion motors, and a ship hydro-
dynamics model [19–21,23]. Various types of propulsion motor have been researched.
The propulsion motor adopted the permanent magnet synchronous motor for the simple
analysis in this paper. The motor parameters have been modified for the simulation of the
MATLAB/Simulink model. The d-q voltages and the torque equations of the propulsion
motor are shown in Equation (2), where Rs, Ls, λm, ωr, ωm, Te, TL, Jm, and Bm denote
the stator resistance, the stator inductance, the flux density, the rotational angular speed,
the mechanical speed, the electric torque, the load torque, the coefficient inertia, and the
friction, respectively. 

vr
ds = Rsirds + Ls

d
dt irds −ωrLsirqs

vr
qs = Rsirqs + Ls

d
dt irqs ∓ωrLsirds + λmωr

Te = TL + Jm
d
dt ωm + Bmωm

(2)

The DC/AC PWM inverter produces the variable output voltage and the frequency
for the control of the propulsion motor. Modeling of the propeller can be acquired from the
relationships with thrust, torque, and speed. It can be expressed by Equation (3), where Tp
is the propeller thrust [N], nm is the propeller shaft speed [rpm], and Qp is the propeller
torque [Nm]. The parameters ρ, Dp, KT , and KQ are the water density, the propeller
diameter, the thrust coefficient, and the torque coefficient, respectively. VA is the advanced



Energies 2022, 15, 4184 5 of 16

velocity of the propeller which is normally less than the ship speed Vs due to the wake of
the ocean. 

Tp = ρD4
pKTnm

Qp = ρD5
pKQnm

VA = VS(1−ω)

(3)

In order to calculate the ship speed from the hydrodynamic model, the ship hydro-
dynamics model is usually obtained through the experimental results. However, it is
impossible to get those data directly. The applied variables of the simulation model that are
related to the ship model were acquired indirectly and employed by MATLAB/Simulink
Marine system toolbox [22]. Figure 3 shows the simulation results of the propulsion system.
Figure 3a–d show the output torque, the motor speed, the output phase currents, and
output power of the propulsion, respectively.
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Figure 3. Simulation results of the propulsion system: (a) Torque of the propulsion motor; (b) Speed
of the propulsion motor; (c) Phase currents of the propulsion motor; (d) Output power of the
propulsion motor.

2.3. Power Electronics System

The power electronics system consists of three DC/DC converters and two DC/AC
inverters for supplying power to the electric loads except the main power of the propulsion
motor [19–21]. There were two types of DC/DC converters that were simulated for the ship
service load and the energy storage system, respectively. Figure 4 shows the simulation
results of the DC/DC buck converter for the ship service load. Although the load power
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is changed, the output voltages of the DC/DC converter and the DC/AC inverter are
maintained by the constant power control of the DC/DC converter.
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Figure 4. Simulation results of the power electronics system: (a) Load power; (b) Output voltage of
the DC/DC converter; (c) Output voltages of the DC/AC inverter.

2.4. Energy Storage System

The energy storage system is used for the purpose of improving the power qual-
ity which is especially affected by a start/stop of the propulsion motor, an abrupt load
change and some fault conditions [25–28,30]. This system is composed of the bidirectional
buck/boost DC/DC converter and the Li-ion battery. The capacity of the Li–ion battery is
decided from the difference between the output power of the generation capacity and the
load power. To verify the operation performance of the modeled energy storage system,
the constant charging and discharging currents were both regulated. Figure 5 shows the
simulation results of the energy storage system. The charge and discharge current and the
battery SOC are shown according to the current reference.
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2.5. Power Management System

Figure 6 shows the configuration of the power management system (PMS), which
performs a variety of roles: total ship system control, monitoring, and checking the avail-
ability of the electrical power depending on the electrical network status [31–36]. The
PMS makes it possible to determine the operating status, limit the output power of the
propulsion motor, shed the load in accordance with the priorities, control the energy storage
system, and detect the system operating mode. Figure 6 suggests a general configuration
without designing and reflecting the actual PMS and is modeled to be the background of
the simulation results.
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3. Modeling of Integrated Power System

The full simulation model of the AES was combined to obtain the electrical charac-
teristics of the various ship operating conditions. Both voltage and frequency stability are
important issues in the power system of the all-electric ship. As such, strict rules need to
be established to guarantee secure operation under various operating conditions, such as
STANAG 1008, IEC 60092/101, IEEE Std 1709–2010, and MIL Std 1339 [37–40]. IEEE Std
1709−2010 and STANAG 1008 were used to evaluate the resulting simulation performance.
As per IEEE Std 1709−2010, the limitations of the steady state DC voltage tolerances should
be within±10%. Transient state DC voltage can be allowed to have a tolerance of 200% from
0.1 to 10 ms. Frequency stability is referenced with regard to STANAG 1008. This defines
the frequency limits for the steady state to be ±3%, and momentary deviations could be
allowed to be about ±4%, respectively. A total of three different operating conditions were
simulated for the purpose of evaluating the performance of the proposed simulation model.
Figure 7 shows three operation conditions of the propulsion motor.
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• Acceleration and deceleration (ACC&DEC): Figure 7a shows that the two turbine
generators set are initially operating to supply the service load of 10% rated power.
Then after 10 s, a 7 %/s acceleration of the propulsion motor is introduced to the
system until it reaches to 80% rate power, where it stays for 10 s. Starting from this
point, a 7 %/s deceleration is applied to the system, until it finally settles to 10%
rated power.

• Loss of prime mover trip (LPMT): 80% of the propulsion power demand is presented
in Figure 7b. The circuit breaker for one of the two turbine generators is tripped.
The propulsion motors operate at a reduced load, then immediately restored to a
power level that is sustainable by the remaining one turbine generator. During this
procedure, the turbine generator shall adjust its output power according to the reduced
load demand.

• Full propulsion load rejection (FPLR): As shown in Figure 7c, this condition denotes
the loss of the full propulsion load. Load rejection is initiated at 30 s with 80% of the
propulsion power load. The supply frequency varies directly with the steam turbine
speed and frequency because the shaft of the generator is directly coupled to the
steam turbine.

4. Simulation Results

Figure 8 shows the simulation results of the acceleration and the deceleration opera-
tions. The power of the propulsion motor is initially increasing at a rate of 7%/s. After a
steady state at 80%, it starts the decreasing of the rate of 7%/s until the resuming power is
at 10% power. Note that the transient DC bus voltage agrees with the IEEE std 1709–2010
voltage tolerance from Figure 8b. Figure 8a,c shows the output power of the propulsion
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motor and steam turbine, respectively. And Figure 8d shows the pulsation of the frequency
which is above the transient state tolerance limit of STANAG 1008.
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Figure 8. Simulation results of the acceleration and deceleration (without the energy storage system):
(a) Output power of the propulsion motor; (b) Main DC bus voltage; (c) Output power of the steam
turbine; (d) Frequency of the generator.

In the case of the trip of one prime mover, Figure 9 shows the simulation results
in accordance with IEEE Std 1709–2010 and STANAG 1008. The output power of the
propulsion motor is reduced to half due to the control of the power management system to
protect the ship electric system. As shown in Figure 9b,d, although the stability of the main
DC bus voltage is satisfied, the frequency pulsation during the transient state is increased
to about 10%.
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(a) Output power of the propulsion motor; (b) Main DC bus voltage; (c) Output power of the steam
turbine; (d) Frequency of the generator.

Figure 10 shows the simulation results of the full propulsion load rejection. The turbine
generator set supplies the propulsion motor at 80% power, then the circuit breaker of the
propulsion motor is open for the purpose of the trip operation. As shown in Figure 10, after
the full propulsion load is removed from the electrical distribution system of the ship, the
DC bus voltage rises to 1.1 times higher than the rated voltage but it is tolerable by the
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IEEE Std 1709–2010. However, as shown in Figure 10d, the generator frequency exceeds
over approximately 35% and remains around there for about 25 s, which are not tolerable
by the IEEE std 1709–2010.

Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

exceeds over approximately 35% and remains around there for about 25s, which are not 

tolerable by the IEEE std 1709-2010. 

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P
o
w

er
 (

p
u
)

0 10 20 30 40 50 60 70
0.9

0.95

1

1.05

1.1

V
o
lt

ag
e 

(p
u

)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P
o
w

er
 (

p
u
)

 

 

0 10 20 30 40 50 60 70
0.9

1

1.1

1.2

1.3

1.4

1.5

W
m

 (
p

u
)

 

 

STANAG 1008

Steady state frequency tolerance :  ± 3%

STANAG 1008

Transient state frequency tolerance :  ± 4%

IEEE Std 1709-2010

Transient state voltage tolerance : ± 200%

IEEE Std 1709-2010

Steady state voltage tolerance : ± 10%

Trip occurence

time (s)

(a)
time (s)

(b)

time (s)

(c)
time (s)

(d)  

Figure 10. Simulation results of the full propulsion load rejection (without the energy storage sys-

tem): (a) Output power of the propulsion motor; (b) Main DC bus voltage; (c) Output power of the 

steam turbine; (d) Frequency of the generator. 

As shown in Figures 8–10, the transient and the steady state voltages satisfy the IEEE 

Std 1709–2010 limits. However, note that the energy storage system is required to reduce 

the fluctuation of the generator frequency and the transient times.  

Figure 11 shows the simulation results that focused on the stability of the generator 

frequency after inserting the energy storage system to reduce the transient time. When the 

energy storage system is connected, the frequency excursion is reduced in all operating 

conditions. For two operating conditions (acceleration and deceleration, loss of prime 

mover trip), the transient of the frequency appears to be slightly higher than the limits of 

STANAG 1008. Despite the insertion of the energy storage system, the transient of the 

frequency excess and the transient time of full propulsion load rejection and does not sat-

isfy the STANAG limits. In this case, from the operation of the power management sys-

tem, the output power of the generator is reduced to maintain power for the ship service 

load. Table 2 shows the improved electrical characteristics of the transient and steady state 

voltages and the frequency by inserting the energy storage system into the main DC bus. 

The results (pass/fail) of transient and steady state were determined based on the STA-

NAG 1008, even if energy storage system is connected, the full power load rejection case 

does not satisfy the frequency standard. In order to solve this problem an energy storage 

system with a sufficiently large capacity must be added.  

Figure 10. Simulation results of the full propulsion load rejection (without the energy storage system):
(a) Output power of the propulsion motor; (b) Main DC bus voltage; (c) Output power of the steam
turbine; (d) Frequency of the generator.

As shown in Figures 8–10, the transient and the steady state voltages satisfy the IEEE
Std 1709–2010 limits. However, note that the energy storage system is required to reduce
the fluctuation of the generator frequency and the transient times.

Figure 11 shows the simulation results that focused on the stability of the generator
frequency after inserting the energy storage system to reduce the transient time. When the
energy storage system is connected, the frequency excursion is reduced in all operating
conditions. For two operating conditions (acceleration and deceleration, loss of prime
mover trip), the transient of the frequency appears to be slightly higher than the limits
of STANAG 1008. Despite the insertion of the energy storage system, the transient of
the frequency excess and the transient time of full propulsion load rejection and does not
satisfy the STANAG limits. In this case, from the operation of the power management
system, the output power of the generator is reduced to maintain power for the ship service
load. Table 2 shows the improved electrical characteristics of the transient and steady state
voltages and the frequency by inserting the energy storage system into the main DC bus.
The results (pass/fail) of transient and steady state were determined based on the STANAG
1008, even if energy storage system is connected, the full power load rejection case does not
satisfy the frequency standard. In order to solve this problem an energy storage system
with a sufficiently large capacity must be added.

Table 2. Electrical characteristics according to the operation conditions.

Without ES

ACC & DEC LPMT FPLR

Result(P/F) Error (%)
Tran./Stea. Result(P/F) Error (%)

Tran./Stea. Result(P/F) Error (%)
Tran./Stea.

Voltage P 0.5/1.0 P 6.0/1.0 P 9.0/1.0
Frequency F 6.0/1.5 F 9.0/1.5 F 35.0/1.0

With ES

ACC & DEC LPMT FPLR

Result(P/F) Error (%)
Tran./Stea. Result(P/F) Error (%)

Tran./Stea. Result(P/F) Error (%)
Tran./Stea.

Voltage P 0.5/1.0 P 6.0/1.0 P 9.0/1.0
Frequency P 4.2/1.5 P 4.5/1.5 F 20.0/1.0
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Figure 11. Simulation results with the energy storage system: (a) Acceleration and deceleration;
(b) Loss of prime mover; (c) Full propulsion load rejection.

5. Conclusions

Interest has been increasing in AES with a medium voltage DC power system. How-
ever, modeling and integration of the whole system is a complex and difficult task. To
analyze the electrical characteristic of the medium voltage DC ship power system, this pa-
per proposed the full simulation modeling of the AES with the mechanical and the electrical
components by deriving the mathematical equations and using MATLAB/Simulink. The
simulation was performed under three different ship operating conditions. The electrical
characteristics of the AES that were related to DC bus voltage and generator frequency
were analyzed according to the presence or absence of the energy storage system to meet
IEEE Std 1709–2010 and STANAG 1008 standards. The effect of the energy storage system
to improve the dynamic performance is shown at all operating conditions.
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Appendix A

(1) Steam turbine: Typical cylinder fractions (FVHP, FHP = 0.3, FIP = 0.4, FLP = 0.3), Typical
Time constants (TCH = 0.1~0.4, TRH = 4~11, TRH2, TCO = 0.3~0.5), 3600 rpm [16,22,29].
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Figure A1. Configuration of the tandem compound steam turbine.

(2) Governor & Excitation: Governor consists of gain setting, Speed relay, and servo mo-
tor (Droop 5%, KG = 0.05, TSR = 0.4, TSM = 0.4), IEEE standard DC1A excitation sys-
tem model (KA = 187, TA = 0.89, TB = 0.06, TC = 0.173, TE = 1.15, TF = 0.62,
KF = 0.058) [17,18].
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(3) Synchronous generator: based on d-q equivalent circuit with 6.6 MW, 4160 V, 60 Hz,
Xd = 2.752, X′d = 0.279, X′′d = 0.1595, Xq = 1.376, X′q = 0.388, X′′q = 0.2219,

Xl = 0.1022, T
′
do = 5.17, T′′do = 0.043, T′qo = 2.585, T′′qo = 0.154, Rs = 0.0077,

J = 2.12, F = 0.01, pole = 4.
(4) 3-phase permanent magnet motor: 12 MW, 150 rpm, Rs = 0.66726 Ω, Rr = 1.1171 Ω, Llr,

Llr = 6.817 mH, Lm = 70.4 mH, Lr, Ls = 77.3 mH, Lsigma = 13.9 mH, Kt =
4.103Nm

Apeak
,

J = 0.04kg·m2, pole = 6.
(5) 3-phase DC/AC PWM inverter: Vdc = 5600, fsw = 1kHz, ωsc = 2π·10,

Kpsc =
J·ωsc

Kt
, Kisc = Kpsc·ωsc

10 , Kasc =
1

Kpsc
, ωcc = 2π·100, Kpcc = Ls·ωcc, Kicc = Rs·ωcc,

Ka = 1
Kpcc

.

(6) Ship model: to acquire thrust (Tp) and propeller torque (Qp) necessary to obtain
propulsion motor speed (nm), ship parameter (ρ, D) and experimental data (KT , KQ).
Ship speed is calculated by hull resistance [22,24].

(7) DC/AC inverter, DC/DC converter: 3 phase DC/AC inverter for AC ship service
load (300 kW/450 V/60 Hz), buck converter for DC ship service load (200 kW/200 V),
bidirectional DC/DC converter between DC bus and Energy storage system.

(8) Ship service load: 1 MW (capacitive, inductive, resistive) RLC load
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(9) Li-ion battery: 2 MW/500 kW, 4 C/rate, Li-ion battery charging/discharging compre-
hensive modeling
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Table A1. Specification of the Li-ion battery cell.

Characteristics Value

Nominal capacity 31.5 Ah
Nominal voltage 43.2 V

Charge limit 49.2 V
Discharge limit 30.0 V

Energy 1.3 kWh
Maximum discharge current 200 A

Charging

Vbatt = E0 − R·i− K· Q
Q− it

·(it + i∗) + A·exp(−B·it),

Discharging

Vbatt = E0 − R·i− K· Q
it− 0.1Q

·i∗ − K
Q

Q− it
it + A·exp(−B·it),

Vbatt : battery voltage (V), E0 : battery constant voltage (V),
K : polarisation constant (VAh) or resistance(ohm),Q : battery capacity (Ah),
it : actual battery charge (Ah) , A : exponential zone amplitude (V),
B : exponential zone time constant inverse (Ah)−1,
R : internal reesitance(ohm) , i : battery current (A), i∗ : f iltered current (A).
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