Study on the Improved Method of Wedge Cutting Blasting with Center Holes Detonated Subsequently
Abstract
:1. Introduction
2. Theoretical Analysis of Cavity Forming Mechanism
2.1. Analysis of Restraining Force
2.2. Improved Cutting Method and Cavity Forming Process
3. Numerical Simulation and Analysis
3.1. Numerical Model Descriptions
3.2. Algorithms and Material Models
3.3. Simulation Results and Discussions
3.3.1. Dynamic Evolution of Stress Wave
3.3.2. Distribution Features of Stress Field
4. Field Application Experiment
4.1. Project Overview
4.2. Design of Blasting Scheme
4.3. Experimental Results
5. Conclusions
- (1)
- The theoretical analysis indicated that the rock in the range from the free face to critical cutting depth could be ejected out after the cutting hole blasting, which reduced the restraining force of the center hole blasting, and then the center hole blasting could further complete the expulsion of residuary rock to achieve a satisfying cutting effect.
- (2)
- The numerical simulation visually presented the dynamic evolution of the stress wave for the improved wedge cutting method. In 1.8–2.5 m, the residuary rock suffered from the stress waves generated by the cutting holes and the center holes successively. The stress field with a low intensity induced by the cutting hole blasting could cause the preliminary failure of the residuary rock, and the stress field with a high intensity generated by the center hole blasting could aggravate the destruction of the residuary rock, which was conductive to breaking the residuary rock into small fragments that were easily thrown out, hence forming a cutting cavity meeting the design size.
- (3)
- In comparison with the conventional wedge cutting method, the improved wedge cutting method attained an increase in the average cyclical footage of 0.40 m and the blasting hole utilization of 17.4%, and a decrease in the average specific explosive consumption of 0.34 kg·m−3 and the average specific detonator consumption of 0.39 PCS·m−3, which convincingly validated the engineering applicability of the improved wedge cutting method in the rock tunnel blasting driving.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zare, S.; Bruland, A.; Rostami, J. Evaluating D&B and TBM tunnelling using NTNU prediction models. Tunn. Undergr. Space Technol. 2016, 59, 55–64. [Google Scholar]
- Costamagna, E.; Oggeri, C.; Segarra, P.; Castedo, R.; Navarro, J. Assessment of contour profile quality in D&B tunnelling. Tunn. Undergr. Space Technol. 2018, 75, 67–80. [Google Scholar]
- Ji, L.; Zhou, C.B.; Lu, S.W.; Jiang, N.; Li, H.B. Modeling study of cumulative damage effects and safety criterion of surrounding rock under multiple full-face blasting of a large cross-section tunnel. Int. J. Rock Mech. Min. Sci. 2021, 147, 104882. [Google Scholar] [CrossRef]
- Chandrakar, S.; Paul, P.S.; Sawmliana, C. Influence of void ratio on “Blast Pull” for different confinement factors of development headings in underground metalliferous mines. Tunn. Undergr. Space Technol. 2021, 108, 103716. [Google Scholar] [CrossRef]
- Zare, S.; Bruland, A. Comparison of tunnel blast design models. Tunn. Undergr. Space Technol. 2006, 21, 533–541. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhang, Y.; Bao, H.R. Tunnel blasting simulations by the discontinuous deformation analysis. Int. J. Comput. Methods 2011, 8, 277–292. [Google Scholar] [CrossRef]
- Zuo, J.J.; Yang, R.S.; Xiao, C.L. Model test of empty hole cut blasting in coal mine rock drivage. J. Min. Sci. Technol. 2018, 3, 335–341. [Google Scholar]
- Zhang, H.; Li, T.C.; Wu, S.; Zhang, X.T.; Gao, W.L.; Shi, Q.P. A study of innovative cut blasting for rock roadway excavation based on numerical simulation and field tests. Tunn. Undergr. Space Technol. 2022, 119, 104233. [Google Scholar] [CrossRef]
- Cardu, M.; Seccatore, J. Quantifying the difficulty of tunneling by drilling and blasting. Tunn. Undergr. Space Technol. 2016, 60, 178–182. [Google Scholar] [CrossRef]
- Ding, Z.; Jia, J.; Li, X.; Li, J.; Li, Y.; Liao, J. Experimental study and application of medium-length hole blasting technique in coal-rock roadway. Energy Sci. Eng. 2019, 8, 1554–1566. [Google Scholar] [CrossRef]
- Shapiro, V.Y. Efficiency of cut configuration in driving tunnels with a set of deep blast holes. Sov. Min. Sci. 1989, 25, 379–386. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Yang, R.S. Multi-step cutting technology and its application in rock roadways. Chin. J. Rock Mech. Eng. 2019, 38, 551–559. [Google Scholar]
- Dai, J.; Du, X.L. Research on blasting parameters of wedge-shaped cutting for rock tunnel. Min. Res. Dev. 2011, 32, 90–93. [Google Scholar]
- Wang, Z.K.; Gu, X.W.; Zhang, W.L.; Xie, Q.K.; Xu, X.C.; Wang, Q. Analysis of the cavity formation mechanism of wedge cut blasting in hard rock. Shock Vib. 2019, 2019, 1828313. [Google Scholar] [CrossRef]
- Liang, W.M.; Wang, Y.X.; Chu, H.B.; Yang, X.L. Study on effect of symmetry of wedge shaped cutting hole angle on cut blasting. Met. Mine 2009, 38, 21–24. [Google Scholar]
- Pu, C.J.; Liao, T.; Xiao, D.J.; Wang, J.Q.; Jiang, R. Grey relation analysis of influence factors on rock tunnel wedge-shaped cut blasting. Ind. Miner. Processing 2016, 45, 34–38. [Google Scholar]
- Yang, D.Q.; Wang, X.G.; Wang, Y.J.; An, H.M.; Lei, Z. Experiment and analysis of wedge cutting angle on cutting effect. Adv. Civ. Eng. 2020, 2020, 5126790. [Google Scholar] [CrossRef]
- Sazid, M.; Singh, T.N. Two-dimensional dynamic finite element simulation of rock blasting. Arab. J. Geosci. 2013, 6, 3703–3708. [Google Scholar] [CrossRef]
- Zehtab, B.; Salehi, H. Finite-element-based monte carlo simulation for sandwich panel-retrofitted unreinforced masonry walls subject to air blast. Arab. J. Sci. Eng. 2020, 45, 3479–3498. [Google Scholar] [CrossRef]
- Xie, L.X.; Lu, W.B.; Zhang, Q.B.; Jiang, Q.H.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Hu, J.H.; Yang, C.; Zhou, K.P.; Zhou, B.R.; Zhang, S.G. Temporal-spatial evolution and application of blasting cavity of single wedge cutting. J. Cent. South Univ. 2017, 48, 3309–3315. [Google Scholar]
- Cheng, B.; Wang, H.B.; Zong, Q.; Xu, Y.; Wang, M.X.; Zheng, Q.Q.; Li, C.J. A study on cut blasting with large diameter charges in hard rock roadways. Adv. Civ. Eng. 2020, 2020, 8873412. [Google Scholar] [CrossRef]
- Zong, Q.; Liu, Q.H. Application research on cutting technology of mid-deep hole blasting in coal mine rock tunnel. Blasting 2010, 27, 35–39. [Google Scholar]
- Yang, R.S.; Zhang, Z.R.; An, C.; Zheng, C.D.; Ding, C.X.; Xiao, C.L. Discussion on ultra-deep depth problem of slot hole in blasting excavation of rock roadway in coal mine. Coal Sci. Technol. 2020, 48, 10–23. [Google Scholar]
- Ding, C.X.; Yang, R.S.; Zheng, C.D.; Yang, L.Y.; He, S.L.; Feng, C. Numerical analysis of deep hole multi-stage cut blasting of vertical shaft using a continuum-based discrete element method. Arab. J. Geosci. 2021, 14, 1086. [Google Scholar] [CrossRef]
- Zong, Q. Preliminary investigations into deep-hole millisecond delay-action blasting. J. Huainan Min. Inst. 1992, 12, 18–22. [Google Scholar]
- Yang, R.S.; Zheng, C.D.; Yang, L.Y.; Zuo, J.J.; Cheng, T.L.; Ding, C.X.; Li, Q. Study of two-step parallel cutting technology for deep-hole blasting in shaft excavation. Shock Vib. 2021, 2021, 8815564. [Google Scholar] [CrossRef]
- Liu, K.; Li, Q.Y.; Wu, C.Q.; Li, X.B.; Li, J. A study of cut blasting for one-step raise excavation based on numerical simulation and field blast tests. Int. J. Rock Mech. Min. Sci. 2018, 109, 91–104. [Google Scholar] [CrossRef]
- Chen, M.; Ye, Z.W.; Lu, W.B.; Wei, D.; Yan, P. An improved method for calculating the peak explosion pressure on the borehole wall in decoupling charge blasting. Int. J. Impact Eng. 2020, 146, 103695. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, B.; He, X.; Zhou, C.B.; Luo, X.D.; Wu, T.Y. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation. Tunn. Undergr. Space Technol. 2020, 102, 103448. [Google Scholar] [CrossRef]
- Blair, D.P. The free surface influence on blast vibration. Int. J. Rock Mech. Min. Sci. 2015, 77, 182–191. [Google Scholar] [CrossRef]
- Yang, J.H.; Lu, W.B.; Li, P.; Yan, P. Evaluation of rock vibration generated in blasting excavation of deep-buried tunnels. KSCE J. Civ. Eng. 2018, 22, 2593–2608. [Google Scholar] [CrossRef]
- Hajibagherpour, A.R.; Mansouri, H.; Bahaaddini, M. Numerical modeling of the fractured zones around a blasthole. Comput. Geotech. 2020, 123, 103535. [Google Scholar] [CrossRef]
- Park, D.; Jeon, S. Reduction of blast-induced vibration in the direction of tunneling using an air-deck at the bottom of a blasthole. Int. J. Rock Mech. Min. Sci. 2010, 47, 752–761. [Google Scholar] [CrossRef]
- Kim, J.G.; Song, J.J. Abrasive water jet cutting methods for reducing blast-induced ground vibration in tunnel excavation. Int. J. Rock Mech. Min. Sci. 2015, 75, 147–158. [Google Scholar] [CrossRef]
- Jang, H.; Handel, D.; Ko, Y.; Yang, H.S.; Miedecke, J. Effects of water deck on rock blasting performance. Int. J. Rock Mech. Min. Sci. 2018, 112, 77–83. [Google Scholar] [CrossRef]
- Hu, Y.G.; Lu, W.B.; Chen, M.; Yan, P.; Yang, J.H. Comparison of blast-induced damage between presplit and smooth blasting of high rock slope. Rock Mech. Rock Eng. 2014, 47, 1307–1320. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, H.B.; Zong, Q.; Xu, Y.; Wang, M.X.; Zhu, N.N. Study on the novel technique of straight hole cutting blasting with a bottom charged central hole exploded supplementally. Arab. J. Geosci. 2021, 14, 2867. [Google Scholar] [CrossRef]
- Li, H.C.; Zhang, X.T.; Li, D.; Wu, L.M.; Zhou, H.M. Numerical simulation of the effect of empty hole between adjacent blast holes in the perforation process of blasting. J. Intell. Fuzzy Syst. 2019, 37, 3137–3148. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Q.; Yang, R.S.; Xu, P.; Zhao, Y.; Wang, Y. Evolution of stress field in cylindrical blasting with bottom initiation. Opt. Lasers Eng. 2020, 133, 106153. [Google Scholar] [CrossRef]
- Gao, Q.D.; Lu, W.B.; Yan, P.; Hu, H.R.; Yang, Z.W.; Chen, M. Effect of initiation location on distribution and utilization of explosion energy during rock blasting. Bull. Eng. Geol. Environ. 2019, 78, 3433–3447. [Google Scholar] [CrossRef]
- Xu, X.D.; He, M.C.; Zhu, C.; Lin, Y.; Chen, C. A new calculation model of blasting damage degree—Based on fractal and tie rod damage theory. Eng. Fract. Mech. 2019, 220, 106619. [Google Scholar] [CrossRef]
- Xia, W.J.; Lu, W.B.; Wang, G.H.; Yan, P.; Liu, D.; Leng, Z.D. Safety threshold of blasting vibration velocity in foundation excavation of Baihetan super-high arch dam. Bull. Eng. Geol. Environ. 2019, 79, 4999–5012. [Google Scholar] [CrossRef]
- Yang, R.S.; Ding, C.X.; Yang, L.Y.; Lei, Z.; Zheng, C.D. Study of decoupled charge blasting based on high-speed digital image correlation method. Tunn. Undergr. Space Technol. 2019, 83, 51–59. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, H.; Zong, Q.; Xu, Y.; Wang, M.; Zheng, Q. Study of the double wedge cut technique in medium-depth hole blasting of rock roadways. Arab. J. Sci. Eng. 2021, 46, 4895–4909. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, S.; Yang, Y.; Meng, N.; Bai, J.B. Application of shallow-hole blasting in improving the stability of gob-side retaining entry in deep mines: A case study. Energies 2020, 12, 3623. [Google Scholar] [CrossRef]
- Parviz, M.; Aminnejad, B.; Fiouz, A. Numerical simulation of dynamic response of water in buried pipeline under explosion. KSCE J. Civ. Eng. 2017, 21, 2798–2806. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, H.C.; Wang, J.G.; Tian, N.C. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Comput. Geotech. 2021, 135, 104172. [Google Scholar] [CrossRef]
- Liu, K.; Li, Q.Y.; Wu, C.Q.; Li, X.B.; Li, J. Optimization of spherical cartridge blasting mode in one-step raise excavation using pre-split blasting. Int. J. Rock Mech. Min. Sci. 2020, 126, 104182. [Google Scholar] [CrossRef]
- Fourney, W.L.; Dick, R.D.; Wang, X.J.; Wei, Y. Fragmentation mechanism in crater blasting. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 413–429. [Google Scholar] [CrossRef]
ρe (kg·m−3) | De (m·s−1) | Ae (GPa) | Be (GPa) | R1 | R2 | ωe | Ee (GPa) |
---|---|---|---|---|---|---|---|
1100 | 3200 | 214 | 0.182 | 4.15 | 0.95 | 0.15 | 4.20 |
ρa (kg·m−3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|---|
1.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | 0.40 | 0.00 |
ρr (kg·m−3) | E (GPa) | µ | σsc (MPa) | σst (MPa) | C | P | λ |
---|---|---|---|---|---|---|---|
2680 | 28.1 | 0.24 | 78.1 | 6.4 | 2.63 | 3.96 | 1.0 |
ρs (kg·m−3) | G (GPa) | K (GPa) | Y0 | Y1 | Y2 | Pc (GPa) |
---|---|---|---|---|---|---|
1800 | 0.016 | 1.328 | 0.0033 | 1.31 × 10−7 | 0.1232 | 0.0 |
Hole Name | Hole No. | Hole Amount | Charge Weight (kg) | Detonating Sequence | |
---|---|---|---|---|---|
Per Hole | Sub-Total | ||||
Cutting hole | 1–6 | 6 | 1.40 | 8.40 | 1 |
Stoping hole | 7–19 | 13 | 0.93 | 12.09 | 2 |
Stoping hole | 20–33 | 14 | 0.93 | 13.02 | 3 |
Contour hole | 34–56 | 23 | 0.62 | 14.26 | 4 |
Floor hole | 57–65 | 9 | 0.93 | 8.37 | 4 |
Total | N/A | 65 | N/A | 56.14 | N/A |
Hole Name | Hole No. | Hole Amount | Charge Weight (kg) | Detonating Sequence | |
---|---|---|---|---|---|
Per Hole | Sub-Total | ||||
Center hole | 1–2 | 2 | 0.70 | 1.40 | 2 |
Cutting hole | 3–8 | 6 | 1.40 | 8.40 | 1 |
Stoping hole | 9–21 | 13 | 0.93 | 12.09 | 3 |
Stoping hole | 22–35 | 14 | 0.93 | 13.02 | 4 |
Contour hole | 36–58 | 23 | 0.62 | 14.26 | 5 |
Floor hole | 59–67 | 9 | 0.93 | 8.37 | 5 |
Total | N/A | 67 | N/A | 57.54 | N/A |
No. | L (m) | U (%) | Q (kg·m−3) | R (PCS·m−3) |
---|---|---|---|---|
1 | 1.75 | 76.0 | 2.17 | 2.51 |
2 | 1.80 | 78.3 | 2.11 | 2.44 |
3 | 1.80 | 78.3 | 2.11 | 2.44 |
4 | 1.80 | 78.3 | 2.11 | 2.44 |
5 | 1.75 | 76.0 | 2.17 | 2.51 |
6 | 1.80 | 78.3 | 2.11 | 2.44 |
7 | 1.75 | 76.0 | 2.17 | 2.51 |
8 | 1.85 | 80.4 | 2.05 | 2.38 |
9 | 1.80 | 78.3 | 2.11 | 2.44 |
10 | 1.80 | 78.3 | 2.11 | 2.44 |
Average | 1.79 | 77.8 | 2.12 | 2.46 |
No. | L (m) | U (%) | Q (kg·m−3) | R (PCS·m−3) |
---|---|---|---|---|
1 | 2.15 | 93.5 | 1.81 | 2.11 |
2 | 2.20 | 95.6 | 1.76 | 2.06 |
3 | 2.20 | 95.6 | 1.76 | 2.06 |
4 | 2.15 | 93.5 | 1.81 | 2.11 |
5 | 2.25 | 97.8 | 1.73 | 2.01 |
6 | 2.20 | 95.6 | 1.77 | 2.06 |
7 | 2.20 | 95.6 | 1.77 | 2.06 |
8 | 2.15 | 93.5 | 1.81 | 2.11 |
9 | 2.20 | 95.6 | 1.77 | 2.06 |
10 | 2.20 | 95.6 | 1.77 | 2.06 |
Average | 2.19 | 95.2 | 1.78 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Wang, H.; Zong, Q.; Wang, M.; Gao, P.; Lv, N. Study on the Improved Method of Wedge Cutting Blasting with Center Holes Detonated Subsequently. Energies 2022, 15, 4282. https://doi.org/10.3390/en15124282
Cheng B, Wang H, Zong Q, Wang M, Gao P, Lv N. Study on the Improved Method of Wedge Cutting Blasting with Center Holes Detonated Subsequently. Energies. 2022; 15(12):4282. https://doi.org/10.3390/en15124282
Chicago/Turabian StyleCheng, Bing, Haibo Wang, Qi Zong, Mengxiang Wang, Pengfei Gao, and Nao Lv. 2022. "Study on the Improved Method of Wedge Cutting Blasting with Center Holes Detonated Subsequently" Energies 15, no. 12: 4282. https://doi.org/10.3390/en15124282
APA StyleCheng, B., Wang, H., Zong, Q., Wang, M., Gao, P., & Lv, N. (2022). Study on the Improved Method of Wedge Cutting Blasting with Center Holes Detonated Subsequently. Energies, 15(12), 4282. https://doi.org/10.3390/en15124282