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Abstract: The quality of the electrical energy distribution service has a significant impact on consumer
satisfaction and the guarantee of the right of concession for the distribution companies. For the
utility that is the object of the case study, the main continuity of service indicators was at levels below
the regulatory limits. Still, due to budget constraints, the forecast of the benefit that improvement
or expansion projects bring to continuity indicators must be assertive for a proper direction of
investments and decision making. In this work, a methodology for evaluating projects to improve
the quality of service was proposed, with the realization of the estimated benefit associated with
the reduction in continuity indicators (DEC and FEC), using concepts of artificial neural networks
and evolutionary algorithms. The results were obtained from a three-year history of execution of the
utility’s projects. Based on the correlation analysis, a variable selection procedure was developed,
where the historical values of interruptions by cause were considered as input, and the results of the
continuity indicators associated with the types of projects studied form the outputs of the model.
The model was developed using an artificial neural network of the multilayer perceptron type. The
results obtained by simulating the new methodology presented absolute relative errors 100 times
smaller for estimating the benefits of the projects compared to the current method used by the electric
power distributor.

Keywords: quality of service; continuity indicators; artificial neural networks; genetic algorithms;
investment projects; benefit of the projects

1. Introduction

In 2019, according to data from the PNAD (National Household Sample Survey),
access to electric power in Brazilian households had reached nearly universal coverage,
with 99.8% of households having this service [1]. Due to the growing need for electricity
and the greater demand from consumers and regulatory agencies, it is of fundamental
importance that an electric power distributor delivers a quality service, paying attention to
the safety of its employees, continuity, and efficiency of the service.

Among the various issues monitored by regulators, the quality of service indicators
plays a significant role in monitoring the performance of the power distribution concession,
ensuring continuous and reliable delivery. The quality of the services provided comprises
the evaluation of interruptions in the electricity supply and planning of adequate future
investments to guarantee compliance with the limits established by the regulator.

For this purpose, we can highlight the collective continuity indicators DEC (equivalent
duration of interruption per consumption unit) and FEC (equivalent frequency of inter-
ruption per consumption unit) and the individual continuity indicators DIC (individual
interruption duration per consumption unit or connection point), FIC (frequency of individ-
ual interruption per consumption unit or connection point), DMIC (maximum continuous
interruption duration per consumption unit or connection point) and DICRI (duration
of individual interruption occurred on a critical day per consumption unit or connection
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point) all defined in Module 8 of PRODIST (Procedures for Distribution of Electric Energy
of the National Electric System) [2].

To ensure compliance with the various quality indicators of service, the distributor
continually invests in technologies to optimize the network’s performance, making con-
tinuity more efficient. Indicators such as DEC and FEC receive greater emphasis in the
monitoring and analysis of the distributor. Therefore, it is essential to understand the
causes of interruption for better effectiveness in targeting actions to prevent faults [3].

In the planning of distribution network projects, part of the investment budget is
allocated to actions for dealing with outages in the network, which has a positive impact on
the results of continuity indicators [4]. From the point of view of the quality of electricity
supply in Brazil, continuity indicators improved significantly from 2021 to 2020, with the
duration of interruptions reduced by about 38% and the frequency by 46% in this period [5].

Therefore, a subject that is often evaluated and discussed by energy distributors is the
estimated reduction in the quality of service indicators, i.e., what is the expected reduction
in DEC and FEC that a particular project will provide. The way this benefit is estimated
presents several opportunities for improvement, such as creating a methodology that
considers the analysis of variables related to the performance of the project in the results of
the indicators [6].

For the planning of benefits in service quality, it is necessary to perform a preliminary
analysis after the completion of the project to estimate the benefit associated with that
specific intervention. With this, it is possible to predict the performance of future projects
with greater assertiveness, ensuring more concise decision-making by those responsible for
managing the investments and indicators.

Ferreira et al. [7] developed a methodology for analyzing the impacts of investments
in maintenance in the electric power distribution network on the continuity indicators
(DEC, FEC, and Compensations) based on machine learning and regression with panel data
models for the energy distributor Light, located in Rio de Janeiro. This work was divided
into two parts; in the first step, the technical characteristics of the electrical networks were
used to group the lines by similarity using the k-means clustering algorithm. In the second
step, based on the previously defined groupings, a panel data regression of the network
maintenance actions was performed using the fixed effect model. The results achieved
proved to be effective because of the low estimation errors of the DEC, FEC, and financial
compensation indexes.

Therefore, this work aims to develop a methodology for evaluating projects to improve
the quality of service. For this purpose, techniques of Artificial Neural Networks and
Evolutionary Algorithms were applied to assist in evaluating projects that best contribute
to reducing the indicators of quality of service, meeting the limits set by the regulatory
agency, and ensuring consumers a supply of electricity with higher quality. Simulation
results will be presented using databases of a Brazilian energy distribution utility.

Among the main contributions of this work, the following can be highlighted:

(a) Facing a scenario of the regulation of service quality indicators and budget restrictions,
this work aims to improve the forecast of gain that investment projects will bring to
continuity indicators.

(b) It is proposed to identify variables that best contribute to the models that will assist
the decision making of more assertive investment projects that best contribute to the
indicators of quality of service, meeting the limits set by the regulatory agency, and
ensuring consumers a supply of electricity with higher quality, i.e., less time and
frequency of interruptions.

2. Related Works

Louback [8] presented the development of a methodology for estimating power con-
tinuity indicators using artificial neural networks (ANN). He used actual data from the
distributor EDP Espírito Santo to evaluate a specific electric set’s daily DEC and FEC
indicators. The author used the database of interruptions of the distributor for the period
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from 1 January 2010 to 31 December 2017, and to improve the performance of the ANN,
the data were treated concerning their outliers, normalized, interpolated, and MODWT
(maximal overlap discrete wavelet transform) was applied. Besides this, the analysis was
segmented for each day of the week, and with this, the author estimated future DEC and
FEC values for the set studied through a time series forecast. No other input variable was
considered, and the impact that structuring projects cause on the estimation of the indica-
tors was not analyzed. The author concludes that the development of the models presented
very significant results in predicting DEC and FEC. The total accumulated errors in the
prediction of the DEC indicator at the end of January and February 2016 were 1.71% and
0.87%, respectively. In FEC forecasting, the total accumulated errors at the end of January
and February 2016 were 7.45 and 10.96%, respectively. The author also highlighted that to
obtain these results, the treatment of outliers, signal oscillation with the application of the
square root, the decomposition of the signal into subseries with the Wavelet transform, and
the normalization of the data were necessary for the ANN’s learning.

Magalhães [6] proposed the development of predictive models for DEC and FEC, using
multiple linear regression techniques and ANNs to serve as subsidies to the distributor for
decision making. For the study, the author used data from a set of consumers of an energy
utility in the Northeast region. With the history of failures occurring in the feeders that
supply this set of consumers, the causes and frequency of interruption in the supply of
electricity were analyzed, and how much these data contribute to the increase in the DEC
and FEC values. The models for predicting the indicators have the quantity and duration
of interruptions for each interruption caused. The outputs were the predicted DEC and
FEC values obtained from a feedforward ANN with three layers. By applying the models
developed, the author evaluated the influence of specific causes on the DEC and FEC, but
without predicting the indicators considering the impact of investment projects carried
out in the circuits of the set under study. The models brought a very significant result for
predicting DEC and FEC. The results presented consistency because having the inherent
characteristics of the distribution system analyzed, the models can reliably predict the
indicators. The author concludes that the models that best represented the characteristics
of DEC and FEC indicators were those developed by ANN techniques.

Junior [3] used a multiple linear regression analysis framework (MRLA) and developed
two empirical MISO (multiple input, single output) models, one to estimate the DEC and
another to evaluate the FEC. For the application of the MRLA framework, the data were
organized into 180 samples/measurements corresponding to the eight feeders of an electric
set of consumers selected for the study of a distributor, considering the 24 occurrences
relative to the months elapsed in the period from 2013 to 2014. Each sample/measurement
has 57 inputs related to the causes of interruption and one output corresponding to DEC
or FEC.

DIAS [9] presented a methodology to quantify engineering actions’ impact on continu-
ity indicators. In this work, the author analyzed the influence that certain types of projects
exert on each block of the circuit. From the values realized in DEC and FEC for the region,
reduction percentages that each action will represent in each block are considered, and the
expected benefit of the project is estimated. This methodology considers that the gains for
the continuity indicators will have the same reduction percentage according to each type of
engineering action (project).

With the accomplishment of the state of the art study, it was verified that there was
only a limited amount of research work that had analyzed the influence of the structuring
of investment projects in the prediction of the indicators and the segregation of the portion
that each project contributed to the composition of the indicators, and how much future
projects can contribute for the reduction of the continuity indicators of the electric power
distribution service. Ferreira et al. [7], together with the distributor Light, developed a
research and development project on the theme and evaluated the influence of maintenance
actions on continuity indicators.
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Ferreira et al. [7] elaborated a methodology for analyzing the impacts of investments
in maintenance in the distribution network on the continuity indicators (DEC, FEC, and
Compensations) based on machine learning and regression with panel data models for the
energy distributor Light, located in Rio de Janeiro. The work was divided into two parts; in
the first stage, the technical characteristics of the electrical networks were used to group
the lines by similarity using the k-means clustering algorithm. In the second stage, based
on the previously defined groupings, a regression was performed with panel data of the
network maintenance actions using the fixed effect model. The algorithm developed used
multivariate regression for each group in the first stage, using panel data (observations
over time). The databases used to build the regression were made available by the analyzed
distributor and contemplated the three-year horizon from 2016 to 2018. The databases
under study were: Database of inspections and pruning; Database of protection and
network sectioning; Database of capacity increase; Actions aimed at network robustness;
and the List of structuring projects.

According to the state of the art, the importance of research on the optimization of
benefits that investment projects bring to the electric power distribution system was verified
because it directs the investments more assertively, helping in the decision-making process.

3. Materials and Methods

In this section, the main definitions relating to the power quality theme will be pre-
sented, the explanation of the variables contained in the database used, and the pro-
posed methodology for evaluating projects aimed at quality of service using artificial
intelligence techniques.

3.1. Quality Indicators of the Electric Power Distribution Service

The continuity indicators of sets of consumer units group the results for a certain region
of the electric power distribution concession, or for the entire concession, and represent the
average duration and frequency of interruptions perceived by the consumers [10,11]. The
main indicators are DEC and FEC:

• DEC: equivalent interruption duration per consumer unit, expressed in hours and
hundredths of an hour.

DEC =
ΣCc

i=1DIC(i)
Cc

• FEC: equivalent frequency of interruption per consumer unit, expressed in the number
of interruptions and hundredths of the number of interruptions.

FEC =
ΣCc

i=1FIC(i)
Cc

where:
i = index of consumer units served;
Cc = total number of consumer units billed of the set in the period of verification;
DIC(i) = duration of Individual Interruption per consumption unit;
FIC(i) = frequency of Individual Interruption per consumption unit;

3.2. Budget Planning

Module 2 of PRODIST establishes the guidelines and steps for planning the expansion
of the distribution system. The electric power distribution system is evaluated annually, ac-
cording to the technical criteria established by the regulator, and then projects are proposed
to solve the problems identified. Many project alternatives have been studied, but due to
budget restrictions and technical execution capacity, a methodology is required to evaluate
and choose the best project alternatives that generate the best benefits to the system [12].
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Regarding the projects aimed at improving the quality of service, the choice of the best
alternatives is made by evaluating the benefits estimated to contribute to the reduction of
the collective continuity indicators [13,14].

In this context, we present below the main databases and proposed methodology for
estimating the DEC and FEC reduction of the structuring project alternatives and the use of
ANN and Evolutionary Algorithm techniques to calculate the expected benefit.

3.3. Database Construction

The energy distributor understudy has a large amount of data collected in the field,
interruption records, or registry. All this information is recorded in the area and available
in the distributor’s systems. The base of interruption records contains the data used to
calculate the quality of service indicators and electric planning analyses.

In general, the calculation of the benefit in DEC and FEC is done by applying a
reduction percentage (multiplicative factor) to the total values of the indicators in the
region covered by the project according to the type of project, without considering the
causes of the interruptions. The first investigation was to analyze the capacity of benefits
associated with the projects on interruptions according to the causes of the outages [15].

The list of recorded causes, according to the distribution company understudy, is
presented in Table 1. For example, a reconductoring project can considerably reduce
occurrences related to a tree in the network and broken cable but not be effective in
occurrences such as equipment failure.

Table 1. Causes of Interruptions.

Causes of Interruptions

Tree in the network

Broken or deteriorated cable

Connection defect

Insulator defect

Programmed distribution

Equipment failure (line/network)

Natural phenomena

Ignored

Others

Broken/damaged poles

Third parties

Unscheduled transmission

Transmission scheduled

Consuming unit

3.4. Structure of the Proposed Methodology

Knowing the problem of planning the benefits of service quality and knowing the
databases available for study, the choice of variables and structuring of the proposed
methodology that uses artificial neural networks and evolutionary algorithms to predict
such benefits began. The proposal presented in this paper follows a structure according to
Figure 1.
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Figure 1. Proposed methodology for evaluating the quality of service projects.

The proposed methodology was divided into three stages. This separation was done
to present all the steps developed and the results obtained in each phase of the work. The
flow chart of the proposed methodology is presented in Figure 1.

Stage 1 concerns the calculation of the benefit in DEC and FEC realized in the projects.
With the base of realized interruptions, the base with the relation of studies of alternatives
and interrupting elements, and the base of executed projects, the real gain of the projects in
DEC and FEC was determined according to the causes of interruptions.
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In Stage 2, an ANN model was evaluated to estimate the benefits associated with
the projects according to the causes of interruptions [16]. The data referring only to the
reconductoring projects were analyzed, and due to the small number of projects of this
type (6 projects), 1000 random scenarios of multiplicative factors per cause were generated
and multiplied by the interruption values of the regions associated with the reconductoring
projects understudy to diversify the training base of the ANN model.

Step 3 presents the method for minimizing the error between the realized and esti-
mated values to close the loop and presents the final results of the estimated DEC and FEC
values and the multiplicative factors used in new project proposals to obtain the estimated
values, as shown in Figure 1. Evolutionary algorithm techniques were used due to the
complexity and non-linearity of the problem.

3.5. Project Benefits Realized

Usually, the distributor does not monitor what the benefit is for the indicators of
quality of service delivered after the completion of the project. Therefore, the first analysis
made with the available bases was a survey to determine the actual benefit delivered by
the projects carried out in recent years. For this, two other bases were used to help this
calculation: the electric planning base, with information about the coverage region of the
proposed projects according to the 2018 electric planning; and the base with information
about the execution and conclusion of the proposed projects for the year 2019 (execution
year of the proposed projects in 2018).

Aiming to reduce the uncertainty of the bases and variations in circuit and consumer
scenarios over time, it was used throughout the study and the proposed methodology the
base of 12 months before the entry of the projects to evaluate the estimated values, since
the original base of earnings estimation, from 2017, used in the initial project planning may
not reflect the most current scenario of the region of operation of the evaluated projects.

3.6. Application of Artificial Neural Networks

The variables used were the realized DEC and FEC values by causes of interruptions
for the 12 months before the entry of the project under study, reconductoring. The inputs
were evaluated, and which causes of interruptions are relevant for determining the DEC
and FEC outputs. The algorithm for benefit prediction was developed through artificial
neural networks, where the choice of parameters was based on the reference [17].

The artificial neural network topology used was multilayer perceptron (MLP), with
the following configurations:

• Neural network training with Levenberg–Marquardt;
• Overfitting detector;
• Number of hidden layers: 2;
• Number of neurons in the first hidden layer: 10;
• Number of neurons in the second hidden layer: 5;
• Maximum number of epochs: 1000;
• Target training error: 10−6;
• Learning rate: 0.01;
• Output normalization factor: 1000;
• Activation Function: Logsig.

Starting from the model for calculating benefits in the continuity indicators used by
the distributor, in which multiplicative factors are associated with the realized DEC and
FEC, 1000 scenarios were created for each project. As illustrated in Figure 1, in Stage 2,
14 multiplicative factors were defined, each associated with an interruption cause, for the
same type of project, reconductoring. The number of scenarios was chosen to represent sev-
eral DEC and FEC multiplication factors possibilities. The model has 14 inputs, according
to the causes, and DEC and FEC as outputs in which the values already include the con-
tribution portions of each cause. With the base composed of 1000 scenarios, 700 scenarios
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were randomly reserved for model creation and training, while the remaining 300 scenarios
were reserved for validation.

3.7. Application of Evolutionary Algorithms

After building the model to estimate the benefits, an optimization technique based
on evolutionary algorithms was applied to minimize the mean square error between the
realized and estimated benefits in the output of the ANN, as illustrated in Figure 1—Stage 3.
The evolutionary algorithm was used to obtain optimal estimated values for DEC, FEC,
and multiplicative factors to be used in the new planning of reconductoring projects.

Each chromosome of the algorithm is formed by a vector with 14 elements, represent-
ing the different multiplicative factors for each cause of power supply interruption. Each
gene represents the individual value of a multiplicative factor for a specific cause, and the
gene value can vary between 0 and 1.

The algorithm was divided into two separate parts, one for DEC values and another
for FEC. The multiplicative factor values per cause for DEC and FEC were found separately,
as illustrated in Figure 2. Therefore, we have two fitness:

• Fitness DEC = C − (DEC Estimated − DEC Realized)2;
• Fitness FEC = C − (FEC Estimated − FEC Realized2;

where C is a constant value. The value set was 10 for the purpose of solving a maximization
problem due to the use of the roulette wheel method for selection.
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The estimated DEC and FEC values used in the fitness function are the results of the
ANN output, where the input was the chromosome of the evolutionary strategy composed
of the 14 multiplicative factors. All values generated by the output of each ANN according
to each input are evaluated, and the individuals with the best fitness function values
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receive a more significant weight in the reproduction steps and, therefore, the generation of
a new population.

There are two stopping criteria in this proposal: (a) fitness value equal to 10; or (b) a
maximum number of generations. The best individual with the best result in the fitness
function is chosen at the end of the generation. This individual, both for DEC and FEC,
represents the vector of multiplicative factor values used in new project planning.

The evolutionary algorithm was developed with the following parameters based on
the reference [18]:

• Number of generations DEC: 100;
• Number of FEC generations: 100;
• Crossover probability: 0.9;
• Mutation probability: 0.25;
• Gaussian mutation operator with standard deviation = 0.01;
• Population size: 20;
• Pair selection: Roulette wheel method;
• Population update: Elitism;

For the proposed model, one hundred versions were simulated to obtain average
results, considering the random character of the evolutionary algorithm results [19,20].
For each simulated version, the average values of the generations of convergence were
determined in the estimation of DEC and FEC. The proposed methodology was tested on a
larger base of works from an electric power distributor.

4. Results

This section presents the results for each of the three stages as presented in the method-
ology proposed in Figure 1. The computational results used a database of interruptions
of the energy utility for 2018 and 2019. Initially, a detail of the procedure developed for
ascertaining the DEC and FEC benefits realized is carried out, taking into account the
case study of the reconductoring projects. Next, two models developed using ANN will
be described. Finally, the final results of the proposed methodology, using evolutionary
strategy techniques, for new DEC and FEC estimates.

4.1. Calculation of the Benefits Realized from the Projects

Tables 2 and 3 present the calculated benefit values of DEC and FEC 12 months before
the entry of the projects and 12 months after the execution of the reconductoring projects.
Values are subdivided according to interruption causes. All occurrences of the interruption
base were accounted for to compose the numbers presented, and the DEC and FEC values
refer to the total base of consumers of the company.

Table 2. Calculated benefits of DEC.

Causes of Interruptions
Realized

Benefits DEC %Redution DEC Fator Mult. DEC

Tree in the network - 0 0

Broken or deteriorated cable - 0 0

Connection defect 0.005309 17.25% 0.827426

Insulator defect 0.000929 0 1

Programmed distribution 0.006122 3.19% 0.968097

Equipment failure
(line/network) 0.003990 48.07% 0.519224

Natural phenomena - 0 0

Ignored - 0 0
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Table 2. Cont.

Causes of Interruptions
Realized

Benefits DEC %Redution DEC Fator Mult. DEC

Others 0.003501 87.00% 0.129995

Broken/damaged poles - 0 1

Third parties - 0 1

Unscheduled transmission 0.0030531 1.38% 0.986143

Transmission scheduled 0.000436 0 1

Consuming unit - 0 0

Total 0.023341 54.95% 0.450465

Table 3. Calculated benefits of FEC.

Causes of Interruptions
Realized

Benefits FEC %Redution FEC Mult. Factor FEC

Tree in the network - 0 0

Broken or deteriorated cable - 0 0

Connection defect 0.003149 39.37% 0.606288

Insulator defect 0.000880 0 1

Programmed distribution 0.003842 11.24% 0.887540

Equipment failure
(line/network) 0.008457 20.13% 0.798657

Natural phenomena - 0 0

Ignored - 0 0

Others 0.038177 51.72% 0.482724

Broken/damaged poles - 0 0

Third parties - 0 0

Unscheduled transmission 0.009085 8.62% 0.913712

Transmission scheduled 0.005235 0 1

Consuming unit - 0 0

Total 0.068827 40.28% 0.597154

The meaning of each result is shown below:

• Benefit DEC = DEC Before − DEC After;
• DEC Multiplicative Factor = DEC After/DEC Before;
• DEC Reduction = 1 − DEC Multiplication Factor

After the reconductoring projects started, we can observe that the DEC reduced by
0.02334145 h and the FEC by 0.06882774, corresponding to a percentage reduction of 54.95
and 40.28%, respectively.

The reduction percentage is constant for DEC and FEC in the current methodology,
70%. In comparison with the realized values, the estimation error by the present method
was 33% for DEC and 50% for FEC, considering only the total values.

4.2. Applying ANNs to Build the Benefit Estimation Model (Stage 2)

Fourteen causes of interruptions in the supply of electricity were identified. Regarding
the classification of investment projects, there are 12 types of projects. For the base of
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occurrences of interruptions, there was data corresponding to the interval from 1 January
2018 to 31 December 2020.

Starting from the model for calculating benefits in the continuity indicators in force
by the distributor, in which multiplicative factors are associated with the DEC and FEC,
1000 scenarios were created, in which for each scenario, 14 multiplicative factors are defined,
each one associated with an interruption cause, for the same project type, reconductoring.
The number of scenarios was chosen to represent several DEC and FEC multiplication
factors possibilities. The model had 14 inputs, according to the causes, and DEC and FEC
as outputs, in which the values already included the contribution portions of each cause, as
shown in Figure 3.
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Figure 3. Inputs and outputs of the ANN model.

For each output of the ANN model, to compare the actual value and predicted value
for the 300 validation scenarios, the MAPE (mean absolute percentage of error) and the
MRAE (maximum relative absolute error) were evaluated.

Figure 4 shows the values for the DEC output, the result of the ANN validation and
testing, comparing the predicted values with the actual values. The MAPE was 0.0081%,
and the MRAE was 0.1919%. This indicates that the ANN model learned satisfactorily,
considering the low learning error, considering the test samples for the DEC indicator.

Similarly, for the FEC, the results can be seen in Figure 5. The MAPE was 0.0074%
and the MRAE was 0.1611%. Analogous to the DEC, the FEC learning results showed
relative absolute errors close to zero, considered satisfactory for the type of quality of
service problem.

The heat map in Table 4, constructed from the analysis of the correlation coefficient
between the inputs (causes) and the outputs (DEC and FEC), shows that for the DEC
result, the inputs connection defect, programmed distribution, equipment failure, and
others represent a higher index of the correlation coefficient. The same inputs have a
high correlation for the FEC. An analysis observed is that entry 9 (cause Other) presented
values realized for the last 12 months, and shows a strong correlation for DEC and FEC
determination, explained by the significant number of occurrences associated with this
cause, a practice that needs to be avoided.
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4.3. Applying Evolutionary Algorithms for Benefit Optimization (Stage 3)

For the model, one hundred simulations were performed to obtain average results,
given the random effects of the evolutionary strategy.

For each simulated version, the average generations of convergence of the results
were determined through the derivative of the estimated DEC and FEC curve when the
derivative approached zero.

Figure 6 illustrates the structure of the simulations, where for the ANN model, the
evolutionary algorithms are applied separately for DEC and FEC and the multiplication
factors are determined. Then the best multiplicative factors found are multiplied with
the DEC and FEC values 12 months before the entry of the projects to determine the
estimated benefits. Then, the absolute errors are calculated with respect to the realized
values of benefits identified in Step 1 of the work. In this diagram, the “*” operator performs
element-by-element multiplication.



Energies 2022, 15, 4564 13 of 21

Table 4. The heat map of DEC and FEC.

Causes of Interruptions DEC FEC

Tree in the Network 0.03223 0.02686

Broken or deteriorated cable 0.01732 0.02851

Connection Defect 0.19927 0.04838

Insulator Defect 0.00881 0.02379

Programmed Distribution 0.21831 0.05569

Equipment Failure (Line/Network) 0.25136 0.12741

Natural Phenomena 0.00243 0.00352

Ignored 0.02588 0.03728

Others 0.91255 0.97961

Broken/Damaged Poles 0.02449 0.02045

Third Parties 0.00897 0.00341

Unscheduled Transmission 0.10790 0.11694

Transmission Scheduled 0.01119 0.06209

Consuming Unit 0.01221 0.01541
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4.3.1. Results for DEC

Figure 7 shows the results of the fitness functions for each generation of the evolu-
tionary strategy. Each curve represents the result for each of the 100 simulated versions,
illustrated with a different color for each simulation. The markings in the red circle indi-
cate the generation of stability of the result, that is, the point where no matter how many
generations were created, the result was stable (converged), around a constant fitness value
(value very close to 10, but not exactly). None of the versions did the fitness value exactly
match the stopping criterion equal to 10, so the end of each simulation occurred at the end
of the total number of generations defined.

After the 100 versions, the average stability generation of the fitness for the evolution-
ary DEC estimation algorithm was 20. Figure 8 presents a scatter plot where each blue dot
represents the convergence generation of each simulated version. The dashed red lines
indicate the values of the mean plus or minus the standard deviation of convergence, the
range in which 70% of the versions are concentrated.

Figure 9 shows the estimated DEC values for each generation and for each simulated
version, illustrated with a different color for each simulation. As can be seen, the DEC
values estimated by the genetic algorithm oscillate around the value realized in the first
generations of calculation, stabilizing and converging to the value expected as the solution.
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Figure 10 shows the values at the end of each simulation of the estimated DEC results.
For this model, after each simulation version of the genetic algorithm, the estimated average
DEC value was 0.023343559 h.
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The relative absolute error for each estimation version is presented in Figure 11, where
the average relative absolute error was 0.0256%, and the maximum relative absolute error
identified was 0.3211%. The smallest error was 0.0023%, associated with an estimated DEC
value of 0.023341999 h.
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4.3.2. Results for FEC

As for the DEC, the estimation of the FEC through the FEC presented results with
lower errors compared to the error values determined using the current methodology for
calculating benefits. In Figure 12, the fitness curves converge to constant values with fewer
generations, illustrated with a different color for each simulation.

As shown in Figure 13, the average convergence generation after the 100 simulation
versions was generation 24, with the maximum generation being generation 45 (the blue
color). The dashed red lines indicate the values of the mean plus or minus the standard
deviation of convergence, the range in which 70% of the versions are concentrated. This
indicates that the genetic algorithm converges quickly, regardless of the simulation version,
even though each version starts from a different initial random population and with various
randomnesses in the process.
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Figure 13. Average generation convergence for FEC.

The curve of estimated FEC values by generation and version presents a behavior
similar to the DEC curve, as shown in Figure 14, illustrated with a different color for each
simulation. Again the result oscillates around the actual value until converging to values
close to the real FEC value.

Figure 15 shows the values at the end of each simulation of the estimated FEC results.
For this model, the average estimated FEC value was 0.068828860 times.

The relative absolute error for each estimation version is presented in Figure 16, where
the average relative absolute error was 0.0089%, and the maximum relative absolute error
identified was 0.1704%. The smallest error was 0.0023%, associated with an estimated FEC
value of 0.068827217 times.

Table 5 presents the consolidated results after the 100 simulations using the evolution-
ary algorithms for estimating the DEC and FEC benefits for the reconductoring projects.
For the results for the MAPE and MRAE, the minimum errors were well below the errors
identified using the current DEC and FEC benefit calculation method (33% for DEC and
50% for FEC).
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Table 5. Result of the proposed methodology for DEC and FEC.

Evolutionary Algorithm DEC FEC

MAPE 0.0256% 0.0089%

EARM 0.3211% 0.1704%

Minimal error 0.0023% 0.0008%

Estimated value 0.023341 0.068827

As a result of the methodology, the multiplication factors associated with each cause of
interruption were identified, which multiplied by the realized DEC and FEC values before
the entry of the project will result in the estimated DEC and FEC benefit values.

At the end of the simulations and the estimated DEC and FEC results, the multipli-
cation factors by cause values were also extracted, which is the best individual of the last
population at the end of each simulation. The multiplicative factors associated with DEC
and FEC were selected for the simulation version that generated the lowest error.

For the results presented in Tables 6 and 7, the multiplication factors found were
applied to the realized DEC and FEC values in the input region of the projects to obtain the
estimated DEC and FEC benefit values and compared with the actual benefit to determine
the errors.

In the columns DEC Error and FEC Error, the results obtained by this multiplication
are compared with the actual values obtained after the project’s input, simulating the error
of using the method in the distributor. The absolute relative error obtained for the DEC
was 0.3170%, and for the FEC, 0.3678% values compared to the total realized values. The
error obtained by the current method was 33% for DEC and 50% for FEC. Therefore, the
results obtained by the methodology proposed in this work for estimating the DEC and
FEC reduction of the reconductoring projects were, on average, 100 times smaller than the
current methodology.

Table 6. Result of the DEC Proposed Methodology.

Causes of Interruptions
Proposed Methodology

Mult. Factor DEC Estimated Benefits DEC Error DEC

Tree in the network 0.734711 0

Broken or deteriorated cable 0.284956 0

Connection defect 0.820461 0.005264 1%

Insulator defect 0.516553 0.000479 48%

Programmed distribution 0.301531 0.001907 69%

Equipment failure
(line/network) 0.247555 0.001902 52%

Natural phenomena 0.739324 0

Ignored 0.248773 0

Others 0.451032 0.012145 −247%

Broken/damaged poles 0.047346 0

Third parties 0.210471 0

Unscheduled transmission 0.409241 0.001267 59%

Transmission scheduled 0.860469 0.000375 14%

Consuming unit 0.454079 0

Total 0.451893 0.023415 0.3169%
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Table 7. Result of the FEC proposed methodology.

Causes of Interruptions
Proposed Methodology

Mult. Factor FEC Estimated Benefits FEC Error FEC

Tree in the network 0.320745 0

Broken or deteriorated cable 0.409348 0

Connection defect 0.776821 0.004034 −28%

Insulator defect 0.771147 0.000678 23%

Programmed distribution 0.642394 0.002781 28%

Equipment failure
(line/network) 0.739301 0.007828 7%

Natural phenomena 0.447587 0

Ignored 0.565798 0

Others 0.522140 0.041294 −8%

Broken/damaged poles 0.552991 0

Third parties 0.704078 0

Unscheduled transmission 0.884771 0.008798 3%

Transmission scheduled 0.651692 0.003412 35%

Consuming unit 0.340594 0

Total 0.594958 0.068574 0.3677%

5. Conclusions

In this work, topics related to the electrical planning of the energy distribution network
and service quality indicators were studied. The challenges of predicting the benefits that
investment projects contribute to improving service quality indicators were also presented.
With the accomplishment of the bibliographic review, it is possible to verify that, despite the
advances in the use of artificial neural networks for planning DEC and FEC indicators, the
results are not detailed. Little evaluation of real scenarios was verified for the determination
of the values of the indicators.

The first contribution to be highlighted from this work is the organization and struc-
turing of the distributor’s databases so that it is possible to estimate the actual gain that the
investment projects contributed to the reduction of the continuity indicators DEC and FEC,
comparing the result with the values that had been planned. Given the long observation
time for estimating the projects’ realized gain, the results are subject to many disturbances,
such as load variations in the circuits under analysis, weather conditions, etc.

The structuring of the methodology for calculating the benefits based on the causes of
supply interruptions is a relevant contribution since the distributor understudy does not
analyze the influence of the causes according to the type of project being studied. According
to preliminary models’ preliminary results, different causes contribute to the predicted
DEC and FEC results for every kind of project. Regarding reconductoring projects, the
errors referring to the proposed methodology (0.3170% for DEC and 0.3678% for FEC) are
100 times smaller than the errors observed using the current method (33.0% for DEC and
50% for FEC).

As complementary contributions, one can highlight the study of artificial intelligence
techniques, such as artificial neural networks and evolutionary strategy, to aid network
planning and support decision making since they are methods that consider several input
variables and how these inputs relate to determining the desired outputs.
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In future work, the results of the multiplicative factors will be applied to a new
planning base for the company, and estimates will be made for new projects so that it
will be possible to follow the benefits realized results and validate the proposed benefits
methodology. In addition, the method should be extended to other types of projects,
enabling the prediction of benefits not only for reconductoring projects. It is also possible to
perform cluster analysis to determine multiplicative factors for regions with similar circuit
and load characteristics.
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Abbreviations
The following abbreviations are used in this manuscript:

ANEEL National Electric Energy Agency
ANN artificial neural network
DEC equivalent interruption duration per consumption unit
DIC duration of individual interruption per consumption unit
DICRI duration of individual interruption occurred on a critical day per consumption unit
DMIC maximum duration of continuous interruption per consumption unit
MRAE maximum relative absolute error
FEC equivalent frequency of interruption per consumption unit
FIC frequency of individual interruption per consumption unit
MAPE mean absolute percentage of error
MISO multiple input, single output
MLP multilayer perceptron
MLR multiple linear regression
MLRA multiple linear regression analysis
MODWT maximal overlap discrete wavelet transform
PRODIST Procedures of Electric Energy Distribution in the National Electric System
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