Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies
Abstract
:1. Introduction
2. Gasification Technologies
Ash and Slag Characteristics for Entrained-Flow Gasifier
3. Current Status of Syngas Production from Gasification
4. Properties of Coal, Biomass and MSW
4.1. Chemical Properties of Coal, Biomass and MSW
4.1.1. Chemical Properties of Coal
Origin/Reference | M | VM | FC | Ash | C | H | N | S | O | LHV (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Chilean Sub-bituminous [54] | 14.3 | 34.6 | 35.8 | 15.3 | 52.4 | 3.6 | 0.8 | 0.2 | 13.4 | 18.9 |
Spanish Alcorisa Lignite [54] | 11.1 | 38.6 | 39.0 | 11.3 | 54.7 | 4.1 | 0.4 | 8.1 | 10.3 | 20.8 |
Kentucky, USA [13] | - | 39.1 | 50.7 | 8.3 | 81.4 | 5.6 | 1.7 | 3.3 | 7.94 | - |
Illinois No. 6 bituminons, [55] | 8.5 | 36.0 | 44.8 | 10.7 | 69.3 | 5.0 | 1.1 | 3.5 | 9.3 | 26.3 |
India (Tirap) [56] | 4.30 | 32.2 | 55.7 | 7.7 | - | - | - | 1.3 | - | 27.6 |
Chines bituminons coal [57] | 1.66 | 34.3 | 48.4 | 15.5 | 55.3 | 2.1 | 0.8 | 0.4 | 5.3 | - |
Chines Datong coal [58] | 3.2 | 25.7 | 57.3 | 13.7 | 82.7 | 5.0 | 0.8 | 2.4 | 8.9 | 26.5 |
South African bituminous coal [59] | 3.5 | 25.5 | 55.3 | 15.7 | 66.3 | 3.6 | 1.8 | 0.5 | 8.6 | 24.9 |
Taiheiyo bituminons coal, Japan [60] | 5.3 | 46.7 | 35.8 | 12.1 | 77.6 | 6.5 | 1.1 | 0.2 | 13.9 | 27.4 |
Shenhua bituminous coal, China [61] | 5.51 | 32.2 | 54.48 | 7.81 | 70.5 | 4.8 | 1.0 | 0.7 | 9.58 | 26.3 |
Victorian brown coal (Loy Yang) [62] | 11.1 | 48.2 | - | 8.0 | 50.1 | 4.3 | 0.4 | 0.2 | - | - |
Victorian brown coal (Morwell) [62] | 14.9 | 49.3 | - | 3.6 | 60.7 | 5.3 | 0.5 | 0.04 | 24.0 | - |
Datong coal, Korea [63] | 10.5 | 29.2 | 51.6 | 8.6 | 80.3 | 6.4 | 11.4 | 0.9 | 1.0 | 27.5 |
Shenmu bituminous coal [64] | 5.2 | 31.9 | 58.2 | 4.8 | 75.4 | 4.6 | 12.1 | 1.1 | 0.5 | 25.9 |
Kentucky, USA [65] | 4.2 | 36.3 | 51.6 | 7.9 | 74.8 | 5.1 | 7.2 | 1.6 | 3.0 | - |
5.2 | 27.1 | 45.3 | 22.4 | 57.8 | 4.0 | 9.3 | 1.0 | 0.3 | - | |
Shenhua, China [66] | 1.9 | 20.7 | 70.6 | 8.7 | 80.8 | 3.9 | 4.9 | 1.2 | 0.5 | - |
Australian bituminous coal, Brisbane [67] | 14.1 | 42.1 | 34.4 | 9.4 | 79.6 | 5.5 | - | - | 4.0 | - |
Polish bituminous coal [68] | 5.2 | 31.9 | 58.2 | 4.8 | 80.3 | 6.4 | 11.4 | 0.9 | 1.0 | 27.5 |
4.1.2. Chemical Properties of Biomass
Origin/Reference | M | VM | FC | Ash | C | H | N | S | O | LHV (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Wood [70] | 20 | 82 | 17 | 1 | 51.6 | 6.3 | - | 0.1 | 41.5 | 18.6 |
Wheat straw [70] | 16 | 59 | 21 | 4 | 48.5 | 5.5 | 0.3 | 0.1 | 38.9 | 17.3 |
Barley straw [70] | 30 | 46 | 18 | 6 | 45.7 | 6.1 | 0.4 | 0.1 | 38.3 | 16.1 |
Sawdust [71] | 3.19 | 78.57 | 17.09 | 1.15 | 45.66 | 5.81 | 0.11 | - | 45.32 | 16.08 |
Waste wood [71] | 6.27 | 78.11 | 15.04 | 0.58 | 43.46 | 6.20 | 0.64 | 0.15 | 43.49 | 17.48 |
Palm kernel shell [71] | 5.92 | 71.31 | 17.81 | 4.99 | 44.60 | 6.50 | 2.92 | 0.1 | 40.20 | 18.74 |
Empty fruit bunch [71] | 9.63 | 64.95 | 19.48 | 5.94 | 43.84 | 6.01 | 0.88 | - | 39.17 | 16.38 |
Pinewood [72] | 6.8 | 71.7 | 19.2 | 2.3 | 48.9 | 6.2 | 0.1 | 0.1 | 42.5 | 18.1 |
Timothy grass [72] | 5.6 | 78.2 | 12.6 | 3.6 | 43.4 | 6.1 | 0.4 | 0.1 | 45.4 | 15.9 |
Wheat straw [72] | 5.2 | 70.1 | 20.3 | 4.4 | 44.1 | 6.0 | 1.3 | 0.1 | 45.0 | 15.6 |
4.1.3. Chemical Properties of MSW
Origin/Reference | M | VM | FC | Ash | C | H | N | S | O | LHV (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Mixed food waste [73] | 3.02 | 69.35 | 19.31 | 8.32 | 42.25 | 6.47 | 5.25 | 0.45 | 34.24 | 21.38 |
Mixed paper waste [4,74] | 10.2 | 75.9 | 8.4 | 5.4 | 43.3 | 5.8 | 0.3 | 0.2 | 44.3 | 14.1 |
Mixed plastics waste [75] | 0.38 | 94.71 | 4.37 | 0.54 | 82.41 | 13.42 | 0.18 | - | 2.8 | 43.7 |
Yard wastes [4,76] | 60.0 | 30.0 | 9.5 | 0.5 | 46.0 | 6.0 | 3.4 | 0.3 | 38.0 | 15.60 |
Solid recovered fuel (fluff) [77] | 18.67 | 70.88 | 2.94 | 7.51 | 51.81 | 7.68 | 0.07 | 0.07 | 30.83 | 16.02 |
Solid recovered fuel (treated) [78] | 5.04 | 78.09 | 7.52 | 0.43 | 43.24 | 6.03 | 0.44 | - | 41.89 | 21.54 |
4.2. Physical Properties of Coal, Biomass and MSW
4.2.1. Particle Size
4.2.2. Porosity
4.2.3. Specific Surface Area
5. Pyrolysis and Gasification Mechanisms
5.1. Pyrolysis Mechanism of Solid Fuels
5.2. Gasification Mechanism of Solid Fuels
Reaction Type and Name | Reaction | |
---|---|---|
Partial oxidation | ||
CO oxidation | −283.0 | |
Hydrogen combustion | −242.0 | |
Partial oxidation of carbon | −111.0 | |
Heterogeneous gasification reactions | ||
Boudouard reaction | +172.0 | |
Steam gasification | +131.0 | |
Hydrogasification | −75.0 | |
Homogeneous gasification reactions | ||
Reverse water–gas shift reaction | −41.1 | |
Steam–methane reforming | +206.3 | |
Dry methane reforming | −247.0 |
5.2.1. Reactivity of Coal, Biomass and MSW
5.2.2. Modelling of Gasification Kinetics
6. Challenges of Coal, Biomass and MSW Gasification
- (i)
- Pre-gasification capture is utilised in IGCC power plants, where gaseous components (syngas) are produced from solid fuel by applying heat under pressure in the presence of oxygen and steam; CO2 is captured from the syngas before the combustion process is completed [128].
- (ii)
- For in situ CO2 capture during coal gasification, there are two that are sufficiently efficient: (1) calcium looping, which results in a gas stream with a low CO2 content [129] and (2) chemical absorption using monoethanolamine, which is a commercially available technology that is routinely employed on a large scale [130]. Of the two, calcium looping is the most promising owing to its low cost and high reactivity [131].
- (iii)
- Post-gasification CO2 capture technology includes a water–gas-shift (WGS) reaction system, pressure-swing adsorption (PSA), and chemical-looping combustion (CLC). The WGS reactors use steam to convert vast quantities of CO generated during the gasification process into a CO2 and H2 blend. The PSA system provides a hydrogen-rich fuel that is used to generate electricity in a combined cycle. The CLC system oxidises the residual CO and methane in the flue gas stream to produce a CO2 stream that can be sequestered and a gas stream that can be delivered to the combined cycle to generate electricity [132].
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BP. Statistical Review of World Energy 2021, 70th Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-primary-energy.pdf (accessed on 9 June 2022).
- IEA. Key World Energy Statistics. 2021. Available online: https://www.iea.org/reports/key-world-energy-statistics-2021/outlook (accessed on 9 June 2022).
- Shahabuddin, M.; Bhattacharya, S. Co-Gasification Characteristics of Coal and Biomass Using CO2 Reactant under Thermodynamic Equilibrium Modelling. Energies 2021, 14, 7384. [Google Scholar] [CrossRef]
- Seo, Y.-C.; Alam, M.T.; Yang, W.-S. Gasification of municipal solid waste. In Gasification for Low-Grade Feedstock; IntechOpen: London, UK, 2018; pp. 115–141. [Google Scholar]
- Global Bioenergy Statistics 2020; World Bioenergy Association: Stockholm, Sweden, 2020.
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2021. Earth Syst. Sci. Data 2021, 12, 3269–3340. [Google Scholar] [CrossRef]
- Zedtwitz, P.; Steinfeld, A. The solar thermal gasification of coal—Energy conversion efficiency and CO2 mitigation potential. Energy 2003, 28, 441–456. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Alim, M.A.; Alam, T.; Mofijur, M.; Ahmed, S.F.; Perkins, G. A critical review on the development and challenges of concentrated solar power technologies. Sustain. Energy Technol. Assess. 2021, 47, 101434. [Google Scholar] [CrossRef]
- Weimer, T.; Specht, M.; Baumgart, F.; Marquard-Möllenstedt, T.; Sichler, P. Hydrogen/syngas generation by simultaneous steam reforming and carbon dioxide absorption. In Proceedings of the Conference of Gasification, the Clean Choice for Carbon Management, Noordwijk, The Netherlands, 8–10 April 2002. [Google Scholar]
- Rizeq, G.; Kumar, R.; West, J.; Lissianski, V.; Widmer, N.; Zamansky, V. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2; National Energy Technology Lab.: Pittsburgh, PA, USA; Morgantown, WV, USA, 2001. [Google Scholar]
- Yan, L.; He, B.; Pei, X.; Wang, C.; Liang, H.; Duan, Z. Computational-Fluid-Dynamics-Based Evaluation and Optimisation of an Entrained-Flow Gasifier Potential for Coal Hydrogasification. Energy Fuels 2013, 27, 6397–6407. [Google Scholar] [CrossRef]
- Ziock, H.; Lackner, K.; Harrison, D. Zero Emission Coal Power, a New Concept. In Proceedings of the First National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001. [Google Scholar]
- Boshu, H.; Mingyang, L.; Xin, W.; Ling, Z.; Lili, W.; Jiwei, X.; Zhenxing, C. Chemical kinetics-based analysis for utilities of ZEC power generation system. Int. J. Hydrogen Energy 2008, 33, 4673–4680. [Google Scholar] [CrossRef]
- Yan, L.; He, B.; Ma, L.; Pei, X.; Wang, C.; Li, X. Integrated characteristics and performance of zero emission coal system. Int. J. Hydrogen Energy 2012, 37, 9669–9676. [Google Scholar] [CrossRef]
- Lin, S.; Harada, M.; Suzuki, Y.; Hatano, H. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energy Convers. Manag. 2005, 46, 869–880. [Google Scholar] [CrossRef]
- Ratafia-Brown, J.; Manfredo, L.; Hoffmann, J.; Ramezan, M. Major Environmental Aspects of Gasification-Based Power Generation Technologies; Final Report; U.S. Department of Energy: Washington, DC, USA, 2002. Available online: https://www.netl.doe.gov/sites/default/files/netl-file/final-env.pdf (accessed on 9 June 2022).
- Collot, A.-G. Matching gasification technologies to coal properties. Int. J. Coal Geol. 2006, 65, 191–212. [Google Scholar] [CrossRef]
- Phillips, J. Different types of gasifiers and their integration with gas turbines. In The Gas Turbine Handbook; U.S. Department of Energy: Washington, DC, USA, 2006; pp. 67–75. [Google Scholar]
- Wu, H.-C.; Ku, Y.; Tsai, H.-H.; Kuo, Y.-L.; Tseng, Y.-H. Rice husk as solid fuel for chemical looping combustion in an annular dual-tube moving bed reactor. Chem. Eng. J. 2015, 280, 82–89. [Google Scholar] [CrossRef]
- Johansson, M.; Mattisson, T.; Lyngfelt, A. Creating a synergy effect by using mixed oxides of iron-and nickel oxides in the combustion of methane in a chemical-looping combustion reactor. Energy Fuels 2006, 20, 2399–2407. [Google Scholar] [CrossRef]
- Huseyin, S.; Wei, G.-Q.; Li, H.-B.; He, F.; Huang, Z. Chemical-looping gasification of biomass in a 10 kWth interconnected fluidised bed reactor using Fe2O3/Al2O3 oxygen carrier. J. Fuel Chem. Technol. 2014, 42, 922–931. [Google Scholar] [CrossRef]
- Xu, G.; Murakami, T.; Suda, T.; Matsuzaw, Y.; Tani, H. Two-stage dual fluidised bed gasification: Its conception and application to biomass. Fuel Processing Technol. 2009, 90, 137–144. [Google Scholar] [CrossRef]
- Virginie, M.; Adánez, J.; Courson, C.; De Diego, L.; García-Labiano, F.; Niznansky, D.; Kiennemann, A.; Gayán, P.; Abad, A. Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed. Appl. Catal. B Environ. 2012, 121, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xiao, J.; Shen, L.; Wang, J.; Zhu, J.; Hao, J. Effects of Ca-based catalysts on biomass gasification with steam in a circulating spout-fluid bed reactor. Energy Fuels 2010, 24, 3256–3261. [Google Scholar] [CrossRef]
- Simbeck, D.; Korens, N.; Biasca, F.; Vejtasa, S.; Dickenson, R. Coal Gasification Guidebook: Status, Applications, and Technologies; Final Report No. TR-102034; Electric Power Research Institute: Palo Alto, CA, USA, 1993. [Google Scholar]
- Tanner, J. High Temperature, Entrained Flow Gasification of Victorian Brown Coals and Rhenish Lignites. Ph.D. Thesis, Monash University, Melbourne, Australia, 2015. [Google Scholar]
- U.S. Department of Energy. National Energy Technology Laboratory (NETL) Gasification Database; U.S. Department of Energy: Washington, DC, USA, 2016.
- Ratafia-Brown, J.A.; Manfredo, L.M.; Hoffmann, J.W.; Ramezan, M.; Stiegel, G.J. An environmental assessment of IGCC power systems. In Proceedings of the Nineteenth Annual Pittsburgh Coal Conference, Pittsburgh, PA, USA, 23–27 September 2002; pp. 23–27. [Google Scholar]
- Higman, C. State of the gasification industry: Worldwide gasification database 2014 update. In Proceedings of the Gasification Technologies Conference, Washington, DC, USA, 26–29 October 2014. [Google Scholar]
- Fernando, R. Coal Gasification; IEA Clean Coal Centre: London, UK, 2008. [Google Scholar]
- Shahabuddin, M.; Krishna, B.B.; Bhaskar, T.; Perkins, G. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Bioresour. Technol. 2020, 299, 122557. [Google Scholar] [CrossRef] [PubMed]
- Shahabuddin, M.; Alam, M.T.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A review of producing renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef] [PubMed]
- Boot-Handford, M. The Utilisation of Biomass as a Fuel for Chemical Looping Combustion. Ph.D. Thesis, Imperial College Londong, London, UK, 2015. [Google Scholar]
- Wang, P.; Massoudi, M. Slag behavior in gasifiers. Part I: Influence of coal properties and gasification conditions. Energies 2013, 6, 784–806. [Google Scholar] [CrossRef] [Green Version]
- National Energy Technology Laboratory. Gasification: Commercial Gasifiers. 2019. Available online: https://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/types-gasifiers (accessed on 30 November 2019).
- Song, W.; Tang, L.; Zhu, X.; Wu, Y.; Rong, Y.; Zhu, Z.; Koyama, S. Fusibility and flow properties of coal ash and slag. Fuel 2009, 88, 297–304. [Google Scholar] [CrossRef]
- Van Dyk, J.; Waanders, F.; Benson, S.; Laumb, M.; Hack, K. Viscosity predictions of the slag composition of gasified coal, utilising FactSage equilibrium modelling. Fuel 2009, 88, 67–74. [Google Scholar] [CrossRef]
- Li, F.; Xiao, H.; Fang, Y. Correlation between ash flow temperature and its ionic potentials under reducing atmosphere. Appl. Therm. Eng. 2017, 110, 1007–1010. [Google Scholar] [CrossRef]
- Song, T.; Cheng, P.; Wang, X.; Xu, J. Inorganic Chemistry, 4th ed.; Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Oh, M.; Brooker, D.; De Paz, E.; Brady, J.; Decker, T. Effect of crystalline phase formation on coal slag viscosity. Fuel Processing Technol. 1995, 44, 191–199. [Google Scholar] [CrossRef]
- McIlroy, J.; Sage, W. Relationship of coal-ash viscosity to chemical composition. J. Eng. Power 1960, 31, 153–154. [Google Scholar]
- Buhre, B.J.; Browning, G.J.; Gupta, R.P.; Wall, T.F. Measurement of the viscosity of coal-derived slag using thermomechanical analysis. Energy Fuels 2005, 19, 1078–1083. [Google Scholar] [CrossRef]
- Bryant, G.; Lucas, J.; Gupta, S.; Wall, T. Use of thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal. Energy Fuels 1998, 12, 257–261. [Google Scholar] [CrossRef]
- Aineto, M.; Acosta, A.; Rincon, J.M.; Romero, M. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant. Fuel 2006, 85, 2352–2358. [Google Scholar] [CrossRef]
- Van Dyk, J.; Benson, S.; Laumb, M.; Waanders, B. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel 2009, 88, 1057–1063. [Google Scholar] [CrossRef]
- Pang, C.H.; Hewakandamby, B.; Wu, T.; Lester, E. An automated ash fusion test for characterisation of the behaviour of ashes from biomass and coal at elevated temperatures. Fuel 2013, 103, 454–466. [Google Scholar] [CrossRef]
- Nel, M.V.; Strydom, C.A.; Schobert, H.H.; Beukes, J.P.; Bunt, J.R. Reducing atmosphere ash fusion temperatures of a mixture of coal-associated minerals—The effect of inorganic additives and ashing temperature. Fuel Process. Technol. 2014, 124, 78–86. [Google Scholar] [CrossRef]
- Global Syngas Technology Council. Available online: https://www.globalsyngas.org/resources/glossary/ (accessed on 28 September 2019).
- Higman, C. GSTC Syngas Database: 2017 Update. In Proceedings of the Gasification & Syngas Technologies Conference, Colorado Springs, CO, USA, 15–18 October 2017. [Google Scholar]
- Schweinfurth, S.P. An introduction to coal quality. In The National Coal Resource Assessment Overview: US Geological Survey Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2009. [Google Scholar]
- Finkelman, R.B.; Brown, R.D., Jr. Coal as host and as an indicator of mineral resources. In Geology in Coal Resource Utilization; TechBooks: Fairfax, VA, USA, 1991; pp. 471–481. [Google Scholar]
- Abad, A.; de las Obras-Loscertales, M.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Adánez, J. In situ gasification Chemical-Looping Combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent. Chem. Eng. J. 2017, 310, 226–239. [Google Scholar] [CrossRef]
- Shadle, L.J.; Monazam, E.R.; Swanson, M.L. Coal gasification in a transport reactor. Ind. Eng. Chem. Res. 2001, 40, 2782–2792. [Google Scholar] [CrossRef]
- Safiullah, S.; Khan, M.; Sabur, M. Comparative study of Bangladesh Barapukuria coal with those of various other countries. J. Bangladesh Chem. Soc. 2011, 24, 221–225. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, H.; Tian, X.; Wei, Y.; Rajendran, S.; Zhang, Y.; Bhattacharya, S.; Zheng, C. Chemical looping combustion of coal in a 5 kWth interconnected fluidised bed reactor using hematite as oxygen carrier. Appl. Energy 2015, 157, 304–313. [Google Scholar] [CrossRef]
- Yan, L.; Yue, G.; He, B. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system. Energy 2015, 93, 1778–1787. [Google Scholar] [CrossRef]
- Uwaoma, R.; Strydom, C.; Bunt, J.; Okolo, G.; Matjie, R. The catalytic effect of Benfield waste salt on CO2 gasification of a typical South African Highveld coal. J. Therm. Anal. Calorim. 2019, 135, 2723–2732. [Google Scholar] [CrossRef]
- Chen, C.; Horio, M.; Kojima, T. Numerical simulation of entrained flow coal gasifiers. Part I: Modeling of coal gasification in an entrained flow gasifier. Chem. Eng. Sci. 2000, 55, 3861–3874. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, L.; Saha, C.; Zhang, S.; Bhattacharya, S. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit. Int. J. Greenh. Gas Control 2012, 10, 363–373. [Google Scholar] [CrossRef]
- Tanner, J.; Bläsing, M.; Müller, M.; Bhattacharya, S. The temperature-dependent release of volatile inorganic species from Victorian brown coals and German lignites under CO2 and H2O gasification conditions. Fuel 2015, 158, 72–80. [Google Scholar] [CrossRef]
- Seo, M.W.; Kim, S.D.; Lee, S.H.; Lee, J.G. Pyrolysis characteristics of coal and RDF blends in non-isothermal and isothermal conditions. J. Anal. Appl. Pyrolysis 2010, 88, 160–167. [Google Scholar] [CrossRef]
- Geng, C.; Li, S.; Yue, C.; Ma, Y. Pyrolysis characteristics of bituminous coal. J. Energy Inst. 2016, 89, 725–730. [Google Scholar] [CrossRef]
- Goyal, A.; Zabransky, R.F.; Rehmat, A. Gasification kinetics of Western Kentucky bituminous coal char. Ind. Eng. Chem. Res. 1989, 28, 1767–1778. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Zhang, K.; Li, Y.; He, Y.; Kuang, M.; Li, Q.; Cen, K.-F. Gasification characteristics of different rank coals at H2O and CO2 atmospheres. J. Anal. Appl. Pyrolysis 2016, 122, 76–83. [Google Scholar] [CrossRef]
- Dai, B.; Hoadley, A.; Zhang, L. Characteristics of high temperature C-CO2 gasification reactivity of Victorian brown coal char and its blends with high ash fusion temperature bituminous coal. Fuel 2017, 202, 352–365. [Google Scholar] [CrossRef]
- Porada, S.; Czerski, G.; Grzywacz, P.; Makowska, D.; Dziok, T. Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products. Thermochim. Acta 2017, 653, 97–105. [Google Scholar] [CrossRef]
- Li, P.; Yu, Q.; Xie, H.; Qin, Q.; Wang, K. CO2 gasification rate analysis of Datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction. Energy Fuels 2013, 27, 4810–4817. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, J.-S.; Yang, W.-S.; Alam, M.T.; Seo, Y.-C.; Lee, S.-Y. Gasification characteristics of biomass for tar removal by secondary oxidant injection. J. Mater. Cycles Waste Manag. 2018, 20, 823–831. [Google Scholar] [CrossRef]
- Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterisation of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 2013, 6, 663–677. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Yu, C.; Jiang, J.; Guo, M.; Hantoko, D.; Yan, M. A two-step process for energy-efficient conversion of food waste via supercritical water gasification: Process design, products analysis, and electricity evaluation. Sci. Total Environ. 2021, 752, 142331. [Google Scholar] [CrossRef]
- Demetrious, A.; Crossin, E. Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis. J. Mater. Cycles Waste Manag. 2019, 21, 850–860. [Google Scholar] [CrossRef]
- Cho, M.-H.; Mun, T.-Y.; Choi, Y.-K.; Kim, J.-S. Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal. Energy 2014, 70, 128–134. [Google Scholar] [CrossRef]
- Phuang, Y.W.; Ng, W.Z.; Khaw, S.S.; Yap, Y.Y.; Gan, S.; Lee, L.Y.; Thangalazhy-Gopakumar, S. Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Mater. Sci. Energy Technol. 2021, 4, 211–223. [Google Scholar] [CrossRef]
- Lee, S.Y.; Alam, M.T.; Han, G.H.; Choi, D.H.; Park, S.W. Gasification Applicability of Korean Municipal Waste Derived Solid Fuel: A Comparative Study. Processes 2020, 8, 1375. [Google Scholar] [CrossRef]
- Alam, M.T.; Park, S.-W.; Lee, S.-Y.; Jeong, Y.-O.; Girolamo, A.D.; Seo, Y.-C.; Choi, H.S. Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends. Energies 2020, 13, 2081. [Google Scholar] [CrossRef] [Green Version]
- Shahabuddin, M.; Kibria, M.A.; Bhattacharya, S. Evaluation of high-temperature pyrolysis and CO2 gasification performance of bituminous coal in an entrained flow gasifier. J. Energy Inst. 2021, 94, 294–309. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Bhattacharya, S. Gasification characteristics of Bangladeshi Barapukurian coal in a high-temperature entrained flow gasifier under CO2 atmosphere. In AIP Conference Proceedings 2019; AIP Publishing: Melville, NY, USA, 2019; p. 040013. [Google Scholar]
- Kirtania, K.; Bhattacharya, S. CO2 gasification behavior of biomass chars in an entrained flow reactor. Biomass Convers. Biorefinery 2016, 6, 49–59. [Google Scholar] [CrossRef]
- Wall, T.F.; Liu, G.-S.; Wu, H.-W.; Roberts, D.G.; Benfell, K.E.; Gupta, S.; Lucas, J.A.; Harris, D.J. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog. Energy Combust. Sci. 2002, 28, 405–433. [Google Scholar] [CrossRef]
- Tanner, J.; Bläsing, M.; Müller, M.; Bhattacharya, S. High temperature pyrolysis and CO2 gasification of Victorian brown coal and Rhenish lignite in an entrained flow reactor. AIChE J. 2016, 62, 2101–2211. [Google Scholar] [CrossRef]
- Ye, D.P.; Agnew, J.B.; Zhang, D.K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel 1998, 77, 1209–1219. [Google Scholar] [CrossRef]
- Lee, C.W.; Scaroni, A.W.; Jenkins, R.G. Effect of pressure on the devolatilisation and swelling behaviour of a softening coal during rapid heating. Fuel 1991, 70, 957–965. [Google Scholar] [CrossRef]
- Vyas, A.; Chellappa, T.; Goldfarb, J.L. Porosity development and reactivity changes of coal–biomass blends during co-pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis 2017, 124, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Wen, C.; Belt, R. Reactivity of coal and char. 1. In carbon dioxide atmosphere. Ind. Eng. Chem. Process Des. Dev. 1977, 16, 20–30. [Google Scholar] [CrossRef]
- Hurt, R.; Sarofim, A.; Longwell, J. The role of microporous surface area in the gasification of chars from a sub-bituminous coal. Fuel 1991, 70, 1079–1082. [Google Scholar] [CrossRef]
- Miura, K.; Hashimoto, K.; Silveston, P.L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity. Fuel 1989, 68, 1461–1475. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Chatterjee, P.; Karmakar, M.; Pramanick, A. Pyrolysis characteristics and kinetics of Indian low rank coal using thermogravimetric analysis. Int. J. Coal Sci. Technol. 2019, 6, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Khalil, U.; Vongsvivut, J.; Shahabuddin, M.; Samudrala, S.P.; Srivatsa, S.C.; Bhattacharya, S. A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor. Waste Manag. 2020, 102, 139–148. [Google Scholar] [CrossRef]
- Griffin, T.P.; Howard, J.B.; Peters, W.A. Pressure and temperature effects in bituminous coal pyrolysis: Experimental observations and a transient lumped-parameter model. Fuel 1994, 73, 591–601. [Google Scholar] [CrossRef]
- Yu, J.; Lucas, J.A.; Wall, T.F. Formation of the structure of chars during devolatilisation of pulverised coal and its thermoproperties: A review. Prog. Energy Combust. Sci. 2007, 33, 135–170. [Google Scholar] [CrossRef]
- Reimert, R.; Marschner, F.; Renner, H.-J.; Boll, W.; Supp, E.; Brejc, M.; Liebner, W.; Schaub, G. Gas Production, 2. Processes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Yoshida, H.; Kiyono, F.; Tajima, H.; Yamasaki, A.; Ogasawara, K.; Masuyama, T. Two-stage equilibrium model for a coal gasifier to predict the accurate carbon conversion in hydrogen production. Fuel 2008, 87, 2186–2193. [Google Scholar] [CrossRef]
- Higman, C.; Tam, S. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem. Rev. 2013, 114, 1673–1708. [Google Scholar] [CrossRef] [PubMed]
- Ahmmad, M.S. Co-Gasification Characteristics of Biomass and Bangladeshi Bituminous Coal under Entrained Flow Conditions. Ph.D. Thesis, Monash University, Melbourne, Australia, 2020. [Google Scholar]
- Shahabuddin, M.; Kibria, M.; Bhattacharya, S. Effect of pore diffusion on the gasification characteristics of coal char under CO2 atmosphere. Int. J. Energy A Clean Environ. 2021, 22, 85–102. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Kibria, M.; Bhattacharya, S. Gasification kinetics of Barapukurian coal char using carbon dioxide and steam reactants. Chem. Pap. 2022, 76, 4459–4470. [Google Scholar] [CrossRef]
- Boyd, R.; Benyon, P. Coal property impacts on gasification. In Proceedings of the Research Symposium on Entrained-Flow Gasification, Brisbane, Australia, 27–28 October 1999; pp. 27–28. [Google Scholar]
- Shahabuddin, M.; Bhattacharya, S. Process modelling for the production of hydrogen-rich gas from gasification of coal using oxygen, CO2 and steam reactants. Int. J. Hydrogen Energy 2021, 46, 24051–24059. [Google Scholar] [CrossRef]
- Van Heek, K.H.; Mühlen, H.-J. Aspects of coal properties and constitution important for gasification. Fuel 1985, 64, 1405–1414. [Google Scholar] [CrossRef]
- Dong-Ping, Y. Gasification of South Australian Lignite. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 1994. [Google Scholar]
- Huo, W.; Zhou, Z.; Wang, F.; Wang, Y.; Yu, G. Experimental study of pore diffusion effect on char gasification with CO2 and steam. Fuel 2014, 131, 59–65. [Google Scholar] [CrossRef]
- Tanner, J.; Bhattacharya, S. Kinetics of CO2 and steam gasification of Victorian brown coal chars. Chem. Eng. J. 2016, 285, 331–340. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Bhattacharya, S. Effect of reactant types (steam, CO2 and steam+ CO2) on the gasification performance of coal using entrained flow gasifier. Int. J. Energy Res. 2021, 45, 9492–9501. [Google Scholar] [CrossRef]
- Lu, G.; Do, D. Comparison of structural models for high-ash char gasification. Carbon 1994, 32, 247–263. [Google Scholar] [CrossRef]
- Ahn, D.H.; Gibbs, B.M.; Ko, K.H.; Kim, J.J. Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure. Fuel 2001, 80, 1651–1658. [Google Scholar] [CrossRef]
- Aranda, G.; Grootjes, A.J.; van der Meijden, C.M.; van der Drift, A.; Gupta, D.F.; Sonde, R.R.; Poojari, S.; Mitra, C.B. Conversion of high-ash coal under steam and CO2 gasification conditions. Fuel Process. Technol. 2016, 141, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Kajitani, S.; Suzuki, N.; Ashizawa, M.; Hara, S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 2006, 85, 163–169. [Google Scholar] [CrossRef]
- Kajitani, S.; Hara, S.; Matsuda, H. Gasification rate analysis of coal char with a pressurised drop tube furnace. Fuel 2002, 81, 539–546. [Google Scholar] [CrossRef]
- Roberts, D.G.; Hodge, E.M.; Harris, D.J.; Stubington, J.F. Kinetics of char gasification with CO2 under regime II conditions: Effects of temperature, reactant, and total pressure. Energy Fuels 2010, 24, 5300–5308. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Fang, Y.; Wang, Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2. Energy Fuels 2006, 20, 1201–1210. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Son Inc.: New York, NY, USA, 1979; Chapter 12. [Google Scholar]
- Fermoso, J.; Arias, B.; Pevida, C.; Plaza, M.; Rubiera, F.; Pis, J. Kinetic models comparison for steam gasification of different nature fuel chars. J. Therm. Anal. Calorim. 2008, 91, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Kabir, K.B.; Tahmasebi, A.; Bhattacharya, S.; Yu, J. Intrinsic kinetics of CO2 gasification of a Victorian coal char. J. Therm. Anal. Calorim. 2016, 123, 1685–1694. [Google Scholar] [CrossRef]
- Brar, J.; Singh, K.; Wang, J.; Kumar, S. Cogasification of coal and biomass: A review. Int. J. For. Res. 2012, 2012, 363058. [Google Scholar] [CrossRef] [Green Version]
- Shahabuddin, M.; Bhattacharya, S.; Srivatsa, S.C. Co-slagging characteristics of coal and biomass ashes considering entrained flow slagging gasifier. Biomass Convers. Biorefinery 2021, 1–10. [Google Scholar] [CrossRef]
- Wood, B.J.; Sancier, K.M. The mechanism of the catalytic gasification of coal char: A critical review. Catal. Rev. Sci. Eng. 1984, 26, 233–279. [Google Scholar] [CrossRef]
- Hauserman, W.B. High-yield hydrogen production by catalytic gasification of coal or biomass. Int. J. Hydrogen Energy 1994, 19, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, Y.D.; Xu, Y.; Sheth, A.; Godavarty, A.; Agrawal, P.K. Catalytic gasification of coal using eutectic salts: Identification of eutectics. Carbon 2003, 41, 203–214. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Catalytic steam gasification of coal char with alkali carbonates: A study on their synergic effects with calcium hydroxide. Fuel Processing Technol. 2016, 142, 34–41. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Bhattacharya, S. Enhancement of performance and emission characteristics by co-gasification of biomass and coal using an entrained flow gasifier. J. Energy Inst. 2021, 95, 166–178. [Google Scholar] [CrossRef]
- Taba, L.E.; Irfan, M.F.; Daud, W.A.M.W.; Chakrabarti, M.H. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sustain. Energy Rev. 2012, 16, 5584–5596. [Google Scholar] [CrossRef]
- Mishra, M.K.; Khare, N.; Agrawal, A.B. Scenario analysis of the CO2 emissions reduction potential through clean coal technology in India’s power sector: 2014–2050. Energy Strategy Rev. 2015, 7, 29–38. [Google Scholar] [CrossRef]
- Guan, G. Clean coal technologies in Japan: A review. Chin. J. Chem. Eng. 2017, 25, 689–697. [Google Scholar] [CrossRef]
- Altmann, T.; Das, R. Process improvement of sea water reverse osmosis (SWRO) and subsequent decarbonisation. Desalination 2021, 499, 114791. [Google Scholar] [CrossRef]
- Szima, S.; del Pozo, C.A.; Cloete, S.; Chiesa, P.; Alvaro, Á.J.; Cormos, A.-M.; Amini, S. Finding synergy between renewables and coal: Flexible power and hydrogen production from advanced IGCC plants with integrated CO2 capture. Energy Convers. Manag. 2021, 231, 113866. [Google Scholar] [CrossRef]
- Liu, H.; Gibbs, B.M. Modeling NH3 and HCN emissions from biomass circulating fluidised bed gasifiers. Fuel 2003, 82, 1591–1604. [Google Scholar] [CrossRef]
- Strazisar, B.R.; Anderson, R.R.; White, C.M. Degradation pathways for monoethanolamine in a CO2 capture facility. Energy Fuels 2003, 17, 1034–1039. [Google Scholar] [CrossRef]
- Doranehgard, M.H.; Samadyar, H.; Mesbah, M.; Haratipour, P.; Samiezade, S. High-purity hydrogen production with in situ CO2 capture based on biomass gasification. Fuel 2017, 202, 29–35. [Google Scholar] [CrossRef]
- Salazar, J.M.; Diwekar, U.M.; Zitney, S.E. Rigorous-simulation pinch-technology refined approach for process synthesis of the water–gas shift reaction system in an IGCC process with carbon capture. Comput. Chem. Eng. 2011, 35, 1863–1875. [Google Scholar] [CrossRef]
Operating Conditions | Fixed Bed | Fluidised Bed | Entrained Flow | |||
---|---|---|---|---|---|---|
Ash conditions | Dry ash | Slagging | Dry ash | Agglomerating | Slagging | Slagging |
Fuel-feeding conditions | Dry feeding | dry feeding | dry feeding | dry feeding | dry feeding | slurry feeding |
Reactant type | Air/O2 | Air/O2 | Air/O2 | Air/O2 | O2 | O2 |
Reactant requirement | low | low | medium | medium | high | high |
Syngas flow direction | up | up | up | up | up or down | up or down |
Typical reactor temp (°C) | 1000 | 1500–1800 | 900–1050 | 900–1050 | 1200–1600 | 1200–1600 |
Syngas temperature (°C) | 425–650 | 425–650 | 925–1040 | 925–1040 | 1400–1600 | 1200–1400 |
Syngas cooling | Water | Water | Coolant | Coolant | Coolant | Water/syngas coolant |
Pressure (Mpa) | 3.0 | 2.5 | Up to 3.0 | 1.0–3.0 | 2.5–3.0 | 2.5–3.0 |
Feedstock preference | Low- to high-rank coals and waste | Medium- to high-rank coals, petcoke and waste | Low- to medium rank coals and waste | Low- to medium rank coals, biomass and waste | Low- to high-rank coals, biomass, petcoke and waste | Low- to high-rank coals, biomass, petcoke and waste |
Typical particle size (mm) | 5–80 | 5–80 | <6 | <6 | <0.1 | <0.1 |
Residence time (s) | 900–3600 | 900–3600 | 10–100 | 10–100 | 1.5–4 | 1.5 |
Moisture (%) | No limit | <28 | No limit | No limit | Possible to use coal with high moisture | limited |
Ash content limit (%) | <15 | <25 | <40 | <40 | 2–25 | <25 |
Ash fusion temp limit (°C) | Any | Any | >1100 | >1100 | Generally <1300 | Generally <1300 |
Commercial gasifier | Lurgi | BGL | IDGCC, HTW and KBR | KRW and U-Gas | Shell, PRENFLO, EAGLE, Siemens, MHI | GE, E-Gas |
Conversion | >99 | >99 | 96 | 95 | 98–99 | 100 |
Typical cold gas efficiency (%) | ~88 | ~88 | ~85 | 70–80 | ~80 | 74–77 |
Unit capacity (MWth) | 10–350 | 10–350 | 100–700 | 20–50 | Up to 700 | Up to 700 |
Key technical issues | Agglomeration and use of hydrocarbon liquid | Agglomeration and use of hydrocarbon liquid | Lower carbon conversion and agglomeration | Lower carbon conversion and agglomeration | Syngas cooling and slagging | Syngas cooling and slagging |
Parameter | ChevronTexaco | E-Gas | Shell | PRENFLO |
---|---|---|---|---|
Fuel type | bituminous coal | bituminous coal | bituminous coal | petroleum coke and bituminous coal |
Gasification process | single-stage entrained flow | two-stage entrained-flow | single-stage updraft entrained flow | single-stage updraft entrained flow |
Fuel feeding | slurry feeding | slurry feeding | dry feeding | dry feeding |
Reactant | 95% pure oxygen | 95% pure oxygen | 95% pure oxygen | 95% pure oxygen |
Syngas cooler type | downflow radiant, water tube and fire tube | downflow fire tube | downflow water tube | Downflow or upflow radiant water tube and convective water tube |
Controlling particles | water scrubber | metallic candle filter and water scrubber | candle filter | candle filter |
Chloride, fluoride and ammonia control | water scrubber | water scrubber | water scrubber | water scrubber |
Sulphur recovery (%) | 98% | 99% | 99% | 99% |
Air separation | cryogenic distillation | cryogenic distillation | cryogenic distillation | Cryogenic distillation |
Combustors | multiple cans | multiple cans | twin vertical silos | twin horizontal silos |
Firing Temperature, °C | 1287 | 1287 | 1100 | 1260 |
Heat-recovery steam generator | triple-pressure reheat and natural circulation | triple-pressure reheat and natural circulation | triple-pressure reheat and natural circulation | triple-pressure reheat and natural circulation |
Slag removal | lock hopper | continuous | lock hoppers | lock hoppers |
Ref. | Methods and Materials | Study Parameters | Key Findings |
---|---|---|---|
[46] |
| Thermal-expansion behaviour of fly ash of IGCC power plant |
|
[38] |
| Fusibility and flow properties of laboratory ash |
|
[47] |
| To characterise the slag and mineral transformation |
|
[39] |
| Slag viscosity prediction of the ash |
|
[48] |
| Ash fusion characterisation along with dilatometry and sintering strength tests using the image-based technique |
|
[49] |
| The effect of the addition of inorganic materials in coal or ash |
|
[40] |
| Development of a correlation to predict AFT based on the ionic potential of major minerals in the ash |
|
Status | Projects | Gasifiers | Syngas Capacity (GWth) |
---|---|---|---|
Operating | 379 | 938 | 173 |
Development | 131 | 348 | 108 |
Planned | 146 | 734 | 116 |
Total | 656 | 2020 | 397 |
Scheme 2017 | Chemicals (MWth) | Gaseous Fuels (MWth) | Industrial Gases (MWth) | Liquid Fuels (MWth) | Power (MWth) | Total (MWth) |
---|---|---|---|---|---|---|
Operating (2017) | 95,000 | 18,000 | 9000 | 42,000 | 11,000 | 175,000 |
Development (2020) | 50,000 | 27,000 | 6000 | 12,000 | 9000 | 104,000 |
Planned | 33,000 | 74,000 | 2000 | 6000 | 3000 | 118,000 |
Total | 178,000 | 119,000 | 17,000 | 60,000 | 23,000 | 397,000 |
Status | Coal (MWth) | Natural Gas (MWth) | Petcoke (MWth) | Petroleum (MWth) | Biomass (MWth) | Waste (MWth) | Total (MWth) |
---|---|---|---|---|---|---|---|
Operating (2017) | 140,000 | 17,000 | 4000 | 13,000 | 1000.0 | 1000 | 175,000 |
Development (2020) | 84,000 | 0 | 11,000 | 2000 | 0 | 0 | 97,000 |
Planned (2021) | 110,000 | 2000 | 5000 | 6000 | 2000 | 2000 | 125,000 |
Total | 334,000 | 19,000 | 20,000 | 21,000 | 3000 | 3000 | 397,000 |
Char Samples | Ea (kJ/mol) | A0 (s−1) | n (–) | Ref. | |||
---|---|---|---|---|---|---|---|
CO2 | Steam | CO2 | Steam | CO2 | Steam | ||
Barapukurian bituminous coal | 173.4 | 143.4 | 1.21 × 104 | 1.47 × 103 | 0.67 | 0.95 | [99] |
Morwell Brown coal | 169.0 | 152.18 | 1.69 × 105 | 8.25 × 104 | 0.39 | 0.55 | [105] |
Yallourn Brown coal | 168.8 | 152.18 | 2.07 × 105 | 7.14 × 103 | 0.48 | 0.44 | [105] |
Loy Yan Brown coal | 164.9 | 119.24 | 3.58 × 104 | 4.59 × 102 | 0.44 | 0.53 | [105] |
Indonesian sub-bituminous coal | 144.0 | - | 1.74 × 102 | - | 0.4 | - | [108] |
High-ash Indian sub-bituminous coal | 216.0 | 204 | 3.05 × 106 | 2.88 × 106 | 0.6 | 0.11 | [109] |
Australian (NL) bituminous coal | 257.0 | - | 2.54 × 107 | - | 0.56 | [110] | |
Australian (BA) bituminous coal | 283.0 | - | 1.09 × 109 | - | 0.54 | - | [111] |
Chinese (S) bituminous | 261.0 | 214 | 1.23 × 109 | 2.45 × 104 | 0.49 | 0.86 | [111] |
Semi-anthracite coal | 282 | - | 7.2 × 108 | - | 0.35 | - | [112] |
Jingcheng Anthracite coal | 151.5 | 239.8 | 1.53 × 102 | 5.15 × 106 | - | 0.46 | [113] |
Models | Separable Form | Linear Form |
---|---|---|
Volumetric model (VM) | ||
Grain model (GM) | ||
Random Pore Model (RPM) | − 1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahabuddin, M.; Alam, T. Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies. Energies 2022, 15, 4444. https://doi.org/10.3390/en15124444
Shahabuddin M, Alam T. Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies. Energies. 2022; 15(12):4444. https://doi.org/10.3390/en15124444
Chicago/Turabian StyleShahabuddin, M., and Tanvir Alam. 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies" Energies 15, no. 12: 4444. https://doi.org/10.3390/en15124444
APA StyleShahabuddin, M., & Alam, T. (2022). Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies. Energies, 15(12), 4444. https://doi.org/10.3390/en15124444