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Abstract: Nowadays, there are significant issues in the classification of lithofacies and the identifica-
tion of rock types in particular. Zamzama gas field demonstrates the complex nature of lithofacies
due to the heterogeneous nature of the reservoir formation, while it is quite challenging to identify
the lithofacies. Using our machine learning approach and cluster analysis, we can not only resolve
these difficulties, but also minimize their time-consuming aspects and provide an accurate result
even when the user is inexperienced. To constrain accurate reservoir models, rock type identification
is a critical step in reservoir characterization. Many empirical and statistical methodologies have
been established based on the effect of rock type on reservoir performance. Only well-logged data
are provided, and no cores are sampled. Given these circumstances, and the fact that traditional
methods such as regression are intractable, we have chosen to apply three strategies: (1) using a
self-organizing map (SOM) to arrange depth intervals with similar facies into clusters; (2) clustering
to split various facies into specific zones; and (3) the cluster analysis technique is used to identify rock
type. In the Zamzama gas field, SOM and cluster analysis techniques discovered four group of facies,
each of which was internally comparable in petrophysical properties but distinct from the others.
Gamma Ray (GR), Effective Porosity(eff), Permeability (Perm) and Water Saturation (Sw) are used to
generate these results. The findings and behavior of four facies shows that facies-01 and facies-02
have good characteristics for acting as gas-bearing sediments, whereas facies-03 and facies-04 are
non-reservoir sediments. The outcomes of this study stated that facies-01 is an excellent rock-type
zone in the reservoir of the Zamzama gas field.

Keywords: self-organizing map; cluster analysis; lithofacies; Zamzama gas field; rock type

1. Introduction

Machine learning emerged as a subfield of artificial intelligence (AI) in the second
decade of the twentieth century, using self-learning algorithms that gathered information
from data to make predictions [1–4]. Machine learning offers a more efficient option
to capture the information in data to gradually improve the performance of prediction
models and make data-driven decisions [5–8], rather than needing humans to manually
create rules and build models from analyzing massive volumes of data [9–11]. Machine
learning is divided into three categories: supervised learning, unsupervised learning, and
reinforcement learning [12,13]. Each type has its application and algorithm; however,
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because of the lack of outcome information in our case study, we primarily focused on
unsupervised learning. Furthermore, unsupervised learning takes into account the fact
that it may automatically extract hidden patterns without human instruction, making it
more similar to machine learning than other varieties [14]. We used a machine learning
model to categorize the facies for Zamzama gas field and tested the findings against real
facies data in this study. Our model likewise uses data from this field, but we used a novel
model called the self-organizing map (SOM) to tackle the problem [15]. In the situation
of a lack of facies data or geologically inexperienced users, our model would be the best
fit [16]. The principal component analysis (PCA) is our model’s first unsupervised learning
approach [17]. This is a linear mathematical strategy for condensing a big set of variables
(seismic characteristics) into a smaller set that retains the majority of the independent
information variation found in the larger data set [18,19]. One can distinguish sedimentary
units with similar log characteristics by gathering data from several good logs [20–24]. In
the literature, sedimentary units established on this basis and characterized from wireline
logs were referred to as electrofacies or logfacies [17,25–27]. One of the most accurate
and impactful procedures in oil-bearing clastic reservoirs is multivariate cluster analysis
(referred to as the best method of data grouping in the literature) [8,16].

The aim of this research is to classify gamma-ray, porosity, permeability and water
saturation into logfacies and rock types. Our study compares and evaluates lithofacies and
various rock type identifications, utilizing SOM and cluster analysis, via hierarchical and
non-hierarchical approaches to calibrate the appropriate model for researching lithofacies
and rock-type identification. The rock type classification is performed using the cluster
analysis method, which aims to discover groups of well-log data with similar characteristics.
This classification is based on the unique properties of well-log measurements, which reflect
lithofacies within the recorded interval, and does not require any artificial segmentation of
the data population [28].

A cluster analysis can be performed using a variety of methods. Furthermore, un-
supervised learning is more similar to machine learning than other forms since it can
automatically extract hidden patterns without human assistance [29–31]. For lithofacies
classification, there is an unsupervised learning model called support vector machine
(SVM). The SVM is a useful approach for higher-dimensional datasets that is also versatile,
as alternative kernels can be specified according to the user’s needs. The SOM is the
next step in the process. There are massive data analysis challenges, particularly in the
classification of lithofacies and the identification of rock types, both of which generate large
amounts of data, as well as the fact that humans are unable to fully appreciate the link
between seismic properties [32]. Using the advanced machine learning approach and clus-
ter analysis, we can not only solve these problems, but also reduce their time-consuming
nature, and deliver an accurate result even when the user is unskilled. Finally, clustering is
used to classify subgroups (facies) based on their dissimilarity. In this research, we want to
systematize the essential background of the SOM and then apply this workflow to facies
classification in two real examples. Based on the final results, which are compared, several
discussions are presented of lithofacies identification.

General Geology and Stratigraphy of the Study Area

The Zamzama gas field is located on the eastern edge of the Kirthar Foldbelt and is
a broad, trust-related anticline northeast of the fields of Bhit and Badhra, and south of
the fields of Mehar, Sofiya, and Mazarani (Figure 1a). In the frontal folds on the Kirthar
foredeep, these field are situated along the western edge of the Lower Indus Basin [33,34].
The Zamzama gas area is situated along the Kirthar folds and thrust belts of Pakistan’s
Southern Indus Basin. The southern Indus Basin is limited by the Indian Shield to the east
and the Indian plate’s marginal zone to the west, as well as the Sukkur rift from the north to
the offshore Indus in the south [35,36]. The Kirthar Foldbelt in Pakistan is part of the lateral
mountain belt linking Makran’s accretionary wedge to the Himalayan orogeny. Parallel to
the regional plate motion vector, the area is undergoing oblique deformation (Figure 1b).
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In 1998, with estimated wet gas in place at discovery, the Zamzama Field was discovered
and has provided condensate cumulatively to date [25,26].
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Figure 1. (a) Satellite map showing the locations of the major oil and gas filed within the Middle 
and Southern Indus Basin. Zamzama gas field is present in the middle towards the eastern side of 
the map. (b) Regional tectonic map of Pakistan, showing the major basins and tectonic regions. 

Most of the production comes from late Cretaceous Pab Formation fluvial and 
shallow marine sandstones, but the Zamzama area also produces sandstones from the 
estuarine Palaeocene Khadro formation, which are from the Pab formation in stratigraphic 
pressure isolation. In the Zamzama region, the Sembar’s Cretaceous shales and the Goru 
formations are regarded as the principal source rock [37–40]. Through a majority of the 
Southern Indus Basin, the Sembar Formation was deposited in marine settings [41–43]. 
The Lower Goru Formation was deposited over the whole basin of the Southern Indus 
[33,37]. The early Cretaceous Goru Formation, which is divided into two sections (the 
Lower Goru Formation (LGF) and Upper Goru Formation (UGF)), superimposes the 
Sembar Formation [44,45]. The Goru Formation was accumulated in a shallow marine 
environment such as a shoreface to the fluvial-based proximal delta-front depositional 
framework [1,41]. Quite coarse to fine, porous, and permeable sediments are preserved in 
fluvial networks and create reservoirs in fluvial-based depositional systems [9,37,39]. The 
Lower Goru Formation, which includes quite coarse to fine sediments, is the largest 
reservoir rock in the Lower Indus Basin [33,34]. However, in our study area, Goru 

Figure 1. (a) Satellite map showing the locations of the major oil and gas filed within the Middle and
Southern Indus Basin. Zamzama gas field is present in the middle towards the eastern side of the
map. (b) Regional tectonic map of Pakistan, showing the major basins and tectonic regions.

Most of the production comes from late Cretaceous Pab Formation fluvial and shallow
marine sandstones, but the Zamzama area also produces sandstones from the estuarine
Palaeocene Khadro formation, which are from the Pab formation in stratigraphic pressure
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isolation. In the Zamzama region, the Sembar’s Cretaceous shales and the Goru formations
are regarded as the principal source rock [37–40]. Through a majority of the Southern Indus
Basin, the Sembar Formation was deposited in marine settings [41–43]. The Lower Goru
Formation was deposited over the whole basin of the Southern Indus [33,37]. The early
Cretaceous Goru Formation, which is divided into two sections (the Lower Goru Formation
(LGF) and Upper Goru Formation (UGF)), superimposes the Sembar Formation [44,45]. The
Goru Formation was accumulated in a shallow marine environment such as a shoreface to
the fluvial-based proximal delta-front depositional framework [1,41]. Quite coarse to fine,
porous, and permeable sediments are preserved in fluvial networks and create reservoirs in
fluvial-based depositional systems [9,37,39]. The Lower Goru Formation, which includes
quite coarse to fine sediments, is the largest reservoir rock in the Lower Indus Basin [33,34].
However, in our study area, Goru formation is acting as a source rock, while Pab sandstone
is the main reservoir rock within the Zamzama gas field (Figure 2). The main producing
reservoir in the Zamzama gas field is the Maastrichtian Pab Formation, which shows the
deposition of the sand-rich fluvio-deltaic coastal plain and shoreface depositional system
that passes westwards into deep marine turbidites. An alternative target is sandstone
reservoirs within the underlying Palaeocene Khadro Formation, which are separated by
varied thicknesses of coastal plain shales and mudstones, across the top Pab Formation
unconformity. The Khadro Formation sandstones are made up of estuary, intertidal, and
shoreface deposits, with the shoreface units cut by tidal channels, and are hence very
discontinuous and variable in distribution. The Palaeocene Girdo (Ranikot) Formation
marine shales serve as the top seal for the Khadro Formation reservoir sand, which is
present throughout the field and offers a durable continuous pressure barrier, even when
cut by thrusts. Because the basal Khadro Formation shales form a good seal from the
underlying Pab Formation reservoir, Khadro Formation sandstones are anticipated to be
closer to virgin field pressures, unless depleted by production from Khadro Formation
producing wells [22–25].
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2. Data and Methods
2.1. Dataset

For the interest, a dataset of four wells (well-2, -3, -4, and -5) were used in the current
study. The model was trained in well-3, and the experiment models were verified in the
other wells. We have focused on the gas-bearing zone in the Zamzama gas field, which
is present within the Lower Goru formation of Cretaceous age. The primary goal of the
study was to fix the machine learning model’s configuration settings to attain the maximum
classification accuracy feasible in the dataset. Many unsupervised learning algorithms
were performed for classifying lithofacies and rock type identification in the Zamzama
gas field, as evidenced by the majority of the evaluation’s findings being validated on
well dataset samples. The study compares and evaluates lithofacies and identification
of various rock types, using methods such as SOM and cluster analysis to calibrate the
appropriate model for researching lithofacies and rock type identification. Lithofacies
distributed the reservoir interval by combining sedimentological explanations and reacting
to gamma-ray log response. We have used the commercial “Interactive Petrophysics (IP)
Software” and coding for machine learning throughout the whole study. The IP software
is used to incorporate all the well-logged data for computing and then evaluating the
inputs of several petrophysical properties for accurate and adequate assessment of the
formation’s lithofacies.

2.2. Methods
2.2.1. SOM

The SOM is a mathematical technique for organizing data into groups to build a map.
It is a neuro-computational clustering approach that uses supervised and unsupervised
learning processes to uncover new and valuable knowledge hidden in massive datasets [11].
Geoscientists can use the SOM to analyze rock characteristics and reservoir fluids since it
delivers high-quality data. SOM’s capacity to learn and organize data without requiring
associated dependent output values for the input pattern is one of its most attractive
features [15]. The topology of SOM is determined by several nodes (varying from a
few dozens to thousands) linked to surrounding nodes and organized on a regular low-
dimensional grid. The nodes for the entire dataset are created by a training method in SOM.

Electro facies assessment is an important stage in determining the accuracy of reservoir
rock evaluation. To decrease the uncertainties and evaluate the electro facies, a type of
artificial neural network (ANN) called SOM was utilized in this study. It is a model of
unsupervised learning. The SOM is followed as

Wv1 = Wv(s) + θ(u, v, s).a(s).[D(t)− Wv(s)] (1)

where s represents the current iteration, t represents the index of the target input data vector
in the input dataset, D(t) represents the vector of target input data, v represents the node
index in the map, Wv (s) represents the current weight vector of node v, u represents the
index on the map for best matching units (BMUs) (SOM node having the shortest aggregate
distance to one of the input vectors), θ(u, v, s) represents even though due to the distance
from BMU, commonly referred to as the neighborhood and α represents, based on iteration
development, the learning restriction.

To begin the training process, the weights in each node are assigned to a random value.
After the map has been initialized, the input data is sent to it. For each level of input data,
the BMU is determined, which is the node that most closely represents the input data. The
Euclidean distance represents the weight vectors of each node and the provided input
vector is calculated as follows:

Distance =
√

∑i=n
i=0 (Vi − Wi)

2 (2)

Here, V is the present input vector and W is the weight vector of the node. The BMU
is the node where such a distance evaluates to the smallest value. The following equation
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is used to change the weight vectors of the successful node such that they are closer to the
input vector:

Wt+1 = Wt + Lt (Vt − Wt) (3)

where ‘t’ is the current training pass (or time-step), ‘W’ is the weight vector, ‘V’ is the input
vector and ‘L’ is a variable called the learning rate:

0 < L < 1 (4)
The learning rate lowers over time (per training pass) and declines with the following

equation for every repetition of the training pass.

Lt = L0 exp
(
− t
λ

)
(5)

where L0 represents the initial learning rate before training, ‘t’ represents the current
training pass repetition, and ‘λ ‘ represents a time constant determined by the equation:

λ =
t

logσ0

(6)

where σ0 is the initial radius of the neighborhood of effect, as discussed below.
The node with the least Geometric difference between the input vector and all nodes

is picked, and its neighboring nodes within a specific radius are slightly altered to match
the input vector. The neighborhood radius is set to half of the map grid width at the start.
However, as time passes, the radius of the neighborhood reduces, and at the end of the
training, the radius is reduced to a single node. With training passes, the neighborhood
radius decreases as follows:

σ0 exp
(
− t
λ

)
(7)

where the radius of the neighborhood is denoted by ‘σ’.

Wt+1 = Wt + θtLt(Vt − Wt) (8)
Here, ‘θ’ is the impact of a node’s distance from the BMU on its weighting correction,

as calculated by the equation.

θt = exp

(
−dist2

2σ2
t

)
(9)

Here, ‘dist’ is the distance between the node and the BMU, as measured by Pythagoras’
theorem. σ(t) is the radius of the neighborhood function, which controls how far neighbor
nodes are checked. It becomes smaller and smaller over time.

The technique described above is carried out for the specified number of training
iterations. The weights of the input dataset are optimized at each iteration step until the
best and most reliable set of weights for the network is found. The above exercise is ended
to guarantee that a minimum error criterion is met. It is worth noting that geological
heterogeneities influenced the number of clusters; the more heterogeneous the geology,
the more clusters; hence, process levels use SOM weight planes and local geological
information at the same time. SOM can be used to analyze financial stability in addition to
facies evaluation for oil and gas exploration.

2.2.2. Clustering Procedure

Due to various factors that affect the logs, similar facies may have distinct log re-
sponses. Because statistical methods and processes are required, data are clustered with a
minimal distance and maximum homogeneity in the clustering procedure. It is self-evident
that different geological factors can be linked to a set of data known as logfacies, which
geologists can utilize for further interpretation. All log readings are treated as “observa-
tions” in this calculation, and the user logs are treated as “values of the observations.”
The lowest distances are joined together to form a pair in cluster analysis. Because the
number of logfacies is usually smaller than the number of readings, pairs of vectors are
linked to form a cluster (logfacies). To create higher rank kinds, lower-rank clusters are
joined together. This process is repeated until a single cluster (representing all of the data)
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is formed. There are several methods for connecting two clusters. To link the cluster
components in some of them, the least distance between them is used. Using IP software,
the clustering module was completed in two stages: To begin, the data (gamma-ray log,
porosity, and water saturation) are separated into easily understandable data clusters. The
number of clusters should be sufficient to cover all of the data ranges seen in the logs. For
most data sets, fifteen to twenty clusters appear to be an acceptable quantity. The second,
more labor-intensive phase is to organize these 15 to 20 clusters into a reasonable number of
geological facies. This could mean condensing the data into five or six groups. The K-mean
statistical technique is used in the first stage of “Facies Clustering” to cluster the data into
a known number of clusters. To make this work, an estimate of the mean value of each
cluster for each input log must be made first. The starting assumption can have an impact
on the findings; therefore, make sure the beginning values cover the entire range of the
logs. Each input data point is assigned to a cluster in K-mean clustering. The method tries
to reduce the sums of squares of the difference between the data point and the cluster mean
value inside each cluster. The method works by computing the sum of squares difference
between a data point and each cluster mean, then allocating the data point to the cluster
with the smallest difference. The new mean values in each cluster are determined when all
of the data points have been assigned to the clusters. The programs begin with reassigning
the data to the clusters using the updated mean values. This loop is repeated until the mean
values between loops do not change. Before starting, all input log data are adjusted so that
each input log has the same dynamic range. The mean and standard deviation of the log
are calculated, and the data are then normalized by subtracting the mean and dividing by
the standard deviation.

Stage-2 Cluster Consolidation

Cluster consolidation can be carried out entirely by hand, utilizing the cross plot
and log plot output to group data, or using a hierarchical cluster approach to group data.
Hierarchical clustering works by calculating the distances between all clusters and then
combining the two clusters that are the most closely related. After that, the new cluster
distance to all other clusters is recalculated, and the two closest clusters are combined once
more. This technique is repeated until only one cluster remains. A dendrogram can be
made from the results. The dendrogram depicts how and in what order the clusters were
fused. The merging sequence is shown by the numbers at the top of each branch. The
original K-mean clustering findings are presented at the bottom of the plot. There are five
main clustering strategies in IP software that determine how the clusters are combined.
The outcomes of the various strategies will be vastly different. The distance calculation is
updated differently in each of the five approaches after two clusters have been connected.
Assume that clusters “A” and “B” have recently been linked to from cluster “Z,” and that
we need to compute the distance between “Z” and another cluster, designated “C”, in the
diagram below.

The computations for the various techniques are as follows: (1) the minimum distance
between all clustered objects—the distance between Z and C is the shortest of the distances
(A to C and B to C). (2) Maximum distance between all clustered objects—the distance
between Z and C is the greatest of the distances (A to C and B to C). (3) Average distance
between merged clusters—the distance from Z to C is the average distance between all
objects in the cluster generated by merging clusters and C. (4) Average distance between all
objects in clusters—the distance between clusters Z and C is the average distance between
cluster Z and cluster C (Figure 3).

2.2.3. Non-Hierarchical or K-means Clustering Methods

In these methods, the required number of clusters is specified in advance, and the best
solution is selected. When working with big data sets, non-hierarchical cluster analysis is
frequently utilized since it allows individuals to shift from one cluster to another, which is
not possible with hierarchical cluster analysis [11,34,46]. The k-mean cluster analysis has
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two drawbacks: first, determining how many clusters are likely to exist is challenging, and
hence the analysis may need to be performed several times; second, it is very dependent
on the initial cluster selection. There are two stages to the clustering process. To begin,
the good log data are organized into manageable data clusters, with enough clusters to
cover all of the different data categories that can be found in the log data [18,46]. For most
data sets, 15 to 20 clusters are a good number. The second phase is grouping these 15 to
20 clusters into a manageable number of rock types and condensing the data into four to
five homogeneous groups.
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3. Results and Discussion
3.1. Self-Organizing Feature Map (SOFM) Approach for Lithofacies Identification

A self-organizing feature map (SOFM) was used to determine the accuracy of lithofa-
cies. The findings of the SOFM model reveal four distinct lithofacies: Gamma Ray (GR),
Neutron (NPHI), Sonic (DT4P), and Density (RHOB). The low and high scale represents
that the relevant color code facies type is shown as a horizontal distribution to determine
the lithological characteristics (Figures 4 and 5). Vertical distribution features to determine
the lithological characteristics of the interpreted well-3 are shown in Figure 6 and represent
the calibration phase, in which we can clearly identify the vertical facies variation. These
two figures cannot be combined because the (Figure 4) is the training phase, where is the
(Figure 5) indicates the calibration phase, in which we can easily identify the horizontally
facies variation. The found facies’ sedimentological elements vary little between reservoir
intervals. The remaining facies “2” and “3” show a silty clay component, whereas facies “1”
reveals pure sandstone. This approach also predicts the volume and hydrocarbon potential
fluctuation of lithofacies. Sandstone with a small proportion of clay has moderate and low
gas-bearing lithofacies, whereas sandstone with a small proportion of clay has moderate
and low lithofacies. Lithology interpretation has been optimized as a result of the constant
performance of the SOFM framework.

3.2. Cluster Analysis for Lithofacies Identification

The current study uses a cluster analysis technique to evaluate the efficacy of reservoir
rock typing (RRT) of the identified sand masses. Cluster analysis is a multivariate strategy
that seeks to divide a sample of subjects with a specific variable evaluated into a different
number of groups, with like subjects grouped. An electrofacies is a unique set of log
answers that characterizes the rock’s physical characteristics and fluids in the volume
under investigation by logging tools. The rock types reflect reservoir bodies with a distinct
relationship between effective porosity, deliverability, the potential for oil and gas storage,
and the quantity of specific water saturation. It gives a good idea of how much oil is in
the reservoir and how much is being recovered. The results of the cluster analysis show
that the current study looked at rock intervals classified into four log facies. Each facies
are described using the mean values of input log curves, and the “cluster means” findings
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for each well are shown in (Table 1). The results of the cluster assessment suggest that log
facies 1 and 2 in the Cretaceous reservoir are the most interesting zones for the research area.
Figure 7 shows the cluster analysis among the input data curves obtained using k-means
clustering for facies groups, as well as the reservoir rock type properties of these log facies
(Table 2).
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Table 2. The properties for groups of Facies.

S. No Rock Typing GR eff Perm Sw

Facies-01 Excellent-quality rock type Very low Good to excellent Good to excellent Very low
Facies-02 Good-quality rock type low Good Good low
Facies-03 Moderate-quality rock type Medium Fair to Good Fair to Good Medium
Facies-04 Poor-quality rock type High Low Low Very high

3.3. Hierarchical and Non-Hierarchical

After calculating the distance between objects in the dataset, connecting distance data
can be used to identify how objects in the dataset should be grouped into clusters. The
objects with the shortest distance between them were joined together to form new clusters.
These newly generated clusters link to one other and to add items to form larger clusters,
eventually linking all of the objects in the original dataset in a hierarchical tree. In general,
“minimum distance between all things in clusters” produces long, thin clusters, whereas
“maximum distance between all objects in clusters” produces larger spherical clusters. The
“minimize the within-cluster sum of squares distance” and “average distance between all
objects in clusters” are likely to produce clusters that are comparable to those created with
“average distance between all objects in clusters.” The clusters (electro-facies) were then
constructed based on the data cluster tree or dendrogram (Figure 7). A dendrogram is
a hierarchical tree with many U-shaped lines connecting things. The distance between
two objects being connected is represented by the height of each U. Two objects with the
shortest distance connect in the cluster tree to form a new, larger cluster. This sequence
would repeat itself until just one cluster remained. For the dataset from all available wells,
the procedure described above was used. As seen in Figure 8 of the dendrogram, the
default approach “minimize the within-cluster sum of squares distance” produces good
results for splitting the distinct log lithologies into different clusters. Stopping the grouping
at a specific cutoff level makes it simple to divide the clusters into a defined number of
groups. It is feasible to examine the groupings to determine whether adding another cluster
adds more information or merely adds noise at which level. This information can be found
in the “Cluster Randomness Plot.” The “Cluster Randomness Plot” that determines the
perceived randomness of the data for each cluster group is shown in (Figure 9). The greater
the score, the less random the clusters are, indicating that the data are more structured. The
average number of depth levels per cluster, for example, the average thickness of a cluster
layer, is used to determine unpredictability. This is carried out on the original log data. The
theoretical average thickness is then determined, assuming that the clusters are assigned at
each depth level at random. The ratio of the two is randomness. A value of 1 would be
completely random, whereas higher values would be less so.

average thickness = number of depth levels/number of cluster layers

random thickness = ∑
pi

(1 − pi)

where pi is the proportion of depth levels assigned to the ith cluster.
Randomness index = average thickness = random thickness. The plot is interpreted by

picking the number of least random clusters (highest peaks).
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4. Discussion

The Zamzama Gas field in Pakistan was investigated using unsupervised learning
and cluster analysis to categorize lithofacies and identify rock types. As both classifiers,
hierarchical and non-hierarchical and SOFM produced more trustworthy results in litho-
facies classification and rock type identification. These classifiers were able to accurately
predict shaly sandstone and precision sandstone. However, when compared to other facies,
the PR-area-under-curve score for shale was below average, indicating machine learning
misclassification in predicting one facies to other facies despite the usually good accuracy.
In comparison to the other facies, the existence of a mixture of shaly sand and sandstone
has similar rock physical properties. Sandstone and shaly sandstone can be accurately
categorized using the results of log-facies classification. On the other hand, shale distribu-
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tion has been inconsistent. Furthermore, despite differences in rock physical properties
between the different depths regions due to different rates of compaction and diagenetic
processes, the machine learning model was able to properly predict lithofacies and rock
type in both sections [27]. Due to the post-depositional processes that each formation
underwent, the sensitivity of such a result may vary at deeper intervals, but despite this,
the machine learning model has an overall high result and has effectively supported the
geological investigation in a much shorter period [29,32]. The main contributions of this
work were a simple approach for lithofacies classification and rock type identification in the
Zamzama Gas field in Pakistan using SOM and cluster analysis, as well as hierarchical and
non-hierarchical approaches, evaluation of each multiclass of unsupervised learning meth-
ods, high accuracy results despite some misclassification, log-facies classification analysis,
and rock physics analysis based on unsupervised learning [33,34]. Most importantly, this
study has demonstrated that the effectiveness of hierarchical and non-hierarchical SOFM
can be evaluated from both a machine learning and geological perspective [29,35,36].

5. Conclusions

We have systematized the fundamental background of the SOM in this work. The
U-matrix can also be used to view it, and BMUs can be seen directly. In addition, certain
new changes have been made, such as normalization to standardize the input data and
eliminating the scale value gap between curves. These contribute to a more accurate and
realistic outcome. We also offered certain mathematical calculations, such as SOM, to help
illustrate the process. Furthermore, attributes of the facies log are shown, such as the shape,
measurement, and depth values. The input of the clustering process is also detailed in
terms of SOM building. Based on log data, cluster analysis is a straightforward approach
for determining the rock type for a reservoir. As illustrated in the roundness figure, cluster
analysis of log data for wells that penetrated the reservoir were classified into four groups.
Based on the cluster analysis, four facies have been identified; the findings of each facies
are shown in (Table 1) and the behavior of each facies indicated in (Table 2). The results of
these facies are shown in (Table 1) and (Table 2). Gamma Ray (GR), Effective Porosity(eff),
Permeability (Perm) and Water Saturation (Sw) are used to generate these results. The
Facies-01 zone in the reservoir for the Zamzama gas field is the most productive in the
reservoir, as shown by plotting rock type in the continuous form in the well.
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