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Abstract: In the paper, a new cascade control system for an autonomous flight of an unmanned aerial
vehicle (UAV) based on Proportional–Integral–Derivative (PID) and finite-time State-Dependent
Riccati Equation (SDRE) control is proposed. The PID and SDRE controllers are used in a hybrid
control system for precise control and stabilization, which is necessary to increase the drone’s flight
stability and maneuver precision. The hybrid PID-SDRE control system proposed for the quadrotor
model is quasi-optimal, since the suboptimal control algorithm for the UAV stabilization is used.
The combination of the advantages of PID and SDRE control gives a significant improvement in the
quality of control while maintaining the simplicity of the control system. Furthermore, the use of the
suboptimal control technique provides the UAV attitude tracking in finite time. These remarks are
drawn from a series of simulation tests conducted for the drone model.

Keywords: state-dependent riccati equation technique; SDRE control; PID control; attitude control;
UAV; quadrotor

1. Introduction

In recent years, there has been a strong trend in the development of control and
estimation techniques for unmanned aerial vehicles (UAVs) [1]. This is mainly due to their
wide availability, which, in combination with photo- and video-recording devices, greatly
extends the scope of their applicability. To operate safely and precisely in an environment
close to humans [2], drones need appropriate hardware and sensory tools as well as efficient
control algorithms.

Currently, a cascade closed-loop control system is widely used [3]. The speed and
precision of control is there based on the outer and inner loops for adjusting the orientation
and position of the drone in 3D space. It usually uses well-known, simple, fixed-value
controllers in the P, PD or PID structure. For an underactuated plant such as a drone, using
four inputs expressing the expected/reference position of the drone and its orientation
around the Z axis (yaw angle) in the observer (Earth) coordinate system, already roughly
selected controller gains allow for a stable, controllable, autonomous flight, which in terms
of image recording from a camera equipped with a stabilizer is more than enough.

The situation is quite different in the cases that require greater precision. Here, more
advanced solutions are sought to ensure fast stabilization in flights with variable mass [4],
mobile manipulation [5], or military missions [6]. Often in military tasks, the vector
correlated with the front of the drone marks the target, and it is necessary not only to
move the drone from point to point but also to orientate and stabilize it in the 3D space
by tracking predefined angles that express the orientation of the drone (roll, pitch, yaw
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angles). This paper is devoted to this application problem, which is still recognized and
classified as one of the key areas of research in the UAV community. In the following
article, the proposed hybrid quasi-optimal PID-SDRE quadrotor control method will serve
to achieve this goal.

The potential of the SDRE control strategy being considered and extended here has
already been validated with the success by the UAV community over the last two decades.
For the first time in the world scientific literature, a non-linear UAV control system based on
state-dependent Riccati equations (SDRE) was proposed in [7], where its aim is to stabilize
a desired velocity vector and the attitude of a multirotor UAV model. In [8], an INS/GPS
sensor fusion scheme was introduced as an alternative to the extended Kalman filter (EKF).
There, the state-dependent Riccati equation navigation filter was tested in the flight scenario.
The aim was to minimize the influence of linearization errors on the tracking performance
of the reference signals. In the paper, one may also find the stability proof of the SDRE
non-linear filter and comparison with the classical EKF filter. Furthermore, in [9], through
the integration process of the differential SDRE filter algorithm and the finite-horizon
SDRE technique, the authors created an efficient online technique to control the missile
guidance system.

The latest research trends in the use of the SDRE method in UAVs are, respectively:

• Development of a flight controller for quad tilt-wing UAV that during its transition
flight (with the change of wing angle) will be able to deal with high nonlinearity in
this situation and provide drone stability [10];

• Development of a suboptimal integral sliding mode trajectory tracking anti-interference
controller based on the state-dependent Riccati equation [11];

• Development of non-linear controllers for cargo UAVs to obtain precise robot flight
and efficient reduction of load oscillations by exploiting the natural coupling between
horizontal UAV movement and payload oscillation [12].

Last but not least (to summarize the state-of-the-art of SDRE methods for UAVs) are
the papers of Nekoo, Acosta and Ollero [13–15]. They are devoted to aerial–acrobatic
maneuvers and collision avoidance of the SDRE controller using the artificial potential
field method.

Except for the SDRE control method, state-of-the-art analysis for UAV control provides
a wide spectrum of approaches, both model-free and model-based [16–18]. In this paper
and research, using the advantages of both, we proposed a hybrid method, in which the
model-free PID control is used to control the UAV’s position, while the model-based finite-
time SDRE method will increase the precision level in tracking the UAV orientation (via
attitude control in inner loop).

The novelty and added value of our work is the development of an original cascade
hybrid finite-time quasi-optimal PID-SDRE quadrotor control system as well as comparative
simulation tests for the problem of stabilization of the set orientation of the drone in a
predefined time horizon.

The new contribution of this work is described as follows:

• Optimal attitude stabilization and control with finite time;
• An increasing precise attitude control method;
• Elimination of the PID stabilizer and the tuning problem.

The paper is organized as follows: In Section 2, the dynamical model of the quadrotor
is presented. Section 3 contains a description of the control system design with the new PID-
SDRE attitude controller, the P-PID attitude controller, and the finite-time SDRE stabilizer,
respectively. The UAV used in simulation experiments, as well as their comprehensive
report and analysis, can be found in Section 4. Finally, the conclusion is drawn in Section 5.

2. Quadrotor Model

In most mathematical models of UAVs, its dynamics is considered for the structure
treated as a rigid body with the mass of the UAV placed in the center of gravity and
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the mass of each of four propulsion units placed symmetrically in the cross-type frame.
Therefore, the rigid body equations of motion are the differential equations that describe
the evolution of the basic states of the quadrotor.

Furthermore, regarding the shape of the drone (Figure 1), and its natural X-type layout
configuration, the North-East-Down (NED) axes convention with regard to the observer’s
coordinate system (the so-called Earth frame—{EF}) is used. In this convention, the x axis
of the UAV’s local coordinate system (body frame—{BF}) follows the camera direction,
the y axis is perpendicular to the right, and the z axis is looking down according to the
right-hand rule, respectively.

Figure 1. AtraxASF UAV used for drone modeling and simulation experiments.

The dynamics of the quadrotor is generally defined using Newton’s force and moment
equations [3]. The force equation is the following

F = m(v̇ + ω× v), (1)

where v is a quadrotor linear velocity, ω is the angular velocity, m is the mass of the aircraft
and F denotes the force vector. For completeness, the moment equation should also be
considered. The equation describes all the moments that act on the aircraft, which are equal
to the rate of change in angular momentum.

M = Iω̇ + ω× Iω, (2)

where I is an aircraft inertia matrix and M denotes the moment vector. When considering
the vector v defined for all components in the direction x, y and z and ω for roll φ, pitch θ
and angle of yaw ψ

v =
[
u v w

]T (3)

and
ω =

[
p q r

]T (4)

then equations of aircraft aerodynamics can be defined for linear and angular speeds.
In addition, because of symmetry, in the inertia matrix, only the diagonal elements
become nonzero

I =

Ix 0 0
0 Iy 0
0 0 Iz

. (5)
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The system of non-linear equations that describes the flight dynamics of aircraft,
considering gravity force g and force due to thrust FT , is the following u̇

v̇
ẇ

 =

rv− qw + 1
m Fx

pw− ru + 1
m Fy

qu− pv + 1
m Fz

, (6)

 ṗ
q̇
ṙ

 =


Iz−Iy

Ix
rq + 1

Ix
Mx

Ix−Iz
Iy

pr + 1
Iy

My
Iy−Ix

Iz
pq + 1

Iz
Mz

, (7)

where Fx = k1 ẋ, Fy = k2ẏ, Fz = k3ż, Mx = k4 ϕ̇2, My = k5θ̇2, Mz = k6ψ̇2, and k1, k2, k3 are
translational air drag coefficients, while k4, k5, k6 are aerodynamic friction coefficients.

Equations (6) and (7) are non-linear functions of states, and they have to be easily
formed as the state-dependent coefficient (SDC) form. Therefore, the separation of (6)
and (7) is not complicated because, in general, the variables in the state are in the form
of products.

To describe the aircraft orientation, the kinetic equations should be considered as
functions that transform its angular position from the Earth frame to the body frameφ̇

θ̇
ψ̇

 =

p + (qsinφ + rcosφ)tanθ
qcosφ− rsinφ

(qsinφ + rcosφ)secθ

, (8)

where secθ = 1/cosθ.
To convert between the body frame (BF) and the Earth frame (EF), the following

rotation matrix from BF to EF is used:

RBE =

cosθcosψ sinϕθcosψ− cosϕsinψ cosψsinθcosϕ + cosψsinϕ
cosθsinψ sinψsinθsinϕ + cosϕcosψ sinψsinθcosϕ− cosψsinϕ
−sinθ cosθsinϕ cosθcosϕ

, (9)

where RX(ϕ), RY(θ), and RZ(ψ), are matrices of Euler angles: roll (ϕ), pitch (θ) and yaw
(ψ), defined as

RX(ϕ) =

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

, (10)

RY(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

, (11)

RZ(ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

. (12)

3. Control System Design
3.1. PID-SDRE Attitude Controller

The quadrotor is an unstable plant. Therefore, a UAV control system should contain a
stabilization subsystem in design to make attitude control fast in response and free from
overshoots. Then, from the point of view of practical implementation and drone usefulness,
both the angular and linear speeds should stabilize. This is a reason why two blocks of
controllers are proposed: one to control the orientation in space by the angular position and
the other to stabilize the angular quadrotor speeds. These requirements can be achieved by
using a PID attitude controller coupled to PID stabilizers. However, the use of PID-type
controllers has affected efforts to tune and achieve optimal performance for the control
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system. Thus, a better idea is to use the PID-SDRE coupled solution or full integrated SDRE
controller, which does not need to be optimized because it is optimal for control purposes.

Taking into account the above, this paper deals with the hybrid PID-SDRE controller
dedicated to attitude control and finite-time stabilization. The control system schema is
presented in Figure 2.

Figure 2. PID-SDRE control schema of the 6 DoF quadcopter model.

As shown, the controller consists of three control units. The attitude control system is
implemented in outer closed-loop systems using the P controller, but the speed stabilization
problem is performed by the inner closed-loop subunit with the PID controller and the
feedback compensator employing the finite-time SDRE control technique. The stabilization
problem can also be realized by the following:

• PID controller without SDRE stabilizer;
• SDRE feedback compensator neglecting PID stabilizer.

This means that the PID speed controller or SDRE speed compensator is redundant
and the system can work as a two-unit and two-closed-loop control system. In this case,
a thrust force FT is set as constant and allows one to obtain the desired altitude. The other
variables contained in Figure 2 denote: x =

[
v ω

]T
=
[
u v w p q r

]T—state

vector of the 6 DoF model, u =
[
Mx My Mz

]T—attitude control vector and error vector

of the attitude angles e =
[
φre f − φ θre f − θ ψre f − ψ

]T .

3.2. P-PID Attitude Controller

The control system presented in Figure 2 includes two PID-based controllers: situated
in the main loop P controller for attitude control and located in the inner loop PID controller
for angular speed control (stabilization). The main P controller operates in the Earth frame
and performs the UAV space orientation task, controlling the attitude angles: roll φ, pitch θ,
and yaw ψ to the reference values. The inner-loop PID controller is used to stabilize the
attitude speeds to zero. The PID-based control system works when fine and optimal tuning
of P and PID controllers is achieved; however, sometimes it is problematic and not easy.

Considering the kinematic relations from Earth to the quadrotor frame, the control
law for the main P controller is as follows

up =

pp
qp
rp

 =


(
eφ − eψsinθ

)
kpφ(

eθcosφ− eψsinφcosθ
)
kpθ(

eψcosφcosθ − eθsinφ
)
kpψ

, (13)

where

e =

eφ

eθ

eψ

 =

 φre f − φ

θtheta − φ
ψre f − ψ

 (14)

is the error signal e, which is a vector of three elements fed to the P controller. The PID
controller used to stabilize the quadrotor space consists of three independent controllers
for the rolling speed p, the pitching speed q, and the yawing speed r. The output of a PID
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controller uPID=
[
MxPID MyPID MzPID

]T is calculated in the time domain from the
feedback speed error as follows:

uPID = kPω + kI

∫
ωdt + kD

dω

dt
. (15)

The speed error signal is equal to ω, because the reference angular speed is equal to
zero. Then, a three-element vector fed to the PID controller is computed that performs the
proportional, derivative, and integral functions of this signal with respect to time. kP, kI ,
and kD are proportional, integral, and derivative gain matrices:

kP = diag
(

kP p, kPq, kPr

)
,

kI = diag
(

kI p, kI q, kI r

)
,

kD = diag
(

kD p, kDq, kDr

)
.

(16)

The integral matrix gain kI times the integral of the error vector plus the derivative
matrix gain kD times the derivative of the error vector are calculated using its approxima-
tion and creating the digital form of the PID. This is a standard formulation of digital PID
that uses the bilinear transformation of the continuous integral and derivative action [1].

3.3. Finite-Time SDRE Stabilizer

The state-dependent Riccati equation (SDRE) optimal control method is a promising
and rapidly emerging tool for the control of non-linear systems. The technique with further
improvement and a modified approach is widely described in recent literature [19–23].
Scientists can follow the state-dependent Riccati equation (SDRE) approach in the context of
the non-linear control problem with a quadratic objective function [24–27]. The formulation
based on a quadratic objective function is commonly used in practical solutions because
the objective function defines energy, i.e., energy lost and delivered to the system, which is
compatible with practical applications.

The finite-time control problem consists of finding an optimal control law that mini-
mizes the following objective function defined for control time t f [28]

J(u) = 1/2xT(t f )S(x(t f ))x(t f ) + 1/2
∫ t f

0

(
xT Q(x)x + uT R(x)u

)
dt (17)

subject to non-linear dynamics for affine systems

ẋ = F(x) + B(x)u. (18)

Non-linear dynamics (18) can be written using the state-dependent coefficient (SDC)
form [29]

ẋ = A(x)x + B(x)u, (19)

where S(x) and Q(x) are symmetric, positive semi-definite weighting matrices for states, and
R(x) is the symmetric, positive definite weighting matrix for control inputs. Equation (18)
includes the vector F(x), which is piecewise continuous in time and smooth with respect to
its arguments, and that satisfies the Lipschitz condition.

Taking into account the SDC approximation (19), if the pair A(x), B(x) is a stabilizable
parameterization of the system, then to check the controllability of the affine system,
this pair in the linear sense should be controllable. On the other hand, checking the
controllability of that pair does not require state or control input information [19,21,27]. It
can be simply checked by the matrix

M(x) =
[
B(x) A(x)B(x) . . . An−1B(x)

]
(20)
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often called the controllability matrix. Then, the system (18) or (19) is controllable if the
controllability matrix (20) has full rank.

Employing Hamiltonian theory, the optimal control law is as follows

u = −R(x)−1B(x)T K(x)x, (21)

where K(x) is a state-dependent feedback compensator that can be obtained from the
solution of a state-dependent differential Riccati equation (SDDRE)

K̇(x)+ K(x)A(x)+ A(x)T K(x)− K(x)B(x)R(x)−1B(x)T K(x)+ Q(x) = 0. (22)

Equation (22) is in the form of a differential SDRE for affine systems and must be
solved many times for each x throughout the control process with the final condition
K(x(t f )) = S(x(t f )). The solution of the equation exactly results in suboptimal control
because it neglects the so-called ’SDRE necessary condition for optimality’, which tends
to zero [19,23,27]. Equation (22) known as differential SDRE or shortly SDDRE (State-
Dependent Differential Riccati Equation); it can be solved numerically employing different
algorithms. In the literature, there are many efficient algorithms dedicated to finding a
solution of the SDDRE. The most popular are: backward iteration, state transition matrix
approach, Lyapunov-based method, Riccati root method, etc. [30].

4. Experimental Results
4.1. UAV Used in Simulation Experiments

In the conducted experiments with the use of MATLAB/Simulink environment, a dy-
namical model of a military AtraxASF drone (shown in Figure 1) was used. AtraxASF
is a quadrotor specially designed to perform precise test flights to inspect wild animals,
especially in terms of detecting wild boars suffering from ASF (African swine fever). It
was built as part of the research and development project financed by the National Center
for Research and Development (Poland) and constructed by the Air Force Institute of
Technology (ITWL, Warsaw, Poland). The UAV is equipped with a high-resolution thermal
imaging sensor and has the following parameters:

• Take-off mass: 13 kg,
• Max. flight time: 40 min,
• Flight range: 4.5 kg,
• Optimal flight speed: 30 km/h,
• Max. flight speed: 60 km/h.

This military UAV was chosen to be modeled, as the authors of this article have all the
UAV data (some can be provided on request) and its hardware and software characteristics
gathered and verified during laboratory, test stand, and flight tests with AtraxASF.

4.2. Simulation Experiments

The non-linear UAV model is applied to check the PID-SDRE control for attitude and
stabilization when it tries to find the desired angular position during flight or take-off.
Using the governing equations that describe the UAV aerodynamics in SDC form (19),
the control problem consists of finding the φ, θ, and ψ moments with trust generated by
UAV rotors. As defined in (6) and shown in Figure 2, the thrust acts positively along the
positive body axis z. To perform the attitude control, to adjust its ψ angle, or to make it turn
left or right, the vehicle applies more thrust to one set of motors generating ψ moment. φ
and θ are adjusted by applying more thrust to one rotor and less to the other opposing rotor,
generating φ and θ moments. In this simple way, rolling, pitching, or yawing moments are
generated. According to the control schema proposed in Figure 2, the control applied to
the UAV is a sum of the PID control and the SDRE stabilizator control, where the controller
outputs are φ, θ, and ψ moments. Z-axis force related to altitude is assumed to be constant,
and the forces on the x and y axes generated by the controller are neglected. Therefore,
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the output of an SDRE subcontroller uSDRE =
[
MxSDRE MySDRE MzSDRE

]T is calculated
from (21). Using the described UAV model, the PID-SDRE control technique is applied
to control the UAV attitude considering finite-time horizon SDRE feedback compensation
for stabilization. To be exact, as shown in Figure 2, the attitude is controlled by the P
controller (13), but the PID stabilization works, zeroing angular speeds (15). An additional
SDRE feedback compensator additionally stabilizes the UAV angular position and makes it
possible not only in finite time but also for rapid attitude changes. Briefly, the PID-SDRE
method makes possible rapid response for user commands and moreover enables rapid
stabilization of the path of flight when unexpected external forces try to change its position
and orientation during flying action. Taking into account the above, the control problem
consists of finding the state dynamics of the UAV and the PID-SDRE controls for the
prescribed attitude for φre f = 30 deg, θre f = 45 deg, ψre f = 15 deg with and reference
angular speed pre f = 0 deg/s, qre f = 0 deg/s, rre f = 0 deg/s.

In association with (13), the gains of the P attitude controller are: kPφ = 10,
kPθ = 20, kPψ = 100. PID stabilizer gains (15) are chosen as: kP = 0, 3I3×3, kI = 0, 1I3×3,
kD = diag(0.01, 0.01, 0.0) and finally, the quadratic functional cost weighting matrices de-
fined in (22) are as follows: S = 2I6×6, Q = 0, 5I6×6 and R = 0, 1I6×6.

The dynamics of the state of the UAV, in other words, the speed response, including
its orientation to the desired angle position, is shown in Figures 3 and 4. The UAV attitude
control has been activated at time t = 1 s; then, the UAV angulary has been moved from
the “zero” attitude to the reference angular position. First, simulations are performed for
the UAV controlled by the P and PID stabilizer only, neglecting the SDRE stabilizer.

Looking at the above figures (Figures 3 and 4), the angular position and speed re-
sponses are quick due to the large gains in the P-controller. However, the presented P-PID
technique controls the attitude with overshoots and oscillations. Generally, the control
works and is easy to implement; however, the system fails in precision operation in airspace.
In this type of control, stabilization and improvement of accuracy seems to be necessary.

Next, simulations are performed for the complete PID-SDRE controller to show how
the UAV can stabilize in a finite time t f in the context of angular speeds. To verify precision
and rapidity and to compare the proposed technique considering the SDRE-based method
with the commonly used PID technique, a numerical experiment is performed three final
times: t f = 4 s, t f = 2 s, and t f = 1 s with the same reference attitude. The simulation
results are presented in Figures 5–10 with the impact of the successively reduced control
time t f from 4 to 1 s.

Figure 3. UAV angular response—PID control mode.
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Figure 4. UAV angular speed response—PID control mode.

Figure 5. Angular response of UAV—PID-SDRE control mode, t f = 4 s.

Figure 6. UAV angular speed response—PID-SDRE control mode, t f = 4 s.
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Figure 7. Angular response of UAV—PID-SDRE control mode, t f = 2 s.

Figure 8. UAV angular speed response—PID-SDRE control mode, t f = 2 s.

Figure 9. Angular response of the UAV—PID-SDRE control mode, t f = 1 s.
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Figure 10. UAV angular speed response—PID-SDRE control mode, t f = 1 s.

When looking at and analyzing Figures 5 and 6, the proposed PID-SDRE control shows
that the quadrotor can be successfully controlled to referenced angles, zeroing angular
speed, and reducing or eliminating overshoots. As expected, the referenced attitude is
reached at the control time t f = 4 s. When considering the following Figures 7–10, the same
results are obtained for different control times t f = 2 s and t f = 1 s. Therefore, the insertion
and use of the SDRE optimal stabilizer in the standard PID control system increases the
complexity of the controller, making a hybrid PID-SDRE controller appropriate, because it
allows for avoiding oscillations and allows the possibility of operating in airspace with high
precision and adjustable control time t f . The results presented as an effect of performed
numerical experiments prove the usefulness and correctness of the proposed technique;
moreover, they allow us to verify its behavior.

5. Conclusions

The hybrid PID-SDRE finite-time control technique is formulated and solved for the
UAV-quadrotor attitude control problem. The UAV non-linear 6 DoF state-dependent
parametrized model is proposed. The P-PID fine-tuned control methodology with an optimal
non-linear SDRE feedback speed stabilizer, performing attitude control and stabilization task,
is analyzed. The effectiveness of the presented technique is demonstrated in a numerical
example in which a UAV response is found using a finite-time SDRE-based technique.
The presented results show that the proposed technique can be successively applied to
UAV flight control systems when it must operate precisely in airspace. The next step of the
analysis and research performed is preparation for application in a real UAV control system.
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Abbreviations
The following abbreviations are used in this manuscript:

BF Body Frame
EF Earth Frame
EKF Extended Kalman Filter
GPS Global Positioning System
INS Inertial Navigation System
NED North-East-Down
PID Proportional–Integral–Derivative Controller
QTW UAV Quad Tilt-Wing Unmanned Aerial Vehicle
SDC State-Dependent Coefficient
SDRE State-Dependent Riccati Equation
UAV Unmanned Aerial Vehicle
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