Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm
Abstract
:1. Introduction
2. Problem Formulation
2.1. Modeling of Li-Ion Batteries
2.2. Parameterization Problem of Li-Ion Batteries via Objectives and Constraints
3. SDA for Optimized Parameters Extraction of BESSs Based on Li-Ion Batteries
Correlation between the Algorithm Model and the Parameters Estimation of BESSs Research
4. Simulation Results
4.1. Simulation Results of Li-Ion Battery Cell
4.2. Simulation Results of ARTEMIS Driving Cycle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | SDA (2019) | GBA (2020) | JFA (2021) | TSA (2021) | HBA (2020) | FBIA (2020) |
---|---|---|---|---|---|---|
Ro | 1.1710 × 10−3 | 2.2340 × 10−3 | 8.9200 × 10−4 | 1.0000 × 10−5 | 2.3420 × 10−3 | 7.1900 × 10−4 |
w0 | 3.3232 | 1.2739 | 3.7625 | 1.0000 | 3.6565 | 2.6351 |
w1 | 6.2810 × 10−2 | −4.3769 × 10−1 | −7.1382 × 10−1 | 1.7613 × 10−1 | −1.2956 × 10−1 | −3.8412 × 10−1 |
w2 | −2.0443 | 1.0494 | −4.8144 | −8.2037 | −1.4711 × 101 | 1.0308 |
w3 | −8.8259 × 10−1 | 1.6589 × 10−2 | −7.2151 × 10−1 | −6.9302 × 10−1 | −2.2919 × 10−1 | 9.0911 × 10−2 |
w4 | −2.6769 | −1.0309 | −6.6625 | −2.6719 | −2.4416 × 101 | 1.3168 × 10−1 |
w5 | 1.7661 | 3.2928 | 2.4461 | 2.8413 | 1.6965 | 3.6720 × 10−1 |
w6 | −5.0608 × 10−1 | −2.6934 × 10−1 | −2.1049 × 101 | 5.7460 × 10−2 | −2.0319 × 101 | −3.3207 × 10−1 |
w7 | 2.7984 × 10−1 | 3.8607 | 4.9809 × 10−1 | −5.9607 × 10−1 | −1.4680 × 10−2 | 7.6205 × 10−1 |
w8 | 6.9816 × 10−1 | −7.2076 × 10−1 | −2.1844 × 101 | −2.5581 × 101 | −5.8492 × 101 | 3.3634 × 10−1 |
w9 | −1.5002 | −4.9791 × 10−1 | −1.3831 | 1.8460 × 10−1 | −1.0924 | 3.5907 × 10−1 |
w10 | −2.3231 | −1.8237 | −9.6681 × 101 | −4.4144 × 101 | −9.9364 × 101 | −3.2747 × 10−1 |
w11 | −3.6752 × 10−1 | −3.0521 | −2.8416 × 10−1 | 5.5591 × 10−1 | −1.6626 × 10−1 | 3.5590 × 10−1 |
w12 | −4.9946 | −8.0712 × 10−1 | −4.0284 × 101 | −1.0000 × 102 | −9.9849 × 101 | −1.0838 × 101 |
Qb | 1.4796 × 105 | 1.4795 × 105 | 1.4797 × 105 | 1.4797 × 105 | 1.4798 × 105 | 1.4788 × 105 |
R1 | 6.1000 × 10−4 | 5.2900 × 10−6 | 1.0680 × 10−3 | 2.4320 × 10−3 | 8.4300 × 10−5 | 1.7050 × 10−3 |
C1 | 5.3538 × 10−2 | 1.5400 × 10−4 | 2.8489 × 10−2 | 1.0000 × 10−6 | 8.6245 × 10−2 | 5.9723 × 10−2 |
R2 | 6.8300 × 10−4 | 2.5800 × 10−4 | 5.1200 × 10−4 | 1.0000 × 10−6 | 3.3800 × 10−6 | 1.6900 × 10−4 |
C2 | 8.3440 × 10−2 | 1.1000 × 10−5 | 9.8036 × 10−2 | 1.0000 × 10−6 | 8.4449 × 10−2 | 5.9705 × 10−2 |
Parameters | SDA (2019) | GBA (2020) | JFA (2021) | TSA (2021) | HBA (2020) | FBIA (2020) |
---|---|---|---|---|---|---|
Ro | 1.2717 × 10−3 | 1.2763 × 10−3 | 1.3120 × 10−3 | 4.1463 × 10−3 | 4.1830 × 10−3 | 1.7155 × 10−3 |
w0 | 3.6865 | 3.3523 | 3.6138 | 3.6542 | 3.6217 | 2.9002 |
w1 | 3.3033 × 10−1 | −5.8950 × 10−1 | 1.0085 × 10−1 | 1.4872 × 10−2 | 3.2969 × 10−2 | −3.2351 × 10−2 |
w2 | −4.6108 | −8.6475 × 10−1 | −1.2181 × 101 | −8.4554 × 101 | −7.7520 × 101 | −2.3522 |
w3 | −3.4842 × 10−1 | −7.4126 × 10−1 | −9.9131 × 101 | −9.3177 × 101 | −1.0000 × 102 | −2.3466 × 10−1 |
w4 | −9.0153 | −5.7937 × 10−1 | −3.5919 × 101 | −2.5526 × 101 | −9.7163 × 101 | 7.7965 × 10−1 |
w5 | 3.0028 × 10−1 | 1.1688 | 1.8504 × 10−1 | 2.0108 × 10−1 | 2.1510 × 10−1 | −2.4032 × 10−1 |
w6 | −8.6588 | −1.1185 | −4.1395 × 101 | −9.0805 × 101 | −6.4522 × 101 | −7.8605 × 10−2 |
w7 | −2.1076 × 10−1 | 2.7213 × 10−1 | 1.9384 | 2.4972 | 1.2914 × 101 | 1.5704 |
w8 | −8.2188 | 1.1372 | −6.6996 × 101 | −4.2175 × 101 | −9.9924 × 101 | 3.9334 × 10−1 |
w9 | −1.2480 × 10−1 | −1.6802 × 10−1 | 2.8872 × 10−1 | 3.1630 × 10−1 | 3.2177 × 10−1 | −4.9499 × 10−1 |
w10 | −2.2433 | −1.9211 | −1.7442 × 101 | −2.7393 × 101 | −2.0928 × 101 | 4.6201 × 10−1 |
w11 | 3.9310 × 10−2 | 3.1791 × 10−1 | −2.4682 × 10−1 | −2.0414 × 10−1 | −3.2501 × 10−1 | 1.3581 × 10−1 |
w12 | −3.4717 | −7.4593 | −5.1422 × 101 | −2.3842 × 101 | −5.5243 × 101 | 5.8510 × 10−1 |
Qb | 1.4400 × 105 | 1.4400 × 105 | 1.4400 × 105 | 1.4400 × 105 | 1.4400 × 105 | 1.4399 × 105 |
R1 | 1.8011 × 10−3 | 2.2901 × 10−3 | 1.1348 × 10−3 | 1.0000 × 10−6 | 1.0000 × 10−6 | 5.2647 × 10−4 |
C1 | 6.5384 × 10−2 | 8.0927 × 10−2 | 2.4314 × 10−2 | 1.0000 × 10−1 | 1.0000 × 10−6 | 2.0985 × 10−2 |
R2 | 1.1066 × 10−3 | 6.0190 × 10−4 | 1.7219 × 10−3 | 1.0000 × 10−6 | 2.1714 × 10−6 | 1.8440 × 10−3 |
C2 | 5.3797 × 10−2 | 3.2747 × 10−2 | 4.1429 × 10−2 | 9.1655 × 10−2 | 1.0000 × 10−1 | 2.4333 × 10−2 |
References
- Liddle, B.; Sadorsky, P. How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions? Appl. Energy 2017, 197, 212–221. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Kim, S.; Kim, K.; Kim, S.; Choi, J. Il Parameter identification and identifiability analysis of lithium-ion batteries. Energy Sci. Eng. 2022, 10, 488–506. [Google Scholar] [CrossRef]
- Hasib, S.A.; Islam, S.; Chakrabortty, R.K.; Ryan, M.J.; Saha, D.K.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F.; Islam, M.R.; et al. A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management. IEEE Access 2021, 9, 86166–86193. [Google Scholar] [CrossRef]
- Barzkar, A.; Hosseini, S.M.H. A novel peak load shaving algorithm via real-time battery scheduling for residential distributed energy storage systems. Int. J. Energy Res. 2018, 42, 2400–2416. [Google Scholar] [CrossRef]
- El-Ela, A.A.A.; El-Seheimy, R.A.; Shaheen, A.M.; Wahbi, W.A.; Mouwafi, M.T. PV and battery energy storage integration in distribution networks using equilibrium algorithm. J. Energy Storage 2021, 42, 103041. [Google Scholar] [CrossRef]
- Benlahbib, B.; Bouarroudj, N.; Mekhilef, S.; Abdeldjalil, D.; Abdelkrim, T.; Bouchafaa, F.; lakhdari, A. Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid. Int. J. Hydrogen Energy 2020, 45, 29110–29122. [Google Scholar] [CrossRef]
- Chun, H.; Kim, M.; Kim, J.; Kim, K.; Yu, J.; Kim, T.; Han, S. Adaptive Exploration Harmony Search for Effective Parameter Estimation in an Electrochemical Lithium-Ion Battery Model. IEEE Access 2019, 7, 131501–131511. [Google Scholar] [CrossRef]
- Song, Z.; Wang, H.; Hou, J.; Hofmann, H.F.; Sun, J. Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection. IEEE Trans. Power Electron. 2019, 35, 4439–4447. [Google Scholar] [CrossRef]
- Cao, W.; Wang, S.; Fernandez, C.; Zou, C.; Yu, C.; Li, X. A novel adaptive state of charge estimation method of full life cycling lithium-ion batteries based on the multiple parameter optimization. Energy Sci. Eng. 2019, 7, 1544–1556. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y.; Li, N.; Lu, S.; Zhang, S.; Feng, Z.; Wang, J. A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium-ion batteries. Energy Sci. Eng. 2019, 7, 2797–2813. [Google Scholar] [CrossRef]
- Luo, Y.; Qi, P.; Kan, Y.; Huang, J.; Huang, H.; Luo, J.; Wang, J.; Wei, Y.; Xiao, R.; Zhao, S. State of charge estimation method based on the extended Kalman filter algorithm with consideration of time-varying battery parameters. Int. J. Energy Res. 2020, 44, 10538–10550. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Hamida, M.A.; El-Sehiemy, R.A.; Elattar, E.E. Optimal parameter identification of linear and non-linear models for Li-Ion Battery Cells. Energy Rep. 2021, 7, 7170–7185. [Google Scholar] [CrossRef]
- Deng, Q.; Lin, B. Automated machine learning structure-composition-property relationships of perovskite materials for energy conversion and storage. Energy Mater. 2021, 1, 100006. [Google Scholar] [CrossRef]
- de Fatima Brondani, M.; Sausen, A.T.Z.R.; Sausen, P.S.; Binelo, M.O. Parameter estimation of lithium ion polymer battery mathematical model using genetic algorithm. Comput. Appl. Math. 2017, 37, 296–313. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; Hamida, M.; Mesbahi, T. Parameter identification and state-of-charge estimation for lithium-polymer battery cells using enhanced sunflower optimization algorithm. Int. J. Hydrogen Energy 2020, 45, 8833–8842. [Google Scholar] [CrossRef]
- Wei, Z.; Dong, G.; Zhang, X.; Pou, J.; Quan, Z.; He, H. Noise-Immune Model Identification and State-of-Charge Estimation for Lithium-Ion Battery Using Bilinear Parameterization. IEEE Trans. Ind. Electron. 2020, 68, 312–323. [Google Scholar] [CrossRef]
- Shi, H.; Wang, S.; Fernandez, C.; Yu, C.; Fan, Y.; Cao, W. Improved splice-electrochemical circuit polarization modeling and optimized dynamic functional multi-innovation least square parameter identification for lithium-ion batteries. Int. J. Energy Res. 2021, 45, 15323–15337. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Bodenes, L.; Naturel, R.; Martinez, H.; Dedryvère, R.; Menetrier, M.; Croguennec, L.; Pérès, J.-P.; Tessier, C.; Fischer, F. Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms. J. Power Sour. 2013, 236, 265–275. [Google Scholar] [CrossRef]
- Nadeem, A. Performance evaluation of online open-circuit voltage estimation method for photovoltaic system. SN Appl. Sci. 2020, 2, 2031. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Qi, F.; Guo, Z.; Li, M. Comparative Study of the Influence of Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries. IEEE Access 2020, 8, 17535–17547. [Google Scholar] [CrossRef]
- Sun, F.; Xiong, R.; He, H. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 2016, 162, 1399–1409. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, H.; Feng, F.; Liu, B. An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management. Appl. Energy 2019, 257, 114019. [Google Scholar] [CrossRef]
- Safwat, I.M.; Li, W.; Wu, X. A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation. Energies 2017, 10, 1751. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ouyang, Q.; Xu, C.; Su, H. Neural Network-Based State of Charge Observer Design for Lithium-Ion Batteries. IEEE Trans. Control Syst. Technol. 2017, 26, 313–320. [Google Scholar] [CrossRef]
- Tong, S.; Lacap, J.H.; Park, J.W. Battery state of charge estimation using a load-classifying neural network. J. Energy Storage 2016, 7, 236–243. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhang, L.; Liu, P.; Zhang, Z. A Novel Consistency Evaluation Method for Series-Connected Battery Systems Based on Real-World Operation Data. IEEE Trans. Transp. Electrif. 2020, 7, 437–451. [Google Scholar] [CrossRef]
- She, C.; Wang, Z.; Sun, F.; Liu, P.; Zhang, L. Battery Aging Assessment for Real-World Electric Buses Based on Incremental Capacity Analysis and Radial Basis Function Neural Network. IEEE Trans. Ind. Inform. 2019, 16, 3345–3354. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Ruan, J.; Ma, C.; Song, Z.; Dorrell, D.G.; Pecht, M.G. Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications. Renew. Sustain. Energy Rev. 2020, 139, 110581. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global Optimization. IEEE Access 2019, 7, 73182–73206. [Google Scholar] [CrossRef]
- Al-Shamma’A, A.A.; Ali, F.A.A.; Alhoshan, M.S.; Alturki, F.A.; Farh, H.M.H.; Alam, J.; AlSharabi, K. Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply–Demand-Based Optimization Algorithm. Processes 2021, 9, 1416. [Google Scholar] [CrossRef]
- Alturki, F.; Al-Shamma’A, A.A.; Farh, H.M.H.; Alsharabi, K. Optimal sizing of autonomous hybrid energy system using supply-demand-based optimization algorithm. Int. J. Energy Res. 2020, 45, 605–625. [Google Scholar] [CrossRef]
- Ginidi, A.R.; Shaheen, A.M.; El-Sehiemy, R.A.; Elattar, E. Supply demand optimization algorithm for parameter extraction of various solar cell models. Energy Rep. 2021, 7, 5772–5794. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Kamel, S.; Hassan, M.H.; Elsayed, S.K.; Nasrat, L. Developed algorithm based on supply-demand-based optimizer for parameters estimation of induction motor. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Valparaíso, Chile, 22–26 March 2021. [Google Scholar]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent Methodology-Based Gradient-Based Optimizer for Economic Load Dispatch Problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Xie, L.; Han, T.; Zhou, H.; Zhang, Z.-R.; Han, B.; Tang, A. Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef]
- Chou, J.-S.; Truong, D.-N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2020, 389, 125535. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Chou, J.-S.; Nguyen, N.-M. FBI inspired meta-optimization. Appl. Soft Comput. 2020, 93, 106339. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; Abdullah, M.S.; Ginidi, A.; Sherif, S.M. Ghoneim A Forensic-Based Investigation Algorithm for Parameter Extraction of Solar Cell models. IEEE Access 2020, 9, 1–20. [Google Scholar] [CrossRef]
- Claude, F.; Becherif, M.; Ramadan, H.S. Experimental validation for Li-ion battery modeling using Extended Kalman Filters. Int. J. Hydrogen Energy 2017, 42, 25509–25517. [Google Scholar] [CrossRef]
- Lai, X.; Gao, W.; Zheng, Y.; Ouyang, M.; Li, J.; Han, X.; Zhou, L. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim. Acta 2018, 295, 1057–1066. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Baronti, F.; Chow, M.Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells. IEEE Trans. Ind. Electron. 2013, 61, 2053–2061. [Google Scholar] [CrossRef]
- Affanni, A.; Bellini, A.; Franceschini, G.; Guglielmi, P.; Tassoni, C. Battery choice and management for new-generation electric vehicles. IEEE Trans. Ind. Electron. 2005, 52, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.L.; Gonzalez, R.; Gimenez, A.; Lopez, J. Energy management strategy for plug-in hybrid electric vehicles. A comparative study. Appl. Energy 2013, 113, 816–824. [Google Scholar] [CrossRef]
- Abdul-hamied, D.T.; Shaheen, A.M.; Salem, W.A.; Gabr, W.I.; El-sehiemy, R.A. Equilibrium optimizer based multi dimensions operation of hybrid AC/DC grids. Alexandria Eng. J. 2020, 59, 4787–4803. [Google Scholar] [CrossRef]
Parameter | Lower Bound | Upper Bound |
---|---|---|
Ro (Ω) | 0.010 | 0.010 |
R1 (Ω) | 0.000 | 1.300 |
C1 (mF) | 0.000 | 0.105 |
R2 (Ω) | 0.000 | 1.300 |
C2 (mF) | 0.000 | 0.105 |
Qb (A.s) | 13,000.0 | 170,000.0 |
−100.00 | 100.00 |
Items | SDA (2019) | GBA (2020) | JFA (2021) | TSA (2021) | HBA (2020) | FBIA (2020) |
---|---|---|---|---|---|---|
RMSE | 8.0200 × 10−3 | 8.1930 × 10−3 | 9.1640 × 10−3 | 8.2240 × 10−3 | 9.2670 × 10−3 | 9.2160 × 10−3 |
RMSE % Improvement | - | 2.157 | 14.264 | 2.5436 | 15.5486 | 14.9127 |
Items | SDA (2019) | GBA (2020) | JFA (2021) | TSA (2021) | HBA (2020) | FBIA (2020) |
---|---|---|---|---|---|---|
RMSE | 4.4116 × 10−3 | 4.4485 × 10−3 | 4.4818 × 10−3 | 4.4877 × 10−3 | 4.6836 × 10−3 | 5.0492 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sehiemy, R.; Hamida, M.A.; Elattar, E.; Shaheen, A.; Ginidi, A. Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm. Energies 2022, 15, 4556. https://doi.org/10.3390/en15134556
El-Sehiemy R, Hamida MA, Elattar E, Shaheen A, Ginidi A. Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm. Energies. 2022; 15(13):4556. https://doi.org/10.3390/en15134556
Chicago/Turabian StyleEl-Sehiemy, Ragab, Mohamed A. Hamida, Ehab Elattar, Abdullah Shaheen, and Ahmed Ginidi. 2022. "Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm" Energies 15, no. 13: 4556. https://doi.org/10.3390/en15134556
APA StyleEl-Sehiemy, R., Hamida, M. A., Elattar, E., Shaheen, A., & Ginidi, A. (2022). Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm. Energies, 15(13), 4556. https://doi.org/10.3390/en15134556