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Abstract: Low accuracy is the main challenge that plagues the application of engine modeling
technology at present. In this paper, correlation analysis technology is used to analyze the main
influencing factors of engine torque and NOx (nitrogen oxides) raw emission performance from a
statistical point of view, and on this basis, the regression algorithm is used to construct the engine
torque and NOx emission prediction model. The prediction RMSE between engine torque prediction
value and true value reaches 4.6186, and the torque prediction R2 reaches 1.00. Prediction RMSE
between NOx emission prediction value and true value reaches 67.599, and NOx emission prediction
R2 reaches 0.99. When using the new WHTC data for model prediction verification, the RMSE
between the engine torque predicted value and true value reaches 4.9208, and the prediction accuracy
reaches 99.60%, the RMSE between NOx emission prediction value and true value reaches 72.38, and
the prediction accuracy reaches 99.2%, indicating that the model is relatively accurate. The evaluation
result of the ambient temperature impact on torque shows that ambient temperature is positively
correlated with engine torque.

Keywords: regression; correlation coefficient; influence factor; root mean square error; ambient
temperature

1. Introduction

As the iconic technological achievement of the Second Industrial Revolution, the
internal combustion engine still plays an important role in our lives. Thorough and reliable
testing and verification of engine products before they are put on the market are important
means to ensure product safety and reliability. However, the test development work for
specific use scenarios and specific environments, such as winter tests, high-temperature
tests, and high-altitude tests, often has disadvantages such as high cost, long test cycles,
and difficulty in reproducing test results.

Since the 21st century, with the continuous in-depth research in the field of com-
puter and artificial intelligence technology, especially the development and promotion of
large-scale integrated circuits, supercomputers, cloud computing and other technologies,
simulation technology has experienced the development process from the first generation of
analog simulation computing to the second generation of analog-digital hybrid simulation,
and then to the third generation of digital real-time simulation, and simulation technology
has made great progress. Using modern computing technology to simulate complex objects
is not only more economical and efficient but also can expand human cognition to many
exploration fields that cannot be reached by direct experiment. The powerful effect of simu-
lation technology was fully verified in many fields such as aviation, aerospace, automobile,
machinery, electronics and so on, and will continuously be developed and improved. The
product development process using simulation technology has the advantages of fast oper-
ation speed, a high degree of automation, good repeatability, and low cost. As an important
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link in the development of engine control systems and calibration applications, engine
hardware-in-the-loop simulation technology can shorten product development duration
and improve the reliability of control system development [1].

There are various engine modeling methods, and the commonly used modeling meth-
ods are divided into mechanism modeling and regression modeling. Mechanism modeling
is to model by analyzing the working principle of the plant object, and widely adopts
ideal equations, look-up tables and other methods [2,3]. Regression modeling is a math-
ematical modeling method that uses statistical methods to quantitatively describe the
working process of the plant object [4,5]. Experts and scholars have achieved much in
detailed theoretical research and experimental validation of engine and vehicle modeling
and simulation technology, they have achieved many research results. Li et al. [6]. estab-
lished a special vehicle plant object model based on the principles of vehicle dynamics
and stability principles, and also demonstrated the accuracy of the model based on the
prototype vehicle test. Termous et al. [7]. carried out research about vehicle modeling tech-
nology; Wang et al. [8] used ASAMS/Car software to conduct vehicle modeling research.
Mutha et al. [9]. introduced the simulation of XUV 500 models using CarSim-Simulink.
The influence of parameters on response performance was investigated, in addition, torque
vectoring was used in both tests to control powertrain output and evaluate its effect on
vehicle response performance; Hu et al. [10]. established a backpropagation (BP) neural
network for a diesel engine emission prediction purpose, and results show that the Nox and
PM prediction accuracy could reach 95%; Li et al. [11]. established a prediction model with
Gaussian process regression framework for Lithium-ion (Li-ion) batteries SOC estimation
application. Combined with signal measurement, a new modeling approach is introduced
by Yangyang et al. [12]. for engine torque and fuel consumption prediction, and results
show that relative errors could be limited to 5% at both steady-state and transient-state
conditions; Tsitsilonis et al. [13]. developed a Lyapunov Exponent (LE) model for the
prediction of peak in-cylinder pressure, the error could be controlled within 0.3%; a torque
reconstruction algorithm was proposed by Xie et al. [14]. based on a fuel injection engine
speed ratio piecewise linear model, reference torque was calculated by the vehicle dynam-
ics model, and piecewise linear model parameters were identified by the weighted least
squares (WLS) method, the error between reconstructed torque and MAP torque is 7.60%,
which proves the accuracy of the proposed algorithm. Varma et al. [15] built an ANN
model for emission prediction of a single-cylinder diesel engine, steady-state experiments
were carried out, and the overall validation accuracy reached 0.99951. Mishra et al. [16]
built a neural network for vehicle braking and emission performance prediction under
steady-state running conditions, the prediction accuracy for different variables to be pre-
dicted reaches 0.999722–0.999939. The good performance from Varma’s paper and Mishra’s
paper is expected, performance prediction under steady-state conditions is not challenging
compared to transient operating conditions. Paramasivam et al. [17] built a fuzzy prediction
model for engine performance prediction with different additives added to the fuel, and
the results showed that the coefficient of determination reached 0.91. This accuracy has
reference significance for engine performance evaluation but it is far from enough for the
accurate prediction of engine performance.

The above research works have carried out in-depth analysis and research on engine
and vehicle modeling technology from the field of mechanism modeling and regression
modeling and have achieved many valuable research results. However, the research on
high-precision engine modeling technology that meets the needs of calibration development
is less involved. This study takes a 3.0 L diesel engine as the research object and uses
the correlation research and regression technology to carry out systematic research on
the engine torque and NOx (nitrogen oxides) raw emission prediction technology from
theoretical analysis to simulation calculation.
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2. Materials and Methods

The most common difficulties encountered in the process of plant subject modeling are
underfitting and overfitting. As shown in Figure 1, underfitting means that when the data
fitting method is too simple, or the data sample is small, the model fitting performance and
generalization ability would not be good enough. Overfitting is when the model performs
too well on the training samples but poorly on the test dataset.
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The main reasons for underfitting and overfitting include:

• Bad fitting method;
• The number of features is not well set;
• The data sample is too small, or the data sample is not diverse enough.

In response to the above problems, this paper conducts research in the following aspects:

• The Gaussian process regression method would be used in this paper to improve the
fitting accuracy;

• Correlation analysis is carried out on the main influencing factors of engine torque
and NOx raw emission calculation, and the characteristic factors of torque and NOx
raw emission calculation are established on this basis;

• By increasing the data sample size, the fitting accuracy could be improved.

2.1. Principle Analysis of Gaussian Process Regression Technology

Gaussian Process Regression has the characteristics of strong calculation ability, strong
adaptability, and strong fault tolerance, which can fully approximate any complex nonlinear
relationship, and is suitable for application scenarios with multi-information fusion and
high requirements for information comprehensive processing. At present, neural network
technology is widely used to solve various challenges in modeling and controlling multi-
variate systems, such as classification, clustering, dimensionality reduction, regression, etc.

Gaussian Process Regression [11,18–21] (GPR) is a nonparametric modeling method
that uses the Gaussian Process (GP) prior to data fitting and tuning. By learning from the
sample dataset, the relationship f (x) between input and output could be obtained so that
a new prediction can be made using a new prediction sample x* to obtain new output y*.
According to the principle of Bayesian linear regression, GPR maps to high-dimensional
space as follows: {

f (x) = Xw
w ∼ N

(
0, ∑p

)
f (x) = φ(X)w, w ∼ N

(
0, ∑p

) (1)
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Therefore, the mean value of f (x) would be:

E[ f (x)] = E[φ(X)w] = φ(X)E(w) = 0 (2)

Covariance would be:

Cov( f (x), f (z)) = E[[ f (x)− E( f (x))][ f (z)− E( f (z))]] = E[φ(X)wφ(Z)w] = φ(X)Σpφ(Z)T = κ(x, z) (3)

From the above analysis, it can be seen that:

• The covariance between random variables f (x) can be calculated by the kernel function
of the sample points;

• The combination of samples {f (x)} obeys the Gaussian process GP shown in Equation (4).

f (x) ∼ GP(m(x), κ(x, x)) (4)

It can be seen from the above analysis that for the given dataset shown in Equation (5),
its Gaussian process regression can be expressed as Equation (6).

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 =

 x1
...

xm


Y =

y1
...

ym


(5)

{
f (x) = [ f (x1), f (x2) . . . , f (xm)] ∼ GP(µ(x), Σ(x))

Y = f (X) + ε ∼ N
(
µ(x), Σ(x) + σ2 I

)
µ(x) = [µ(x1), µ(x2), . . . , µ(xm)]

T

K = Σ(x) =

κ(x1, x1) · · · κ(x1, xm)
...

. . .
...

κ(xm, x1) . . . κ(xm, xm)


(6)

2.2. Analysis of Engine Torque and NOx Raw Emission Main Influencing Factors

When engine power is fixed, engine torque is inversely proportional to speed, that is,
the higher the speed, the smaller engine torque would be. As shown in Equation (7), engine
torque (shown as T in the equation, unit: Nm) can be calculated based on engine power
(shown as P in the equation, unit: kW) and engine speed (shown as n in the equation, unit:
r·min−1). Engine torque reflects the loading capacity of the engine within a certain range.

T = 9550× P
n

(7)

The engine operating conditions change rapidly, and engine torque and engine power
are affected by many factors such as ambient temperature, ambient pressure, cooling water
temperature, fuel injection quantity, rail pressure, EGR (Exhaust Gas Recirculation) rate, etc.
NOx emission is one of the harmful by-products of engine combustion, it is also affected by
many factors, such as sulfur content in the fuel, air–fuel ratio, ignition timing, engine speed
and torque, etc. It brings great difficulty to the fitting of engine torque and NOx emission.
In this paper, a 3.0 L diesel engine is taken as the research object, and the steady-state data
are taken as sample data to analyze the main influencing factors of engine torque and NOx
emission performance. The basic information about the engine used in this research is
shown in Table 1. The sample size of dataset used in this research is 145,479, including a
total of 471 variables.
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Table 1. Basic engine information.

Parameter Value

Displacement/L 2.977
Air intake Turbo-charged

Cylinder arrangement In-line
Rated power/speed (kW/r·min−1) 125/2800

Compression ratio 16.0:1
Fuel system Common rail

Fuel injection pressure/MPa 200

To further analyze the main influencing factors of engine torque and NOx emission
calculation, a data analysis script file is written with python to calculate the Pearson
correlation coefficient (Pearson correlation coefficient, also known as Pearson product–
moment correlation coefficient, PCC) between all variables in the dataset and engine torque
and NOx raw emission [22–24].

The PCC is a statistical method to quantify the degree of correlation between variables.
When the PCC is negative, it means that the X and Y are negatively correlated. On the
contrary, it means the variables under evaluation are positively correlated, and the larger the
absolute value of the PCC, the stronger the correlation would be. As shown in Equation (8),
the PCC between variables X and Y is defined as the quotient of covariance and standard
deviation between variables X and Y.

ρX, Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
(8)

The data analysis script used in this study is as follows:

import pandas as pd1
df1 = pd1.read_excel(‘F:\Dataset_D30.xlsx’)
result = df1.corr()
result.to_excel(‘Corr_Result.xlsx’)

As shown in Table 2, the calculation results show that engine torque and NOx raw
emission are mainly affected by various factors such as actuator factors, i.e., accelera-
tor pedal percentage, fuel injection timing and quantity, temperature, engine operating
environmental factors such as ambient temperature and battery voltage and exhaust pollu-
tant factors.

2.3. Construction of Engine Torque and NOx Raw Emission Regression Model

As shown in Figure 2, based on the correlation analysis results, if the engine is regarded
as a black box system, after removing signals that should be used as output information
such as exhaust temperature and emission information, the input information for engine
torque and NOx emission calculation can be divided into the following three categories:

• Actuator information: accelerator pedal percentage (APP_r), EGR valve percentage
(EGRVlv_rAct), main injection quantity (InjCrv_qMI1Des), total fuel injection quantity
(InjCrv_qSetUnBal), throttle valve percentage (ThrVlv_rAct);

• Environmental status information: ambient temperature (EnvT_t), battery voltage
(BattU_u), coolant temperature (CEngDsT_t);

• Engine running status information: engine speed (Epm_nEng), rail pressure (RailP_pFlt).

To further fit the relationship between inputs and outputs in engine torque and NOx
emission calculation, the Regression Learner tool in Matlab and the Gaussian regression
algorithm are used in this research to fit engine torque and NOx emission signals [25]. The
major version information of the tools used in this paper is shown in Table 3.
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Table 2. Engine torque and NOx raw emission main influencing factors.

Parameter Unit Factor_Trq 1 Factor_NOx 2 Minimum Maximum Average

Total fuel injection quantity
(InjCrv_qSetUnBal) mg·hub−1 0.9922 0.6447 3.62 92.72 42.47

Main injection quantity
(InjCrv_qMI1Des) mg·hub−1 0.9874 0.6557 1.62 92.72 39.42

Main injection activation timing
(InjVlv_tiMI1ET) µs 0.9543 0.7336 310.8 2127.2 776.74

Accelerator (APP_r) % 0.9394 0.6504 0 100 43.60

Accelerator raw voltage (APP_uRaw1) mV 0.9355 0.6347 752.4 4257 2127.2

Engine power (PWR_E_EN) kW 0.8963 04702 −2.24 125.42 44.68

Exhaust temperature before turbo
(T_EGH_BTUR)

◦C 0.8960 0.4872 104.5 759.2 453.75

Exhaust temperature after turbo
(T_EGH_BTUR)

◦C 0.8734 0.4788 63 613.9 336.89

IMEP 3 bar 0.8584 0.7163 −1.43 23.32 5.78

Oxygen content at exhaust manifold
(Y_O2_EGD) ppm −0.8549 −0.3256 0 832.8 170.15

Rail pressure (RailP_pFlt) hPa 0.7285 0.3017 426,600 2,020,800 1,248,791.99

Air intake pressure kPa 0.7698 0.3529 88.39 265.46 188.89

Lambda / −0.7691 −0.4509 1.09 9.55 2.54

CO 4 content at exhaust manifold
(Y_COL_EGD)

ppm −0.6685 −0.3481 0 4842.06 417.97

Air intake temperature ◦C 0.5782 0.2308 22.8 54.4 35.11

Exhaust pressure before turbo kPa 0.5229 0.1999 99.92 455.04 246.46

Main injection timing
(InjCrv_phiMI1Des)

◦ 0.4943 0.2986 −6.899 20.786 5.49

Throttle valve percentage (ThrVlv_rAct) % −0.3362 −0.4300 0 100 38.44

Engine coolant temperature
(CEngDsT_t)

◦C 0.2969 0.1665 66.76 92.46 88.02

Ambient temperature (EnvT_t) ◦C 0.2158 0.0905 12 32 26

EGR valve percentage (EGRVlv_rAct) % 0.0698 −0.2885 0 100 19

Engine speed (Epm_nEng) r·min−1 0.0240 −0.2180 783 3007 1875.9

1 Coefficient factor for engine torque. 2 Coefficient factor for NOx raw emission. 3 Indicated mean effective
pressure. 4 Carbon moNOxide.
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Table 3. Tool information.

Tools Version Information

Matlab Version 9.10 (R2021a)
Simulink Version 10.3

Deep Learning Toolbox Version 14.2

As shown in Table 4, after the calculation, the engine torque and NOx emission true
value fit well with the predicted value. The RMSE (Root Mean Square Error) of engine
torque calculation reaches 4.6186, and the R2 (fitting goodness) reaches 1.00. The RMSE
of NOx emission reaches 67.599, and R2 reaches 0.99. The accuracy is high enough for the
engine performance simulation.

Table 4. Engine torque and NOx raw emission fitting result.

Torque NOx

RMSE 4.6186 67.599
R2 1.00 0.99

MSE 26.802 4569.6
MAE 1.3671 24.522

As shown in Figure 3, after compiling the trained model into two S-functions (named
S_func_TRQ_EN for the engine torque prediction model, and S_func_NOx for the NOx
raw emission prediction model), a new validation model is built in Simulink to analyze the
fitting results of the regression model built in this paper.
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3. Results
3.1. Model Accuracy Validation

To further validate the accuracy of the prediction model, the torque (Torque_True)
and NOx raw emission of the same type of engine under the WHTC cycle (World Har-
monized Transient Cycle) condition is used to compare with the model prediction result
(Torque_Predicted and NOx_Predicted). The training data are not included in the model
training dataset, we use new data that the model has never seen before.
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As shown in Figures 4 and 5, the model fitting results are good with totally new data,
and the model prediction results under the WHTC cycle condition fit well with the test
results. For engine torque prediction, the RMSE value is 4.9208, and the prediction accuracy
is 99.60%. For NOx raw emission prediction, the RMSE value is 72.38, and the prediction
accuracy is 99.20%.
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The test results show that the engine torque and NOx raw emission prediction model
fitted by the Gaussian process regression method has extremely high accuracy, it also has
good generalization ability, which provides a better technical solution for engine modeling.

To sum up, the engine torque and NOx emission prediction method using a regression
algorithm has high accuracy and can provide a more efficient solution for the construction
of the engine plant object model.

3.2. Influence of Ambient Temperature on Engine Torque and NOx Emission Performance

The ambient temperature affects the engine lubrication system, air intake system, etc.
As shown in Figure 6, to study the influence of ambient temperature on engine torque
performance, an analysis model is constructed in this paper, and the three operating
conditions of ambient temperature are T1 = 5 ◦C, T2 = 20 ◦C, and T3 = 30 ◦C. Among them,
as shown in Figure 7, the internal logic of Subsystem1~Subsystem3 is the same, that is, the
ambient temperature value is changed while keeping other input conditions unchanged.
The calculation results are shown in Figures 8 and 9, and Tables 5 and 6.
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Table 5. Influence of Ambient Temperature on Engine Torque.

T1 = 5 ◦C T2 = 20 ◦C T3 = 30 ◦C

Standard Deviation 72.756 158.368 185.325
Average Value/Nm 110.789 101.840 72.581

Maximum Value/Nm 285.947 533.995 440.316
Minimum Value/Nm 7.979 −110.268 −356.967

Table 6. Influence of Ambient Temperature on Engine NOx Raw Emission.

T1 = 5 ◦C T2 = 20 ◦C T3 = 30 ◦C

Standard Deviation 31.620 114.834 203.009
Average Value/Nm 180.892 128.584 467.662

Maximum Value/Nm 278.44 736.418 908.678
Minimum Value/Nm 128.252 −81.206 55.030

The calculation results show that when the ambient temperature is T1 = 5 ◦C, the
engine torque calculation standard deviation is 72.756, the average engine torque is
110.789 Nm, engine NOx emission standard deviation is 31.620, average NOx emission
is 180.892; when T2 = 20 ◦C, the engine torque standard deviation is 158.368, the average
torque is 101.840Nm, NOx emission standard deviation is 114.834, average NOx emission
is 128.584; and when T3 = 30 ◦C, the engine torque standard deviation is 185.325, and the
average torque value is 72.581 Nm, NOx emission standard deviation is 203.009, average
NOx emission is 467.662, that is, as the ambient temperature increases, the standard de-
viation becomes larger, the average torque value becomes smaller, and the engine torque
value and NOx emission value are more discrete. From a principal point of view, when
the ambient temperature increases, the viscosity of the oil decreases and the friction work
of the engine decreases, which leads to the improvement of the torque dynamic response
performance of the engine, therefore, the standard deviation becomes larger. At the same
time, as the ambient temperature increases, the engine intake air temperature also increases,
resulting in a decrease in air density, a decrease in the engine intake air mass flow rate, a
decrease in the engine charging efficiency, and a decrease in the engine torque.

4. Conclusions

In this paper, an engine torque regression model is established based on the Gaussian
process regression principle, and the following conclusions can be drawn:

1. The Pearson correlation analysis results show that engine torque and NOx raw emis-
sion are mainly affected by various factors such as actuator factors, i.e., accelerator
pedal percentage and fuel injection timing and quantity, factors such as temperature
and exhaust pollutants, and engine operating environmental factors such as ambient
temperature and battery voltage. Based on the correlation analysis results, this paper
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selects a total of 10 input signals from three types of information: actuator informa-
tion, environmental status information and engine operating status information, to
establish an engine torque regression prediction model;

2. After training, the RMSE value of the regression model built in this paper reaches
4.6186, and the accuracy is 99.68%;

3. The prediction results of the model under a new WHTC cycle condition show that the
RMSE value for engine torque prediction is 4.9208, accuracy is 99.6%, RMSE value for
NOx raw emission prediction is 72.38, and accuracy is 99.2%. The model prediction is
accurate;

4. The analysis results of ambient temperature impact on engine torque and NOx emis-
sion calculation show that with the increase in ambient temperature, the standard
deviation becomes larger, and the value of engine torque and NOx emission becomes
more discrete.

Different from the research methods of other scholars, this paper achieves higher
accuracy by using the feature factor design based on correlation analysis and the Gaussian
process regression method. Engine plant modeling technology has broad application
prospects in HiL testing, virtual calibration and other fields. Future research courses could
focus more on engine plant modeling, adaptive optimization and other fields to carry out
more in-depth research.

In the follow-up research, experts and scholars can pay more attention to other perfor-
mance areas of the engine, such as fuel consumption, emission of exhaust pollutants such
as particulate matter, etc. Different from engine torque prediction, the prediction of engine
exhaust pollutants has its own unique characteristics:

(1) Time delay. There is often a time delay between changes in actuator operating condi-
tions and changes in emissions performance, and this time delay is closely related to
engine operating conditions;

(2) The performance sometimes has a jumping step characteristic. Taking the prediction
of particulate matter emission as an example, when the exhaust gas temperature
reaches the light-off temperature of the oxidation catalyst, the particulate matter burns
violently, and the particulate matter emission decreases rapidly.

Based on the above analysis, experts and scholars can try to use better prediction
methods to predict the performance of engine emissions with high precision.
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