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Abstract: This paper studies load frequency control (LFC) for networked power systems with limited
communications and probabilistic cyber attacks. Some restrictions exist during the information trans-
mission, which can impair behavior and lead to instability of power systems.
Throughout this paper, we consider such power systems that involve multi-path missing mea-
surements and input–output time-varying delays as well as cyber attacks in the communication
channels. A feedback controller is presented, which is based on the observer to implement H∞ LFC
for power systems with disturbance rejection level γ. By Lyapunov stability theory, adequate criteria
are given to ensure the stable operation of power systems. Finally, the validity of theoretical analysis
is demonstrated and illustrated by numerical simulations.

Keywords: LFC; networked power systems; observer; time-varying delays; multi-path missing
measurements; cyber attacks

1. Introduction

Load frequency control (LFC) is a scheme that can control the output power of generators
set so that instantaneous frequency deviation in each region and the power exchange between
regions are kept within the specified range, and their steady-state error is equal to zero [1,2].
Traditional LFC schemes transmit measurement signals and control signals with the help
of a purpose-built communication infrastructure [3,4]. LFC in modern power systems mainly
applies open communication facilities to transmit the above-mentioned signals. On account
of the inherent properties of open communication, time-varying delays and packet dropout,
as well as cyber attacks, are inevitable, seriously affecting the efficiency of load frequency control
schemes [5,6]. The issue of the LFC of power systems with delays as well as packet dropout
and cyber attacks have received extensive attention in recent years [7–11].

In the last few years, a good deal of results have been reported with regard to LFC
problems of power systems containing packet dropout as well as time delays [6,12–15]. A novel
decentralized LFC control strategy based on switching control theory was researched by Yang
et al. By means of transmission delays as a switching decision parameter, the LFC system
as a range of subsystems was modeled, which provides a more accurate description of the impact
of delays as well as packet dropout on the system [6]. Zhang et al. proposed a delay-dependent
robust method for the analysis of PID-based LFC schemes that take into account time delays [12];
however, for the problem of LFC in power systems, many researchers have only studied packet
dropout or time delays in the output communication channels, ignoring the controller-to-
actuator link [16]. Furthermore, to our knowledge, few researchers have investigated the LFC
problem in power systems with delays as well as packet loss both in the controller-to-actuator
link and output communication channels.

Along with the large-scale application of open communication networks in power
systems, the matter of power system security has also attracted widespread attention
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from scholars. Cyber attacks can cause serious power incidents, especially if there are cyber
attacks during data transmission [17]. Cyber attacks can be divided into denial of service
attacks as well as deception attacks, of which, deception attacks pose the greatest threat
to power systems. Deception attacks are attacks in which an attacker modifies the integrity
of packets transmitted between different parts of the network in order to obtain critical
information. A great deal of work is being undertaken in relation to deception attacks.
Finite-time constrained and adaptive event-triggered control problems for networked
systems involved in deception attacks were studied by Sathishkumar et al. [18]. Tian
et al. submitted a memory-based event-triggered H∞ LFC for power systems that involve
deception attacks [19]. Adaptive event-triggered control of neural networks affected by
double deception attacks and time-varying delays were researched by Shen et al. [20].

In addition, in order to control the system more efficiently, scholars adopt state feed-
back control; however, state variables cannot be measured directly from the system, which
makes the implementation of state feedback techniques more complex than output feed-
back. Most previous work made the assumption that all system states are accessible.
Tapin et al. presented a full-state feedback controller design for LFC loops based on the pole
positioning method [21]. A state estimation was presented by Vrdoljak et al., which is
based on rapid measurement output sampling with full state feedback [22]. Instead, only
a fraction of the system state can be obtained in practice. Motivated by this point, many
scholars are paying attention to state feedback control that is based on an observer. A means
of quasi-decentralized LFC scheme of power systems that is based on a function observer
was proposed by Tyrone et al. [23]. To realize a global state feedback controller, a new
distributed function observer was designed by Thanh et al. [24]. It is notable that the prob-
lem of observer-based LFC in power systems that involve limited communications and
probabilistic deception attacks have not yet been researched—this is the motivation behind
our article.

The aim of this paper is to design an observer-based H∞ LFC scheme for power
systems with limited communications and probabilistic cyber attacks. Networked power
systems with input and output delays and packet dropout as well as cyber attacks are
considered in this article. The main contributions of this paper are given as follows:

(1) An observer-based LFC model is established for networked power systems, which
not only takes into account multi-path missing measurements and input–output
time-varying delays in the communication channel but also considers the influences
of random cyber attacks on data transmission.

(2) To implement the H∞ load frequency controller, delay-dependent H∞ stability crite-
rion including time delays and packet dropout as well as cyber attacks phenomena are
derived with the help of Lyapunov–Krasovskii function approach in LMI framework.

(3) On the basis of the resulting stability criteria, the stability gains of the observer and
controller are calculated with the assistance of the LMI toolbox.

Notations: The transpose of the matrix L is represented by LT . X−1 represents its
inverse matrix. The symmetric terms in the matrix are denoted by ∗. Rn denotes the n-
dimensional Euclidean space. Rn×n is n× n real matrices. The diagonal matrix is denoted
by diag{· · · }. Identity matrix is denoted by I. ‖ · ‖2 denotes the usual `2[0, ∞) norm. E
is the expectation operator. The probability when the stochastic variable x is equal to a is
denoted by Prob{x = a} . The dimension of these vectors and matrices will be cleared
in the context.

2. Model Description and Preliminaries

In this paper, the structure of the power system’s LFC model is shown in Figure 1.
The system model is represented as follows [25]:

ẋ(t) =Ax(t) + Bu(t) + Cw(t),

ỹ(t) =Dx(t), (1)
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where

x(t) =
[

∆ f ∆Pm ∆Pv ∆Pe
]T , ω(t) = Pd, y(t) = ACE(t),

D =
[

β 0 0 0
]
, B =

[
0 0 αg

Tg
αeke
Te

]T
,

C =


− 1

M
0
0
0

, A =


− D

M
1
M 0 1

M
0 − 1

Tch
1

Tch
0

− 1
TgR 0 − 1

Tg
0

0 0 0 − 1
Te

.

Figure 1. System LFC model including electric vehicles.

The parameters of the networked power systems, which are depicted in Figure 1, are
listed in Table 1 [4,25].

Table 1. Networked power systems parameters and their names.

Symbol Name

∆ f the deviations of frequency
∆Pm the deviations of generation mechanical output
∆Pv the deviations of valve position
∆Pd the deviations of load
∆Pe the deviations of electric vehicles output power

ACE(t) area control error
M the moment of inertia of the generator
D the generator damping coefficient
Tg the time constant of the governor
Tch the time constant of the turbine
Te the time constant of the electric vehicles
R the speed drop
αg turbine proportionality factor
αe electric vehicles proportionality factor
β the frequency bias factor
ke electric vehicles gain factor

As shown in Figure 2, considering the sudden changes in the operating environment
as well as the jamming of the communication channels, the output communication channels
are considered to be limited, that is, the output signal ỹ(t) suffer from data missing α(t)
and time-varying delays ϑ(t); therefore, the output signal will be described as

y(t) = α(t)ỹ(t− ϑ(t)), (2)
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time-varying delays that exist in the communication channels ϑ(t) satisfy

0 ≤ ϑ(t) ≤ ϑM, ϑ̇(t) ≤ µ < ∞, (3)

where ϑM and µ are some given constants.

Figure 2. Structure of networked power systems with limited communications and cyber attacks.

Remark 1. That packet loss from the sensor to the controller in a networked control system (1) is
expressed as α(t), which is a Bernoulli stochastic variable. In particular, if the link fails, we have
α(t) = 0, otherwise α(t) = 1 if the data are successfully transmitted.

Moreover, we assume that

Pro f {α(t) = h̄} =
{

α, h̄ = 1,
1− α, h̄ = 0.

From the above analysis, we have the following networked power systems involving
time-varying delays as well as missing output data measurements

ẋ(t) =Ax(t) + Bu(t) + Cw(t),

y(t) =α(t)(Dx(t− ϑ(t))). (4)

We study the robustness of the networked power systems (4) by designing a feedback
controller, which is based on an observer. Consider a controller with input missing mea-
surements β(t) and time-varying delays ϑ(t). Suppose that the deception attack restricted
in Hypothesis 1 is performed as a nonlinear function f (x(t− ϑ(t))).

˙̂x(t) =Ax̂(t) + Bu(t) + L[y(t)− α(t)Dx̂(t− ϑ(t))],

u(t) =(1− θ(t))β(t)Kx̂(t− ϑ(t)) + θ(t)K f (x(t− ϑ(t))), (5)

where x̂(t) ∈ Rn is the state vector, L and K are the estimated gain and the control gain
to be designed, respectively. Furthermore, we assume that

Pro f {β(t) = τ} =
{

β, τ = 1,
1− β, τ = 0.
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Pro f {θ(t) = ι} =
{

θ, ι = 1,
1− θ, ι = 0.

Remark 2. Similar to the variable α(t), β(t) is another Bernoulli stochastic variable representing
the packet loss from the controller (5) to the actuator. In addition, we have β(t) = 1 if controller (5)
is enabled and on the other hand, β(t) = 0 if controller is not enabled.

Remark 3. The Bernoulli random variable θ(t) is made to characterize the random deception attack.
θ(t) = 1 means the attack occurred, otherwise, the data are carried as normal.

Denote α̃(t) = α(t)− α, β̃(t) = β(t)− β, θ̃(t) = θ(t)− θ, α(1− α) , α2
0, β(1− β) ,

β2
0, θ(1− θ) , θ2

0 . Above all, we obtain the following networked power systems with
considering the input and output limited communications

ẋ(t) =Ax(t) + B((1− θ(t))β(t)Kx̂(t− ϑ(t)) + θ(t)K f (x(t− ϑ(t)))) + Cw(t)

=Ax(t) + (1− θ)βBK(x(t− ϑ(t))− e(t− ϑ(t))) + θ(t)BK f (x(t− ϑ(t)))

+ (β(t)− β)(1− θ)BK(x(t− ϑ(t))− e(t− ϑ(t)))

− (θ(t)− θ)(βBK(x(t− ϑ(t))− e(t− ϑ(t)))− BK f (x(t− ϑ(t))))

− (θ(t)− θ)(β(t)− β)(BK(x(t− ϑ(t))− e(t− ϑ(t))) + Cω(t). (6)

˙̂x(t) = Ax̂(t) + Bu(t) + L[y(t)− α(t)Dx̂(t− ϑ(t))]

= Ax̂(t) + Bu(t) + α(t)LDe(t− ϑ(t)). (7)

Letting the error vector be e(t) = x(t)− x̂(t), combining the system (6) and the observer-
based feedback controller (7), the error system can be represented as

ė(t) =ẋ(t)− ˙̂x(t)

=Ax(t) + Bu(t) + Cw(t)

− [Ax̂(t) + Bu(t) + α(t)LDe(t− ϑ(t))]

=Ae(t)− αLDe(t− ϑ(t)) + Cw(t)

− (α(t)− α)LDe(k− ϑ(t)). (8)

According to the above definition for the stochastic variables, we have

E{α̃(t)} = 0, E{β̃(t)} = 0, E{θ̃(t)} = 0, E{α̃2(t)} = α2
0, E{β̃2(t)} = β2

0,

E{θ̃2(t)} = β2
0, E{α̃(t)β̃(t)} = 0, E{α̃(t)θ̃(t)} = 0, E{β̃(t)θ̃(t)} = 0.

Furthermore, defining ζ(t) = [xT(t), eT(t)]T , according to (6) and (8) the networked
control system is described as

ζ(t) =ϕ1(t) + (β(t)− β)ϕ2(t)− (θ(t)− θ)ϕ3(t)

− (θ(t)− θ)(β(t)− β)ϕ4(t)− (α(t)− α)ϕ5(t),

y(t) =α(t)Dx(t− ϑ(t)), (9)

where
ϕ1(t) = A0ζ(t) + A1ζ(t− ϑ(t)) + A2w(t) + A3,

ϕ2(t) = A4ζ(t− ϑ(t)), ϕ3(t) = A5ζ(t− ϑ(t))− A6, (10)

ϕ4(t) = A7ζ(t− ϑ(t)), ϕ5(t) = A8ζ(t− ϑ(t)),

and
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A0 =

[
A 0
0 A

]
, A1 =

[
(1− θ)βBK −(1− θ)βBK

0 0

]
,

A2 =

[
C
C

]
, A3 =

[
θBK f (x(t− ϑ(t)))

0

]
,

A4 =

[
(1− θ)BK −(1− θ)BK

0 0

]
, A5 =

[
βBK −βBK

0 0

]
,

A6 =

[
BK f (x(t− ϑ(t)))

0

]
, A7 =

[
BK −BK
0 0

]
, A8 =

[
0 0
0 LD

]
.

Next, we present some definitions that are necessary to derive the final results.

Definition 1 ([26]). System (9) is mean square asymptotically stable, for ∀ς > 0, if ∃χ(ς) > 0
such that when the initial value ψ(t) satisfies sup−ϑM<t≤0E{‖ψ(t)‖2} < χ(t), the solution ζ(t)
of the system (9) satisfies E{‖ζ(t)‖2} < ς, t > 0 and limt→∞E{‖ζ(t)‖2} = 0.

Definition 2 ([27]). If, for any initial conditions, there satisfies the limitation for a given scalar
γ > 0, system (9) is said to be stabilization with H∞performance if two conditions below are met.

(1) The closed-loop system is mean square asymptotically stable with ω(t) = 0.
(2) For any nonzero w(t) ∈ `2[0, ∞) as well as a prescribed indicators γ, the below inequal-

ity holds
‖ y(t) ‖2≤ γ ‖ w(t) ‖2 . (11)

Hypothesis 1 ([28]). Stochastically occurring deception attacks f (x(t− ϑ(t))) meets

f T(x(t− ϑ(t))) f (x(t− ϑ(t))) < xT(t− ϑ(t))HT Hx(t− ϑ(t)), (12)

where H is a matrix of known constants that represents the upper boundary of non-linearity.

Lemma 1 ([29]). For a given full rank matrix D, if some matrices P, K, Y of suitable dimensions
exist, satisfying PBK = BY. Then, the matrix K can be derived from the following equation

K = (BT PB)−1BT BY. (13)

3. Results

From the definition of mean square asymptotic stability, in this section, we discuss
the stability and H∞ performance of the system (9). Then, with some reasonable matrix pro-
cessing, an observer-based feedback controller is designed with the presence of deception
attacks as well as packet loss.

3.1. Stability and H∞ Performance Analysis

Theorem 1. For the networked control systems (6) and the error systems (8), if there exist positive
definite matrices Pi, Qi, Ri, Si (i = 1, 2), and W such that

Π =

[
Ξ ∗
Φ Λ

]
< 0, (14)

[
R ∗
W R

]
> 0, (15)
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where

Ξ =



Ξ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 Ξ22 ∗ ∗ ∗ ∗ ∗ ∗

Ξ31 −W2 Ξ33 ∗ ∗ ∗ ∗ ∗
Ξ41 Ξ42 2WT

2 Ξ44 ∗ ∗ ∗ ∗
W1 WT

2 R1 −W1 −W2 −Q1 − R1 ∗ ∗ ∗
W2 W3 −WT

2 R2 −W3 0 −Q2 − R2 ∗ ∗
θ(P1BK)T 0 0 0 0 0 −θ I ∗

CT P1 CT P2 0 0 0 0 0 −γI


,

Φ =



τMP1 A 0 φ13 φ14 0 0 φ17 τMP1C
0 τMP2 A 0 φ24 0 0 0 τMP2C
0 0 φ33 φ34 0 0 0 0
0 0 0 0 0 0 0 0
0 0 φ53 φ54 0 0 φ57 0
0 0 0 0 0 0 0 0
0 0 φ73 φ74 0 0 0 0
0 0 0 0 0 0 0 0
0 0 φ93 φ94 0 0 0 0
0 0 0 φ10,4 0 0 0 0


,

Ξ11 = AT P1 + P1 A + Q1 + S1 − R1, Ξ22 = AT P2 + P2 A + Q2 + S2 − R2,

Ξ33 = (µ− 1)S1 − 2R1 + W1 + WT
1 + αDT D + θHT H,

Ξ31 = (1− θ)β(P1BK)T + R1 −W1, Ξ41 = −(1− θ)β(P1BK)T −WT
2 ,

Ξ42 = −α(P2LD)T + W2 − R3, Ξ44 = (µ− 1)S2 − 2R2 + W3 + WT
3 ,

φ13 = τM(1− θ)βP1BK, φ14 = −τM(1− θ)βP1BK, φ17 = τMθP1BK,

φ24 = −τMαP2LD, φ33 = τMβ0(1− θ)P1BK, φ34 = −τMβ0(1− θ)P1BK,

φ53 = τMθ0βP1BK, φ54 = −τMθ0βP1BK, φ57 = −τMθ0P1BK,

φ73 = τMθ0β0P1BK, φ74 = −τMθ0β0P1BK, φ10,4 = τMα0P2LD,

P = diag{P1, P2}, Q = diag{Q1, Q2}, R = diag{R1, R2}, S = diag{S1, S2},

W =

[
W1 W2
∗ W3

]
, Λ = diag{−PR−1P,−PR−1P,−PR−1P,−PR−1P,−PR−1P},

then, the system (9) is mean square asymptotically stable. That is, the networked power systems (4) with
limited communications could be mean square asymptotic stable by applying the controller (5), which also
has limited communications.

Proof. Select the Lyapunov function as V(t) = V1(t) + V2(t) + V3(t), where

V1(t) = ζT(t)Pζ(t),

V2(t) =
∫ t

t−ϑM

ζT(s)Qζ(s)ds +
∫ t

t−ϑ(t)
ζT(s)Sζ(s)ds,

V3(t) = ϑM

∫ t

t−ϑM

∫ t

s
ζ̇(v)Rζ̇(v)dvds. (16)

Taking the derivative with respect to V(t), we can acquire

E{V̇1(t)} =2(A0ζ(t) + A1ζ(t− ϑ(t)) + A2ω(t) + A3)
T Pζ(t), (17)
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E{V̇2(t)} =ζT(t)Qζ(t)− ζT(t− ϑM)Qζ(t− ϑM)

+ ζT(t)Qζ(t)− (1− µ)ζT(t− ϑ(t))Qζ(t− ϑ(t)), (18)

E{V̇3(t)} =E{τ2
M ζ̇T(t)Rζ̇(t)} − τM

∫ t

t−τM

ζ̇T(v)Rζ̇(v)dv, (19)

E{ζ̇(t)Rζ̇(t)} =ϕT
1 (t)Rϕ1(t) + β2

0 ϕT
2 (t)Rϕ2(t) + θ2

0 ϕT
3 (t)Rϕ3(t)

+ θ2
0 β2

0 ϕT
4 (t)Rϕ4(t) + α2

0 ϕT
5 (t)Rϕ5(t)

=(A0ζ(t) + A1ζ(t− ϑ(t)) + A2ω(t) + A3)
T R(A0ζ(t)

+ A1ζ(t− ϑ(t)) + A2ω(t) + A3)

+ β2
0(A4ζ(t− ϑ(t)))T R(A4ζ(t− ϑ(t)))

+ θ2
0(A5ζ(t− ϑ(t))− A6)

T R(A5ζ(t− ϑ(t))− A6)

+ θ2
0 β2

0(A7ζ(t− ϑ(t)))T R(A7ζ(t− ϑ(t)))

+ α2
0(A8ζ(t− ϑ(t)))T R(A8ζ(t− ϑ(t))). (20)

With the help of the reciprocally convex approach [30], if (15) is satisfied, we acquire

−ϑM

∫ t

t−ϑM

ζ̇T(ϑ)Rζ̇(ϑ)dϑ

≤

 ζ(t)
ζ(t− ϑ(t))
ζ(t− ϑM)

 −R R−WT WT

R−W −2R + W + WT R−WT

W R−W −R

 ζ(t)
ζ(t− ϑ(t))
ζ(t− ϑM)

. (21)

According to Hypothesis 1, we have

θxT(t− ϑ(t))HT Hx(t− ϑ(t))− θ f T(x(t− ϑ(t))) f (x(t− ϑ(t))) > 0. (22)

From (17)–(22) we are able to attain that

E{V̇(t)}+ yT(t)y(t)− γ2wT(t)w(t) ≤ vT(t)[Ξ−ΦTΛ1Φ]v(t), (23)

where v(t)=

col
[

x(t) e(t) x(t− ϑ(t)) e(t− ϑ(t)) x(t− ϑM) e(t− ϑM) f x(t− ϑ(t)) ω(t)
]
.

With the aid of the Schur complement, one can acquire from (14) that Ξ−ΦTΛ1Φ < 0,
then we obtain

yT(t)y(t)− γ2wT(t)w(t) ≤ −E{V̇(t)}. (24)

From the inequality (14) and (24), for ω(t) = 0, there exists a scalar λ > 0 such that
the following inequality holds

E{V̇(t)} ≤ −λE{‖ζ(t)‖2} < 0.

Further, because V(t) > 0, from which we obtain

limt→∞E{‖ζ(t)‖2} = 0.

From Definition 1, we obtain that the system (9) is mean square asymptotically stable.
When ω(t) 6= 0, integrating both side of (24) from 0 to +∞, it follows that∫ +∞

0
(yT(t)y(t)− γ2wT(t)w(t))dt ≤ V(0)−V(+∞).
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Under zero initial condition, we obtain

‖y(t)‖2 ≤ γ‖w(t)‖2.

From which we obtain that the system (9) is mean square asymptotically stable with
H∞ performance. This completes the proof.

Remark 4. Actually, observed-based feedback control is an efficient way to maintain system
stability. In previous related works [31–34], control methods that are based on observers are used
to maintain the security of cyber power systems. Even though authors considered the communication
delays or missing measurements, only input or output situations in communication channel were
discussed. We know that communication channel limitations, including packet dropout as well
as delays, exist not only in the output communication channels, but also in the communication
channels from the controller to the actuator.

3.2. The Observer-Based Feedback Controller Design

In this section, the load frequency controller (5) for the power systems (4) is presented.
It could be found in the condition that the matrix inequality (14) is not feasible because
of the existence of the nonlinear matrices P1BK and P2LD. To address this issue, by using
Lemma 1, gain matrices L and K in the controller (5) are obtained.

Theorem 2. Consider the networked power systems (9). For the H∞ performance level γ, if there
exist matrices Pi > 0, Qi > 0, Ri > 0, Si > 0 (i = 1, 2) and W, Y, G such that the following
conditions hold

Π̂ =

[
Ξ̂ ∗
Φ̂ Λ̂

]
< 0, (25)[

R ∗
W R

]
> 0, (26)

where

Ξ̂ =



Ξ̂11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 Ξ̂22 ∗ ∗ ∗ ∗ ∗ ∗

Ξ̂31 −W2 Ξ̂33 ∗ ∗ ∗ ∗ ∗
Ξ̂41 Ξ̂42 2WT

2 Ξ̂44 ∗ ∗ ∗ ∗
W1 WT

2 R1 −W1 −W2 −Q1 − R1 ∗ ∗ ∗
W2 W3 −WT

2 R2 −W3 0 −Q2 − R2 ∗ ∗
θ(BY)T 0 0 0 0 0 −θ I ∗

CT P1 CT P2 0 0 0 0 0 −γI


,

Φ̂ =



τMP1 A 0 φ̂13 φ̂14 0 0 φ̂17 τMP1C
0 τMP2 A 0 φ̂24 0 0 0 τMP2C
0 0 φ̂33 φ̂34 0 0 0 0
0 0 0 0 0 0 0 0
0 0 φ̂53 φ̂54 0 0 φ̂57 0
0 0 0 0 0 0 0 0
0 0 φ̂73 φ̂74 0 0 0 0
0 0 0 0 0 0 0 0
0 0 φ̂93 φ̂94 0 0 0 0
0 0 0 φ̂10,4 0 0 0 0


,
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Ξ̂11 = AT P1 + P1 A + Q1 + S1 − R1, Ξ̂22 = AT P2 + P2 A + Q2 + S2 − R2,

Ξ̂31 = (1− θ)β(BY)T + R1 −W1, Ξ̂33 = (µ− 1)S1 − 2R1 + W1 + WT
1 + αDT D + θHT H,

Ξ̂41 = −(1− θ)β(BY)T −WT
2 , Ξ̂42 = −α(GD)T + W2 − R3,

Ξ̂44 = (µ− 1)S2 − 2R2 + W3 + WT
3 , φ̂13 = τM(1− θ)βBY, φ̂14 = −τM(1− θ)βBY,

φ̂17 = τMθBY, φ̂24 = −τMαGD, φ̂33 = τMβ0(1− θ)BY, φ̂34 = −τMβ0(1− θ)BY,

φ̂53 = τMθ0βBY, φ̂54 = −τMθ0βBY, φ̂57 = −τMθ0BY, φ̂73 = τMθ0β0BY,

φ̂74 = −τMθ0β0BY, φ̂10,4 = τMα̂0GD, P = diag{P1, P2}, Q = diag{Q1, Q2},

R = diag{R1, R2}, S = diag{S1, S2}, W =

[
W1 W2
∗ W3

]
,

Λ̂ = diag{−2κP + κ2R,−2κP + κ2R,−2κP + κ2R,−2κP + κ2R,−2κP + κ2R}.

In addition, K and L can be draw by

K = (BT P1B)−1BT BY, L = P−1
2 G. (27)

Proof ([29]). For any matrix R > 0, P > 0 and scalar κ, from

(R− κ−1P)R−1(R− κ−1P) ≥ 0,

it can be seen that
−PR−1P ≤ −2κP + κ2R.

Using −2κP + κ2R to replace −PR−1P of Λ in Theorem 1, we obtain

Λ̂ = diag{−2κP + κ2R,−2κP + κ2R,−2κP + κ2R,−2κP + κ2R,−2κP + κ2R}.

Next, we linearize the nonlinear terms P1BK as well as P2LD in (14):

(1) By Lemma 1, To address nonlinear term P1BK, Let P1BK = BY.

(2) To address the nonlinear term P2LD, let P2LD = GD.
From the above transformation, matrix inequality (14) can be translated into the typical
LMI. This completes the proof.

�

Remark 5. Compared to past associated studies, the main challenge in controller design is to handle
the nonlinear terms P1BK and P2LD. We make P1BK = BY and P2LD = GD by introducing
matrices Y and G of suitable dimensions. To ensure the H∞ performance of cyber power systems,
we give normal LMI conditions to design the observer-based feedback controller (9), which can be
addressed by the LMI control toolbox.

4. A Case Study

In the part, we show that the theoretical results achieved can be used to solve the LFC
problem for power systems with multi-path missing measurements and input–output
time-varying delays as well as cyber attacks in the communication channels with the help
of an example. Table 2 shows the parameter values for system (9).

Table 2. Power Systems Parameters for LFC [25].

Tch Tg R D M β Te ke αg αe

0.3 0.1 0.05 1 10 0.4 1 1 0.9 0.1
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Let the probability of the three Bernoulli stochastic variables as α = 0.9, β = 0.9,
and θ = 0.1. Time delays are set as ϑ(t) = 0.1 + 0.1 sin(t), H∞ performance index is set
as γ = 7, and the noise signal is selected as w(t) = 0.1 sin(4πt)

1+t2 (ε(t)− ε(t− 5)). Next, using
Algorithm 1, the controller gains matrix K and observer gains matrix L, and can be solved
as follows:

K =
[

0.0391 0.0038 −0.0032 0.0224
]
,

L =
[

2.1054 −0.2981 −0.4177 0.0568
]T .

Algorithm 1: Load frequency controller and observer design for networked
power systems

Require: Tch , Tg, R, D, M, β, Te, ke, E{α(t)}, E{β(t)}, E{θ(t)}, αg , αe, ϑM, κ and µ

Ensure: The given parameters are reasonable in describing multi-area power systems

1: Computing the matrices A, B,C and D in system Figure 1 using the input parameters.

2: Solving linear matrix inequalities (25) and (26) in theorem 2 using LMI toolbox.

3: Obtaining matrices P1, P2, G and Y.

4: Calculating K = (BT P1B)−1BT BY; return K;

5: Calculating L = P−1
2 G; return L;

Suppose that cyber attacks signal f (x(t− ϑ(t))) = tanh(0.05x(t− ϑ(t))), then it is easy
to see that H = 0.05 satisfies Hypothesis 1. For the sake of simulation, the initial conditions
for the state is selected as x(0) =

[
−0.4 0.1 −0.2 0.5

]T and the sampling period is
set by 0.01 s and the simulation time is set to 15 s. Figure 3 depicts the Bernoulli distribution
for the case of random variables α(t), β(t), and θ(t) with expectation α = 0.9, β = 0.9, and
θ = 0.1. The α = 0.9, β = 0.9, and θ = 0.1 in Figure 3 indicate that 10 percent of the
packets from the sensor to the controller are lost, 10 percent of control input packets are
lost in the communication network from the controller to the actuator, and the probability
of a deception attack in the communication network is 10 percent. Frequency deviation
curves of the system and the observer are shown in Figure 4 when the system is subject
to packet loss and spoofing attacks. From Figure 4, it can be concluded that the frequency
deviation in the power system tends to zero at around 11 s, proving the effectiveness
of the designed controller. Figure 5 shows the error between the system frequency deviation
and the frequency deviation observed by the observer. Combining Figures 4 and 5, we can
see not only that the observer can observe the frequency deviation of the system very well
but also that the error between the system frequency deviation and the observed frequency
deviation of the observer tends to zero at around 8 s, demonstrating the good observational
performance of the designed observer.

Figures 6–9 show all state trajectory, all state observation trajectory, systems error trajec-
tory, and the control trajectory of the one-area power system. It is clear from Figures 6 and 7
that system (9) reaches mean square asymptotic stability within 12 s by designing con-
troller (5). We can see that the error between the system state and the observed state
of the observer converges to zero around 8 s from Figure 8, which proves that the de-
signed observer (7) is capable of observing the actual value effectively. The control signal
u(t) is shown in Figure 9. The disturbance signal is depicted in Figure 10. Figure 11 de-
picts the response curve of the network attack signal f (x(t − ϑ(t))). The results show that
the presented LFC strategy is able to keep the stability of power systems in the presence of multi-
path missing measurements and input–output time-varying delays as well as cyber attacks
on the communication channels.
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Figure 3. The evolution of the Bernoulli stochastic variables with α = 0.9, β = 0.9, and θ = 0.1.
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Figure 5. Error in frequency deviation between the system and observer.
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Figure 11. The response of deception attacks signals.

5. Conclusions

This paper is dedicated to studying the mean square asymptotic stability as well as H∞
performance of networked power systems with multi-path missing measurements and
input–output time-varying delays as well as cyber attacks on the communication channels.
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An observer-based LFC model for networked power systems is established, which not only
takes into account multi-path missing measurements and input–output time-varying delays
in the communication channel but also considers the influences of random cyber attacks
on data transmission. Based on this model, with the help of Lyapunov stability theory and
LMI techniques, we derived sufficient conditions for the stability and H∞ performance
of the system. The validity of the proposed solution is verified by means of simulation
examples. It should be noted that we extended the model to a practical situation comparing
with previous works due to the frequently occurrence of packet dropouts and cyber attacks
phenomenon since it may diminish system performance; however, the approach proposed
in this paper also has the following limitations:

Firstly, we model the loss of packets and the occurrence of cyber attacks as Bernoulli
stochastic processes, which are somewhat limited in practical applications. Secondly,
the stability criterion obtained from the generalized function chosen in this paper is some-
what conservative when dealing with time delay systems. In the future, the simultaneous
consideration of input and output packet dropouts described by other efficient stochastic
processes and time-varying signal delays deserves further study.
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