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Abstract: Accurate and rapid forecasting of short-term loads facilitates demand-side management
by electricity retailers. The complexity of customer demand makes traditional forecasting methods
incapable of meeting the accuracy requirements, so a self-attention based short-term load forecasting
(STLF) considering demand-side management is proposed. In the data preprocessing stage, non-
parametric kernel density estimation is used to construct customer electricity consumption feature
curves, and then historical load data are used to delineate the feasible domain range for outlier
detection. In the feature selection stage, the feature data are selected using variational modal
decomposition and a maximum information coefficient to enhance the model prediction accuracy. In
the model prediction stage, the decomposed intrinsic mode function components are independently
predicted and reconstructed using an Informer based on improved self-attention. Additionally, the
novel AdaBlief optimizer is used to optimize the model parameters. Cross-sectional and longitudinal
experiments are conducted on a regional-level load dataset set in Spain. The experimental results
prove that the proposed method is superior to other methods in STLF.

Keywords: smart grid; short-term load forecasting; feature engineering; variational modal decomposition;
deep learning; Informer; AdaBelief

1. Introduction

WIth the structural reform of the energy system, the dominance of the electricity
market is gradually shifting to the demand side. In order to take a more proactive position
in the electricity market, electricity retailers (ER) have to strengthen the demand-side
management (DSM) [1]. DSM can ensure the safe and stable operation of the power grid
and the economic efficiency of the ER by balancing the supply and demand. As shown
in Figure 1, data service providers clean and analyze customers’ energy consumption
information to provide decision support for ER [2]. In order to attract more customers to
participate in demand response (DR), ER must develop different management strategies
according to different customer types. The diversity of customer types and the uncertainty
of DR pose challenges for DSM. Since DSM relies on short-term load forecasting (STLF),
the accuracy of the model determines the operational efficiency of DSM [3].
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Figure 1. Power and information flow in DSM.

1.1. Related Work and Motivation

In recent years, with the continuous improvement of Integrated Energy Systems (IES),
electrical energy has become the dominant energy-source in the interconnected system.
ER relies on accurate forecasting of future loads and firmly grasps the dominance of the
energy market through macro-regulation. Due to the strong randomness and small volume
of customer-level loads, their STLF does not meet the needs of economic operation of the
grid system [4,5]. Therefore, the main forecasting target of STLF is regional-level load [6,7].
Regional-level STLF helps to achieve more flexible energy conversion in IES management
to meet different types of customers’ demand for electricity-based energy, thus attracting
more electricity customers to participate in DR.

STLF is mainly divided into two categories: statistical learning and machine learning
methods [8,9]. Among them, machine learning methods, represented by the frontier of deep
learning, have attracted significant industry attention because of their ability to portray
high-dimensional abstract features. In the literature [10], the authors introduce LSTM into
residential STLF with high volatility and uncertainty. Taking an aggregated individual
forecasting approach, the proposed method achieves the best forecasting performance on
the dataset. In the literature [11], the authors proposed a hybrid algorithm combining
TCN and lightGBM. The hidden information and long-term temporal relationships of the
input features are extracted by TCN and the loads are predicted by the advanced lightGBM.
The results show that the proposed model optimal prediction results on datasets from
three different industries. In the literature [12], the authors propose a hybrid CNN–GRU
algorithm for STLF. The features are extracted CNN and substituted into the GRU layers
for time-series learning. This class of methods has also achieved better accuracy in other
hybrid algorithm models [13–15].

Although the traditional recurrent neural network (RNN) model can make accurate
prediction of time series, the inherent structure has the following two problems: (1) the
output at time t depends on the input at time t-1, so the model cannot operate in parallel,
which makes the running time longer; (2) the excessively long cyclic process leads to easy



Energies 2022, 15, 4198 3 of 19

loss of information during transmission. To address the above problems, Google [16]
proposed a Transformer based on self-attention. The model cleverly avoids the cyclic
structure by calculating the coupling relationship of any two positions in the sequence,
so that the input at moment t will no longer depend completely on moment t-1 and the
model can be parallelized. At the same time, the information transfer distance between
any two positions of the model is fixed to one, so that information will not be lost due to
the excessive length of the sequence. On the basis, the literature [17] proposed Informer.
The model effectively reduces the space and time complexity, memory usage and decoder
decoding time of the Transformer while improving the prediction accuracy of the time
series, and has a stronger ability to capture the long-range correlation coupling between
the input and output.

Short-term load sequences are characterized by high volatility and stochasticity, posing
a great challenge to the accuracy of STLF. This is determined by the diversity and complex-
ity of influencing factors (e.g., meteorological, geographical, electricity prices, holidays,
etc.). Due to the high complexity of the original load sequence, it contains a large amount
of non-periodic information. Therefore, if the unprocessed data are directly substituted
into the deep learning model, there will be a great increase in the complexity of the hidden
layer neuron coefficients and a reduction in its fitting performance. In order to effectively
reduce the information complexity, feature engineering is necessary. Feature engineering
can improve the fit between the data and model to a certain extent, enabling the forecasting
model to obtain stronger forecasting capability [18]. The data decomposition method, a
common method in feature engineering, decomposes the original load series into several
intrinsic mode function (IMF) components. The prediction accuracy is improved by predict-
ing and reconstructing each IMF input matrix. For example, the wavelet transform is used
in the literature [19] to extract redundant information from the load data, which produces
a filtering effect and improves the prediction accuracy. However, wavelet decomposition
requires a predetermined basis wave function, which makes the selection of different basis
wave functions affect the prediction accuracy and increases the complexity of the actual use
of the prediction model. The literature [20] used empirical mode decomposition (EMD) to
decompose the data and then used a deep confidence network for prediction. Although the
prediction accuracy was improved, it decomposed the high-frequency signal with the
phenomenon of modal aliasing, which contains a large amount of noise and makes the
prediction accuracy of the high-frequency component decrease.

Variational modal decomposition (VMD) [21] is a signal decomposition method for
non-recursive variational modes. It can avoid endpoint effects and modal mixing similar
to those seen in EMD by means of mirror extensions. The IMFs obtained by VMD have
independent center frequencies and are sparse in the frequency domain. VMD can be set
to output a set number of modes, which brings convenience to the prediction. Therefore,
VMD is well suited to be applied to STLF with large amount of data.

1.2. Paper Contribution

Based on the above, a self-attention based STLF considering DSM is proposed in this
paper. The main contributions of this paper are as follows:

(1) A novel outlier determination method is proposed. In order to cope with inevitable
dead numbers and abnormal sensitivity of smart meters and sensors, which lead to
missing values and outliers in the transmission process, a data anomaly detection
method based on non-parametric Gaussian kernel density estimation is proposed.
Using the historical load data to construct the feature curve of customers’ electricity-
consumption behavior, the upper and lower limits of the feasible domain are set to
determine the anomaly.

(2) A relatively novel feature-selection method is proposed. The original load signal
is decomposed into several IMFs components by VMD. The maximal information
coefficient (MIC) is used to find out the non-linear correlation between each IMF and
the features, which contain meteorological, geographical, policy and other factors.
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(3) Abandoning the traditional recurrent neural network structure, this paper uses a
novel improved self-attention Informer-based model to predict and reconstruct an
IMF input matrix. The model is optimized using AdaBelief, which improves the
accuracy and operational efficiency of the model operation.

(4) The strengths and weaknesses of the model are analyzed in depth by comparing
other single models with hybrid models and combining several statistical parameters’
evaluation indexes. The accuracy of the model was verified by cross-sectional and
longitudinal experiments on a regional-level load dataset in Spain.

The rest of the paper is organized as follows. Section 2 presents the dataset set used in
this paper. Section 3 describes the basic steps of STLF. Section 4 gives the specific operations
and parameter settings of the experiments, which are compared with other single or
combined models to verify the superiority of the model in cross-sectional experiments and
longitudinal experiments. Finally, we discuss the conclusions and future work of this paper
in Section 5.

2. Data Preparation

The Spanish regional level dataset [22] used in this paper contains three parts: histori-
cal load data, meteorological data and electricity price data.

Historical load data are obtained from public electricity consumption data collected by
the Spanish Transmission Service Operator, which records the electricity load consumption
from 1 January 2015 to 31 December 2018, with a collection frequency of 1 H. The weather
data is sourced from Kaggle open source data, obtained from the Open Weather API of
five major Spanish cities. The geographical location of these five Spanish cities is shown in
Figure A1 in Appendix A.

(1) Meteorological data include mean temperature, maximum temperature, minimum
temperature, barometric pressure, humidity, wind speed, wind degree, cloud index
and rain index.

(2) DSM data. Electricity price and load belong to mutual causality, and it can be intu-
itively seen from Figure 2 that there is a certain correlation between electricity price
and load, so electricity price is selected as DSM data.

(3) The historical load data were divided into a training set, a validation set and a test set
in the ratio of 8:1:1. The specific dataset division is shown in Table 1.

Figure 2. Price signals motivate DR.



Energies 2022, 15, 4198 5 of 19

Table 1. Datasets division.

Dataset Count Max (MW) Min (MW) Mean
(MW)

Median
(MW) Std (MW)

Overall 35,064 41,015 18,041 28,697.99 28,902.5 4576.07
Training 28,052 41,015 18,041 28,657.25 28,876.5 4589.24
Validation 3506 40,693 19,706 28,813.13 28,971 4447.79
Test 3506 39,780 18,179 28908.79 29,031 4588.56

3. STLF Model

The STLF model uses a dataset from a historical database with real-time sensors.
The historical data are used for training and validation of the model, and the real-time data
are used for real-time prediction. It is worth mentioning that the historical database is used
for the training set, validation set and test set of the paper. Data preprocessing is essential
due to problems such as loss and outliers in the process of data collection, transmission
and standardization. As shown in Figure 3, in addition to missing and outlier processing,
data preprocessing also includes operations such as data normalization, non-numerical
data encoding, and dimensionality reduction.

Figure 4 illustrates the process of STLF. First, the historical load sequence is decom-
posed into several IMFs using VMD, each of which has a different frequency and contains
different information. Then, the correlation coefficients of each row in the feature matrix
with each IMF are calculated using MIC. Based on the prediction requirements, Top-k of
these feature vectors are selected to form the input matrix. After that, the input matrix is
brought into Informer to predict separately, and several predictions are obtained. Finally,
the predicted values of all input matrices are reconstructed to obtain the final predicted
load sequence.

Figure 3. Flow chart of data preprocessing.
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Figure 4. Flow chart of STLF model.

3.1. Outlier Processing

In general, outlier detection is difficult because the threshold value is hard to set.
When the threshold value is set too high, it is easy to miss detection; when the threshold
value is set too low, it is easy to misjudge. Therefore, for data preprocessing, we propose an
anomaly detection method based on non-parametric probability density estimation.

The non-parametric kernel density estimation does not require empirical assumptions
about the prior distribution of the data, and is therefore very suitable for constructing
customer electricity consumption feature curves. Using the feature curve, the upper and
lower limits of the feasible domain can be set to determine the outliers.

3.1.1. Feature Curves Construction

For the target to be detected, we need to obtain its historical load data. Assume the
24 h electricity consumption of a customer on the i-th day is:

Xi = (xi1, xi2, · · · , xi24)
T (1)

The commonly used Gaussian kernel function is chosen as the kernel function for
non-parametric kernel density estimation:

K(x) =
1√
2π

e−
x2
2 (2)

Calculate the probability density function corresponding to the load xk at the k-th
moment of the user’s historical load data:

fk(xk) =
1

Th

T

∑
i=1

K
(

xk − xik
h

)
(3)

where T is the total number of samples and h is the window width.
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Calculate the probability density function corresponding to each moment of the user,
and form the maximum probability density vector curve for 24 h:

Xmp =
[
xmp1, xmp2, · · · , xmp24

]T (4)

Calculate the weights of the i-th day:

wi =
(1/di)

λ

∑T
i=1(1/di)

λ
(5)

di =

√√√√ 24

∑
n=1

∣∣xik − xmpn
∣∣2 (6)

where λ is an empirically adjustable parameter, λ ∈ [0,1].
By weighted superposition, the customer electricity consumption feature curve can be

obtained as:

X f c =
T

∑
i=1

wiX i (7)

3.1.2. Feasible Domain Construction

Statistics on the maximum and minimum values of the user’s historical load at each mo-
ment: {

Xmax =
[
xmax

1 , xmax
2 , · · · , xmax

24
]

Xmin =
[
xmin

1 , xmin
2 , · · · , xmin

24
] (8)

The upper and lower limits of the feasible domain are: Pup =
K(Xmax−X f c)

Xmax−Xmin

Pdown =
K(Xmin−X f c)

Xmax−Xmin

(9)

where K is an empirically adjustable parameter.
For data to be detected Xd, its curve on the feasible domain is:

P =
K(Xd − X f c)

Xmax − Xmin (10)

when P is within the upper and lower limits of the feasible domain [Pdown, Pup], the data to
be detected are considered normal. When the limit is crossed, the outlier can be identified.

3.2. Feature Selection
3.2.1. VMD

Regional-level power loads contain cyclical, non-cyclical periodic and trend infor-
mation. The information hidden in the load series is difficult to strip out from the naked
eye only, which results in data with low interpretability. In order to more intuitively un-
derstand the physical meaning contained in each component, we need to decompose the
electrical load. Variational Modal Decomposition [23] is a signal decomposition estimation
method. The main idea is to decompose the raw signal into several smooth IMFs with
different frequencies. VMD determines the frequency center and bandwidth of each IMF
by iteratively searching for the optimal solution of the variational model, thus adaptively
realizing the frequency domain dissection of the signal and the IMF.
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The objective of VMD is to minimize the bandwidth sum of all IMFs with the constraint
that the sum of all IMFs is equal to the raw signal. The expression is shown as follows:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωt

∥∥∥∥2
}

s.t. ∑
k

uk = f
(11)

where {uk} = {u1, · · · , uk} denotes the k-th IMFs after VMD.
The quadratic penalty factor α and Lagrange multiplier operator λ(t) are introduced,

thus transforming the constrained variational problem into an unconstrained variational
problem. The solution is solved by alternately updating un+1

k and ωn+1
k . The pseudo code

of VMD is as follows (Algorithm 1).

Algorithm 1 VMD
1:Intialize ûk ← 0, ωk ← 0
2:Update ûk

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω)+ 1
2 λ̂n(ω)

1+2α(ω−ωk)
2

3:Update ωk

ωk
n+1 =

∞∫
0

ω|ûk(ω)|2dω

∞∫
0
|ûk(ω)|2dω

4:Update λ̂n+1 ← λ̂n + ζ
(

f̂ −∑k v̂n+1
k

)
until convergence ∑k

∥∥∥v̂n+1
k − v̂n

k

∥∥∥2

2
< ε.

Where ûn+1
k (ω) is the Wiener filter of f̂ (ω)− ∑

i 6=k
ûi(ω). ωk

n+1 is the mode function

power spectrum center of gravity. ε is the decomposition error.

3.2.2. MIC

The maximal information coefficient is used to measure the degree of data association
between two variables, which includes linearity and non-linearity [24].

Assume that X and Y are two random variables in the datasets, where X = {x1, · · · , xn}
and Y = {y1, · · · , yn}, and n is the number of samples. Define the mutual information
between X and Y as:

I(x; y) =
∫

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy (12)

where p(x, y) is the joint density function between X and Y. p(x) and p(y) denote the
marginal probability densities of X and Y, respectively.

Grids are drawn on the data scatter-plot consisting of variables X and Y, and the
magnitude of the mutual information between each grid is calculated. The maximum value
of mutual information is selected using different grid division criteria and calculated as:

MIC(x; y) = max
a∗b<B

I(x; y)
log 2 min(a, b)

(13)

where a and b denote the number of meshes divided in the X and Y directions, respectively,
and B is the maximum value of the mesh.

3.3. Model Training
3.3.1. Informer

To address the following three problems of the traditional Transformer: (i) the self-
attention mechanism leads to the squared computational complexity of the model;
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(ii) the high memory occupation rate; (iii) the step by step decoding process leads to
slow prediction speed and accumulated errors; and the Informer model makes three im-
provements: (i) the ProSparse self-attention mechanism, which effectively reduces the
computational complexity; (ii) self-attention distilling is proposed to reduce the number of
dimensions and network parameters; and (iii) a generative-style decoder is proposed to
improve the prediction speed. The structure of the Informer is shown in Figure 5.

The traditional self-attention mechanism is mainly composed of Query, Key and Value.
The expressions are:

A(Q, K, V) = So f t max
(

QKT
√

d

)
V (14)

where, Q ∈ RLQ×d,K ∈ RLk×d,V ∈ RLV×d, d is the input dimension.
Define the smoothed probability of the ith attention coefficient in the form of:

A(qi, K, V) = ∑
j

k(qi, ki)

∑
l

k(qi, kl)
vj = Ep( ki |qi)

[
Vj
]

(15)

where, p( ki|qi) =
k(qi ,ki)

∑
l

k(qi ,kl)
, k(qi, ki) = exp

(
qikj

T
√

d

)

Figure 5. Brief structure of Informer.

By visualizing the dot product results in the self-attention mechanism, Zhou et al.,
found that the long-tail distribution, i.e., the dot product of Query and Key, dominates the
overall distribution. Therefore, the computational complexity of the model can be effectively
reduced by using the “sparsity” of the self-attention coefficient matrix to filter out the dot
products with higher contributions. To measure this matrix “sparsity”, Zhou et al., used the
Kullback–Leibler scatter and defined the sparsity evaluation formula for the i-th Query as:

M(qi, K) = ln
KK

∑
j=1

e
qikj

T
√

d − 1
LK

LK

∑
j=1

qiKj
T

√
d

(16)
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where, ln
KK
∑

j=1
e

qikj
T

√
d is the logsumexp of qi on all Keys, 1

LK

LK
∑

j=1

qiKj
T

√
d

is the arithmetic mean. By

setting upper and lower bounds on M(qi, K), Zhou et al. approximated it as:

M̂(qi, K) = max
j

{
qik j

T

√
d

}
− 1

LK

LK

∑
j=1

qiKj
T

√
d

(17)

Based on the above theory, Zhou et al. will propose a new self-attention mechanism,
ProbSparse self-attention, with the expression:

A(Q, K, V) = So f t max

(
Q̂KT
√

d

)
V (18)

where Q̂ has the same size as Q but contains only M̂(qi, K) under the sparse evaluation qi.
That is, the computational complexity is reduced to from O

(
L2) to O(L ln L).

In the encoder part, since there is a redundant combination of values V in the feature
mapping of Encoder, increasing the weights of the dominant features can effectively reduce
the data dimensionality. The expression for the distillation operation from layer j to layer
j + 1 is:

Xt
j+1 = MaxPool

(
ELU

(
Convld

([
Xt

j

]
AB

)))
(19)

where
[

Xt
j

]
AB

contains the multi-head ProbSparse self-attention operation. Convld denotes
the one-dimensional convolution operation, ELU is the activation function, and MaxPool
is the maximum pooling operation.

The self-attention matrix, after the distillation mechanism, reduces the input sequence
length by half in each layer of the decoder, which effectively saves memory overhead and
computation time.

In the decoder part, Zhou et al. divide the input sequence into two parts: (i) a known
sequence before the time point to be predicted, and (ii) a placeholder sequence of the
sequence to be treated, with the expression:

Xt
f eed_de = Concat

(
Xt

token, Xt
o
)
∈ R(Ltoken+Ly)×dmodel (20)

In addition to the time series, Zhou et al. also use the position vector and temporal
information as inputs. Moreover, to avoid the model self-regressing during the prediction
process, a masked multi-head attention mechanism is used, which hides the information
after the current predicted position. This generative-style decoder allows the model to
generate the entire prediction sequence at once, which greatly reduces the prediction
decoding time.

3.3.2. AdaBelief

Based on the classic optimizer Adam [25], AdaBelief [26] adjust the training stride
according to the Belief in the gradient direction. The pseudo-code for both is as follows
(Algorithms 2 and 3).

Algorithm 2 Adam
1:Intialize θ0, M0 ← 0, v0 ← 0, t← 0
2:While θ is not converged:
t← t + 1, gt ← ∇θ ft(θt−1), Mt ← β1Mt−1 + (1− β1)gt, vt ← β2st−1 + (1− β2)gt

2

3:Update θt ← ∏ F ,
√

vt

(
θt−1 − α Mt√

vt+ε

)
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Algorithm 3 AdaBelief
1:Intialize θ0, M0 ← 0, s0 ← 0, t← 0
2:While θ is not converged:
t← t + 1, gt ← ∇θ ft(θt−1), Mt ← β1Mt−1 + (1− β1)gt, st ← β2st−1 + (1− β2)(gt −Mt)2

3:Update θt ← ∏ F ,
√

st

(
θt−1 − α Mt√

st+ε

)
Where gt represents the t-th step, Mt represents the exponential moving average

(EMA) of gt, and α is learning rate. AdaBelief replaces vt in Adam with st. vt and st are
EMA of gt

2 and (gt −Mt)2, respectively.

4. Simulation Environment and Experimental Results
4.1. Experimental Environment and Evaluation Metrics

All experiments in this paper were run in a Python 3.8 environment with deep learning
models using Pytorch and Tensorflow libraries. The experimental hardware CPU utilizes
an Intel Core i5-9300H processor, the GPU utilizes an NVIDIA GeForce RTX 2060 graphics
card and the memory is 16 GB.

To measure the prediction accuracy, this paper uses mean absolute percentage error
(MAPE) and root mean square error (RMSE). For the predicted value y , the true value ȳ,
the formula is as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − yi
yi

∣∣∣∣ (21)

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (22)

We chose a model with a sliding window width of 96 and a step length of 1 for
prediction. That is, the data of the first 96 h were used to make predictions for the next
moment, thus guaranteeing that the prediction model had sufficient data for learning.
The prediction process is shown in Figure 6.

Figure 6. Sliding window in the prediction process.

4.2. Experimental Results
4.2.1. Experiment I: Outlier Detection

A sample of 21 working days of electricity from late January to early February in the
Spanish electricity consumer dataset was selected for the arithmetic analysis. The data
granularity is 1 h, and there are 24 × 21 = 504 data in this sample. The electricity consump-
tion of the 21 working days is superimposed and the feature load sequence are extracted
using the method of this paper. The results are shown in Figure 7a.



Energies 2022, 15, 4198 12 of 19

Figure 7. Outlier detection experiment results.

To verify the feasibility of the method, the datasets with outliers were generated.The
electricity consumption data for a randomly selected day was scaled up by ten percent for
odd time-points and scaled down by ten percent for even time-points.The experimental
results are shown in Figure 7b.

The scaled data points exceeded the upper and lower limits of the feasible domain
and were identified as anomalous data points. This demonstrates that the proposed
method, although simple, can effectively detect outliers. In fact, the inspector can adjust the
parameter K in order to adjust the model detection tightness according to the requirements.

4.2.2. Experiment II: STLF Cross-Sectional Experiment

The original signal was decomposed using VMD. After repeated experiments, the cen-
ter frequency was closest when the number of IMF decomposition K was greater than 5, so
K was taken as 5; penalty factor = 2700; center limit frequency = 0. The original power load
and each IMF after decomposition are shown in Figure 8.

Figure 8. VMD results.



Energies 2022, 15, 4198 13 of 19

The modal function IMF1 never crossed zero and contained the trend direction of the
original load. The modal functions IMF2 and IMF3 had a lower and more regular over-zero
rate and contain more periodic information. The modal functions IMF4 and IMF5 had
higher and less regular over-zero rates and contained more non-periodic information. In
order to better describe the information contained in the IMFs after VMD decomposition,
MIC was used to select the features to enhance the prediction ability and reduce the
information loss due to VMD decomposition. Figure 9 visualizes the heat map of the MIC
coefficient matrix. The impact features vary for each IMF. We selected the three to six
features with the highest relevance to build the input matrix. In this experiment, a total of
five input matrices were obtained.

Figure 9. MIC correlation analysis.

Bringing all the input matrices into Informer for prediction separately and reconstruct-
ing all the predictions, we obtained the final predicted values. The predicted results and
the actual load are shown in Figure 10. It can be seen that the two fit well, which implies
that the proposed model has some significance for short-term-load forecasting studies.

Figure 10. Prediction results of the proposed model.

In order to show the superiority of the proposed models more objectively, some
classical machine learning algorithms were used to perform comparative experiments.
These models and their optimal parameters are shown in Table A3 in the Appendix A.
The experimental results are shown in Figure 11.
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MLP, SVR and XGBoost had the worst prediction performance, achieving the highest
prediction error among the traditional machine learning models. This is due to the inability
of traditional machine-learning algorithms to effectively extract the high-dimensional
features of the data in a complex predictive environment. The prediction performance of
CNN and TCN was slightly better than traditional machine-learning algorithms. lSTM
and GRU achieved good results, reducing the prediction error to within two percent.
The proposed model had the best prediction performance with MAPE below one percent

Compared to the single model, it is clear from the results that the hybrid model
generally outperformed the single model in terms of prediction performance and the feature
extraction effect of TCN was better than CNN.

In order to verify the robustness of the proposed model, we selected a larger-scale
prediction step length for the experiment. As can be seen from Figure 11, the prediction
error increased for almost all models as the prediction step length increased. This is due to
the cumulative effect of the error, i.e., the prediction of the load at the second moment was
substituted for the predicted value at the first moment. In fact, this error accumulation is
unavoidable. Compared with other models, the proposed model did not show much error
growth in this process, and thus has some robustness.

Figure 11. Results of the comparison experiment.

4.2.3. Experiment III: STLF Longitudinal Experiments

To verify that the proposed VMD-MIC feature-selecting method is effective, we also
conducted longitudinal experiments, also known as ablation experiments.

The so-called ablation experiment is to remove a module of the proposed model to
test its predictive performance. To make the results more objective, we need to ensure that
the model is identical to the parameters. The four ablation models are as follows.

(1) The proposed model.
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(2) VMD-Informer. The load was decomposed using VMD according to the same pa-
rameters as in the cross-sectional experiment. The MIC correlation analysis module
was abandoned and all features were entered in the construction of the input matrix
for prediction.

(3) MIC-Informer. Correlation analysis was performed using MIC for loads only, and Top-k
features were selected for detection.

(4) Simple Informer. We dissolved all the modules and kept only the original Informer
for load forecasting. We retained all features in the prediction.

The results of the ablation experiment are shown in Figure 11. The experimental
results show that the prediction accuracy of the above two models is between the proposed
model and the plain Informer model, i.e., the VMD-MIC feature selection method is helpful
to improve the load prediction accuracy. Among them, VMD reduced the error by 0.43%
and MIC only reduced the error by less than 0.1.

As the prediction step length increased, the prediction error of all models gradually
increased. However, the proposed model achieved the best prediction accuracy in all step
length; this means that it also had the best robustness compared to the ablation model.

4.2.4. Experiment IV: AdaBelief Optimization Experiment

Finally, this paper presents a comparative experiment on the optimization perfor-
mance of Adabelief. The commonly used SGD [27] and Adam optimizers were selected
as benchmarks. Under the same experimental environment, the prediction accuracy and
convergence speed are shown in Table 2.

Table 2. Results of optimizer comparison experiments.

Optimizer MAPE (%) RMSE (MW) Convergence Epoch

AdaBelief 0.98 330.89 12
Adam 2.56 969.05 3
SGD 1.39 478.68 18

As can be seen from Table 2, although AdaBelief achieved the best prediction accuracy,
it did not have the best convergence rate. As the most classical optimizer, Adam achieved
the best results in terms of convergence speed and had an SGD in between.

5. Conclusions

In this paper, a self-attention-based short-term load forecasting considering demand-
side management was proposed. From the example study, the following conclusions can
be drawn.

(1) The method uses a non-parametric Gaussian kernel density estimate to fit the user
load feature curve. Outliers are identified by setting upper and lower limits on the
feasible domain for the load.

(2) The VMD-MIC feature filtering method optimizes the input feature dimension. Af-
ter ablation experiments, it is proved that the prediction accuracy of the combined
model is higher than that of the ablated single model.

(3) Cross-sectional and longitudinal experiments are conducted on a regional-level load
dataset set in Spain. The experimental results prove that the proposed method is
superior to other methods.

(4) Optimizing the proposed model using AdaBelief can significantly improve the predic-
tion accuracy, but will reduce the convergence speed.

(5) With the development of DSM, our work will focus on the study of more types and
scales of customer electricity-consumption data.
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Abbreviations
The following abbreviations are used in this manuscript:

STLF Short-term Load Forecasting.
ER Electricicty Retailer.
DSM Demand-side Management.
DR Demand Response.
IES Integrated Energy System.
IMF Intrinsic Mode Function.
EMD Empirical Mode Decomposition.
VMD Variational Modal Decomposition.
MIC Maximal Information Coefficient.
MAPE Mean Absolute Percentage Error.
RMSE Root Mean Square Error.
EMA Exponential Moving Average.
TCN Temporal Convolutional Network.
CNN Convolutional Neural Network.
LSTM Long And Short-term Memory.
GRU Gated Recurrent Unit.
RNN Recurrent Neural Network.

Appendix A

Table A1. Comparison results of hybrid and ablation model.

Prediction Evaluation Predicted Length

Models Metrics 1 2 3 4

Proposed
MAPE(%) 0.98 1.54 1.79 2.03
RMSE(MW) 330.89 469.26 621.84 752.66

TCN-LSTM MAPE(%) 1.68 2.11 2.56 5.43
RMSE(MW) 522.96 790.05 965.15 1764.69

TCN-GRU MAPE(%) 1.31 1.79 2.31 2.64
RMSE(MW) 465.32 631.02 840.72 938.61

CNN-LSTM MAPE(%) 2.86 3.05 3.67 4.85
RMSE(MW) 963.61 1024.65 1495.35 1653.74

CNN-GRU MAPE(%) 2.51 3.79 4.32 4.15
RMSE(MW) 876.52 1480.62 1534.59 1493.51

VMD-Informer MAPE(%) 1.31 1.89 3.03 3.23
RMSE(MW) 426.917 735.71 1035.68 1076.44

MIC-Informer MAPE(%) 1.66 2.25 3.47 4.02
RMSE(MW) 575.41 935.67 1511.59 1406.51

Informer
MAPE(%) 1.74 1.98 3.23 4.62
RMSE(MW) 621.33 702.08 963.51 1542.34
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Table A2. Comparison results of single model.

Prediction Evaluation Predicted Length

Models Metrics 1 2 3 4

Proposed
MAPE(%) 0.98 1.54 1.79 2.03
RMSE(MW) 330.89 469.26 621.84 752.66

XGBoost MAPE(%) 5.32 6.34 9.55 10.39
RMSE(MW) 1752.01 2231.84 2634.15 2963.45

GRU MAPE(%) 1.86 2.51 2.64 4.78
RMSE(MW) 658.31 883.15 925.37 1684.84

LSTM MAPE(%) 3.23 4.24 4.91 5.05
RMSE(MW) 1211.65 1563.54 1697.62 1732.41

TCN MAPE(%) 4.02 4.61 7.32 7.45
RMSE(MW) 1496.84 1602.89 2236.45 2311.54

SVR MAPE(%) 6.31 6.45 6.93 8.99
RMSE(MW) 2130.53 2201.34 2263.21 2632.84

MLP MAPE(%) 6.55 8.45 9.87 9.86
RMSE(MW) 2205.62 2597.32 2794.33 2763.45

CNN MAPE(%) 4.41 5.79 5.05 7.64
RMSE(MW) 1522.63 1822.49 2002.55 2469.84

Table A3. Models and Parameters.

Models Parameters

Proposed The learning rate is 0.01, the input sequence length is 96, the prediction sequence length is 1, the number of head is 8, the
number of encoder is 2, the number of decoder is 1, the dropout rate is 0.05, the activation function is “GELU”.

XGBoost The learning rate is 0.01, the max depth of trees is 6, iteration is 100, colsample is 0.95, alpha is 0.1, lambda is 0.15, gamma
is 0.1, min child weight is 0.1.

CNN
The learning rate is 0.001, the nunber of convolution layers is 1, the number of filters in convolution layer is 48, the kernel
size is 2, the strides is 1, the number of fully connected layers is 2, the number of neurons in fully connected layers is set
48/1,the activation function is “ReLU”.

TCN
The learning rate is 0.001, the nunber of convolution layers is 1, the number of filters in convolution layer is 64, the kernel
size is 2, the strides is 1, the dilations are (1,2,4,8,16,32), the dropout rate is 0.2, the number of fully connected layers is 2,
the number of neurons in fully connected layers is set 64/1,the activation function is “ReLU”.

GRU
The learning rate is 0.001, the number of hidden layers is 1, the number of nodes in hidden layer is 128, the dropout
rate is 0.1, the number of fully connected layers is 2, the number of neurons in fully connected layers is set 128/1, the
activation function is “tanh”.

LSTM
The learning rate is 0.001, the number of hidden layers is 1, the number of nodes in hidden layer is 128, the dropout
rate is 0.1, the number of fully connected layers is 2, the number of neurons in fully connected layers is set 128/1, the
activation function is “tanh”.

MLP
The learning rate is 0.001, the number of hidden layers is 4, the number of nodes in hidden layer are (256,128,64,32), the
dropout rate is 0.2, the number of fully connected layers is 2, the number of neurons in fully connected layers is set 32/1,
the activation function is “ReLU”.

SVR The kernel is “rbf”, all other parameters are default parameters.
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Figure A1. Geographic locations of the dataset.
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