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Abstract: This paper investigates the effects of coronavirus disease 2019 (COVID-19) on the perfor-
mance of arbitrage trading in the energy market using daily data covering the period between 1
January 2015 and 5 December 2021. The investigation was achieved by utilizing a parametric pairs-
trading model, where pairs of energy-related securities, including futures, stocks and ETFs traded in
the United States, are formed. The empirical results suggest that the out-of-sample performances
of pair trading declined sharply in the face of COVID-19. Dividing the whole data sample into
two sub-samples, we found that the strategy performed well before COVID-19 but yielded poor
results in the pandemic era. The analysis presented in this paper could serve as a benchmark for
arbitrage-based trading models in the energy market during the pandemic.

Keywords: COVID-19; pairs trading; U.S. energy market

1. Introduction

Started in December 2019, the coronavirus pandemic 2019 (COVID-19) has created
not only a global health crisis but also significant turmoil in financial markets around the
world. One noteworthy event was the crash of oil prices on 20 April 2020. For the first time
in history, the front-month May 2020 West Texas Intermediate Crude Oil contract settled at
negative $37.63 a barrel on the New York Mercantile Exchange. The oil price has gone up
after the crash, but not yet recovered to the pre-pandemic level. As of 15 December 2021,
the United States Oil Fund, a representative indicator of the oil price, closed at $51.62. In
comparison, the USO ranged between $76 and $105 during 2019. On the other hand, the
COVID-19 has killed 826,364 people in the US as of 15 December 2021, with corresponding
COVID-19 active cases of 10,138,661 (The COVID-19 related data is collected from Our
World in Data: https://ourworldindata.org/coronavirus-data (accessed on 30 December
2021)). While there is no clear evidence on when the COVID-19 would end, it is crucial for
financial market participants to reexamine their trading and valuation models and assess
the impacts of COVID-19 quantitatively.

This paper investigates the effects of COVID-19 on energy market from one specific
perspective—the performances of the pairs trading portfolios. Pairs trading is a statistical ar-
bitrage trading strategy based on assets with similar characteristics but dissimilar valuation
dynamics. First developed at Morgan Stanley during the 1980s, pairs trading aims at find-
ing relative mispricing between securities and profiting from the convergence. The energy
market provides an ideal group of candidates for pairs trading purpose. Energy-related
securities, such as energy stocks, futures, Exchange-Traded Funds (ETFs), are ‘similar’ in
the sense that their valuations are closely related to common fundamentals in the energy
market. For example, ref. [1] reports that energy futures with different maturities are
highly correlated. However, relative mispricings are possible due to different features
and segments of the securities. Since COVID-19 has brought significant turbulence to the
energy market, and energy-related securities are ideal for pairs trading, we are interested
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in studying the impact of COVID-19 on the energy market by studying the performances
of pairs trading portfolios.

Using daily data from 1 January 2015 to 5 December 2021, we construct arbitrage
portfolios using five energy futures, five largest and five smallest energy stocks, and five
energy-related ETFs, for a total of 190 possible pairs. A parametric approach, which
is known as pairs trading, is adopted to form the portfolios. It assumes that a linear
combination of a pair of securities is stationary, and the deviation from the long-run
(theoretical) equilibrium is temporary. The deviation is called the spread, which is the
relative mispricing that the pairs trading strategy tries to capture. Profit can be generated if
the spread converges to zero fast enough. To implement the model, we split the data of
interest into two sets: the in-sample set, from which we calibrate the model parameters,
and the out-of-sample set, on which we test the model performance. For each pair, we
compute its realized returns, standard deviations, Sharpe ratios and standard deviations of
the Sharpe ratios, for both the in-sample and out-of-sample sets. For comparative purpose,
we further divide the whole data sample into two sub-sample periods, using 23 January
2021 (the date that the first case of COVID-19 in US was confirmed) as the break point, and
conduct the same analysis for each sub-sample. The detail of the data split and data sub-
sampling is summarized in Table 1. By doing so, we can compare the performances before
and after the pandemics began, and how the spread of COVID-19 shapes the landscapes of
arbitrage-based trading models.

Table 1. Data split and sub-samples.

Data Periods In-Sample Set Out-of-Sample Set

Full period 1 January 2015–22 January 2020 23 January 2020–5 December 2021

Sub-sample 1 1 January 2018–31 December 2018 1 January 2019–22 January 2021

Sub-sample 2 23 January 2020–22 January 2021 23 January 2021–5 December 2021

An emerging literature is devoted to understand the impact of COVID-19 on global
economy and financial markets. See, for example, refs. [2–8] study the adverse impacts
of COVID-19 on stock markets from various perspectives. In terms of the energy market,
recent scholarly works have provided practical insights for interested market participants,
and this paper joins in this line of efforts. Among them, ref. [9] investigates the nexus
between pandemic, political risk, equity and energy markets; ref. [10] analyses the natural
gas and electricity markets in Spain while ref. [11] focuses on the energy market in Italy.
ref. [12] discusses the challenges posed by COVID-19 to the energy sector. ref. [13] studies
the impact of COVID-19 on energy market volatility. refs. [3,4,14] examines the effects of the
pandemic in an equilibrium framework where asset pricing implications are drawn. ref. [15]
derives the optimal investment decision for electricity producers during a pandemic. The
trading model in this paper follows from refs. [16–19].

This paper fills a gap in the literature as the first attempt to study the impact of COVID-
19 on the energy market from the perspectives of arbitrage trading. What’s more, our
analysis spans a wide range of asset classes that are relevant for energy market participants.
Previous literature on pairs trading in the energy market focuses on a single asset class. For
example, ref. [20] studies the energy futures market and ref. [21] surveys energy stocks.
Based on our knowledge, we are the first to combine energy futures, selected stocks and
ETFs in a pairs trading setting. The results in this paper are of immediate usefulness
to practitioners. On one hand, our results could serve as a benchmark for other trading
strategies based on statistical arbitrage theory. Indeed, pairs trading is the cornerstone of
various modern statistical arbitrage approaches. It is based on the mean-reverting property
of the spread, or relative price difference between two securities. The idea can be easily
extended to cases with multiple securities. Such approach is usually called basket trading
in the financial industry but it builds on the basic case where a pair of two securities are
formed and studied, exactly the task that we achieve in the present paper. On the other
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hand, the main conclusion in this paper is preliminary: it implies that the conventional
strategy, which once worked, breaks down during the COVID-19 pandemic and more
advanced trading models are called for.

The rest of the paper is organized as follows. Section 2 introduces the portfolio con-
struction process and assumptions. Section 3 gives an overview of the data and descriptive
statistics. Section 4 reports the in-sample and out-of-sample results for the whole sample
and each of the sub-samples. Section 5 concludes.

2. Portfolio Construction and Trading Strategy

Pairs trading is a popular investment approach used widely in the financial industry.
This approach assumes that the market may deviate from their equilibrium values because
of temporary shocks but eventually converge to them in the long run. Pairs trading typically
consists of a long position in one of the two securities and a short position in the other one
when a large deviation between the prices is observed and clears the exposure when the
deviation disappears. Parametric pairs trading can be implemented with two steps. In the
first step, we specify the parametric assumptions on the dynamics of the two securities
prices and the spread between them. A specific trading strategy is designed in the second
step. A trading strategy is a method of quantifying the threshold for buying and selling
the assets based on the estimation of the spread. We discuss the model and the estimation
approach in Section 2.1. The trading strategy with an example is illustrated in Section 2.2.

2.1. The Model

We follow the parametric approach to pairs trading adopted by refs. [16–18,22–26].
Let the price of stocks A and B at time t be PA,t and PB,t, respectively. We first apply the
linear regression method to estimate the hedge ratio, i.e., we estimate β in the following
linear model:

ln(PA,t)− β ln(PB,t) = Xt.

We let X̂t denote the estimated residual and call it the spread between stocks A and B.
Following ref. [27], We assume X̂t follow an Ornstein–Uhlenbeck process, such that

dX̂t = θ
(
µ− X̂t

)
dt + σdWt

Or in discrete-time form,

X̂ti − X̂ti−1 = θ
(
µ− X̂ti−1

)
(ti − ti−1) + σ

√
ti − ti−1εi, εi

iid∼ N(0, 1)

where i = 1, 2, . . . n denotes the order of the data points. The parameters (µ, θ, σ) in the
above model can be estimated by maximum likelihood method. The likelihood function
can be approximated by Euler-Maruyama scheme, see e.g., refs. [28,29]. More specifically,
the log likelihood function can be written as

L(X̂ | µ, θ, σ) = −n
2
− 1

2

n

∑
i=1

ln
(

1− e−2θ(ti−ti−1)
)
− θ

σ2

n

∑
i=1

X̂ti − µ−
(
X̂tl−1 − µ

)
e−θ(ti−ti−1)

1− e−2θ(ti−ti−1)

We get the estimates for parameters, {θ, µ, σ}, by maximizing the above log likelihood
function over the data in the training set.

2.2. The Trading Strategy

We assume the parameters are constant during the data period under study, and apply
the classical optimal trading rule. That is, we take positions at one standard deviation (i.e.,
when the spread is one standard deviation away from the mean, i.e., X̂t /∈ [µ− σ, µ + σ])
and clear positions when the spread reverts back to the mean. When the spread is positive,
we long the stock B and short the stock A; otherwise we long the stock A and short the
stock B. The relative position depends on the hedging ratio β. For example, if we long
one unit of stock B, we short β units of stock A. This strategy is illustrated in Figure 1.
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For two stocks A and B, the time series plot of the prices is given in Figure 1a, and the
spread between A and B is given in Figure 1b. When, for example, the price of stock A is
much lower than the price of stock B, the spread is far below its long-run mean as shown in
Figure 1b. In this case, we construct a portfolio by taking a long position of stock A and a
short position of stock B. When the market goes back to its mean, we clear the exposure.
By doing so, we are able to profit from the spread convergence. In relative terms, price of
Stock A (long position) rises and price of Stock B (short position) declines. The size of the
profit is then determined by the differences between the entry and exit points. See ref. [19]
for detailed discussion of this trading strategy.

(a) (b)
Figure 1. Illustration of the pairs trading of stocks A and B. (a) Prices of stocks A and B. (b) Spreads
between stocks A and B.

3. Data and Descriptive Statistics

We choose five energy futures: BZ, CL, HO, NG and RB; five largest energy equities:
XOM, CVX, RDS-B, RDS-A, and PTR; five smallest energy equities: MTR, CRT, NRT, MVO,
and FET; and five energy related ETF: XLE, VDE, XOP, IYE, and OIH. Since there are 20
energy-related securities under study, and two securities are needed to form a trading pair,
the total number of possible pairs is C20

2 = 190. We compute the return of all possible
190 pairs under the trading strategy and the entry-exit rule described in Section 2 given
the actual daily prices between 1 January 2015 and 5 December 2021. To compare the
performances and to determine the overall effects of COVID-19 on pairs trading, we split
the whole data period into two sub-samples, using 23 January 2020 as the dividing point.
For each sub-samples, we further separate the data set into the in-sample (training) set and
the out-of-sample (test) set. Specifically, for the full period, we treat the data between 1
January 2015 and 22 January 2020 as the in-sample set, and the data between 23 January
2020 and 5 December 2021 as the out-of-sample set. The rationale behind such separation
is that we would like to see whether a constant set of model parameters calibrated before
the pandemic performs similarly during the pandemic. For sub-sample 1, we treat the data
between 1 January 2018 and 1 January 2019 as the in-sample data, and the data between
1 January 2019 and 22 January 2020 as the out-of-sample data; for sub-sample 2, we treat
the data between 23 January 2020 and 22 January 2021 as the in-sample data, and the data
between 23 January 2021 and 5 December 2021 as the out-of-sample data. Time series of
selected futures, equities and ETFs are plotted in Figure 2.
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Figure 2. Time series plot of BZ, NG, XOM, CVX, MTR, CRT, XLE and VDE.

Pairs trading is implemented by finding two stocks whose prices move together
historically to make sure that the resulting spread will be in the direction of mean reversion.
Such two stocks are considered ’similar’ in the trading sense. In practice, the correlation
coefficient is used to measure the ‘similarity’ between two stocks. In this regard, we
construct heat maps to visualize the general degree of ’similarities’ between asset returns
in an asset pool.

In Figures 3–5, using heat maps, we plot the correlation matrix among the twenty
energy-related securities for different date and sample periods. Figure 3 suggests that
the correlation structure changes after COVID-19 began, as panel (b) is generally darker
than panel (a), implying a higher level of co-movement between assets in the energy
sector during the pandemic. In contrast, Figure 4a is similar to Figure 4b. This again
motives us to study the COVID-19’s effect on pairs trading performance, since the change
in correlation structure may result in the breaking down of previously established patterns
in arbitrage-based trading.

(a)

Figure 3. Cont.
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(b)

Figure 3. Correlation matrix of energy-related securities for (a) in-sample set and (b) out-of-sample
set of the full data sample.

(a)

(b)

Figure 4. Correlation matrix of energy-related securities for (a) in-sample set and (b) out-of-sample
set of the first sup-sample period.
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(a)

(b)

Figure 5. Correlation matrix of energy-related securities for (a) in-sample set and (b) out-of-sample
set of sup-period 2.

4. Results

The results of the pairs trading on all 190 pairs are summarized in Figures 6–8 for
different sample periods, and the main statistics are reported in Table 2.

To give the readers an intuitive comparison of the out-of-sample and in-sample per-
formances among various periods, we plot the Sharpe ratios against the average return
of all the 190 pairs. In Figures 6 and 8, the out-of-sample performances are clearly worse
than the in-sample performances, however, in Figure 7, the out-of-sample performances
are consistent with those of the in-sample period.

Examining the results, three observations are drawn. First, by comparing the means
and standard deviations of out-of-sample returns in Table 2, it is obvious that out-of-sample
performance of the first sub-sample data (with mean of return being 0.0692, and mean
of the Sharpe ratio being 0.2869) is much better than those of the full sample period and
the second sub-sample period with mean of return being 0.0108, and mean of the Sharpe
ratio being 0.0763 for the full sample and with mean of return being 0.02, and mean of
the Sharpe ratio being 0.1133 for the second sub-sample). Because in the first sub-sample
period, the out-of-sample data is before the pandemic, and in other cases, the out-of-sample
data is after the pandemic, the above comparison implies that the COVID-19 pandemic has
exerted a strong negative impact on the performance of pairs trading in the energy-related
financial market.
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Figure 6. Plot of Sharpe ratios against returns of 190 pairs based on the whole sample period.

Figure 7. Plot of Sharpe ratios against returns of 190 pairs based on the first sub-sample period.

Second, the in-sample performance of the second sub-sample was outstanding; how-
ever, the corresponding out-of-sample performance was poor. This is because the pandemic
shock has had a huge impact on the stock price volatility, and brought statistical arbitrage
opportunity to some energy related futures or equities. However, such opportunities only
exist in the in-sample data, and cannot be carried to the out-of-sample period. Also, the
impact of COVID-19 event is not consistent among the twenty securities in our pool. The
standard deviation of the return of the pairs trading among the 190 pairs is 3.6687, and the
standard deviation of the corresponding Sharpe ratios is 3.1260.

Third, the performance of the second sub-sample is slightly better than that of the
whole sample, in terms of both the mean of the return and the mean of the Sharpe ratios
(as shown in the forth and second row in Table 2, 0.200 vs. 0.0108 for the return; and 0.1133
vs. 0.0763 for the Sharpe ratios). This means that the pairs identified using the data before
the pandemic as training data no longer work, and the pairs based on the data after the
pandemic perform better. Similar to our earlier finding, this result shows that the COVID-19
pandemic brought a structural change to the energy market and impacted the performance
of pairs trading.
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Figure 8. Plot of Sharpe ratios against returns of 190 pairs based on the second sub-sample period.

Table 2. Performance measures.

Data Period Mean of
Return

StdDev of
Return

Mean of
SR

StdDev of
SR

Full sample
in-sample 0.1103 0.1775 0.3775 0.5577

out-of-
sample 0.0108 0.4597 0.0763 0.6769

Sub-sample 1
in-sample 0.2706 0.3670 1.0440 1.2117

out-of-
sample 0.0692 0.3337 0.2869 0.9981

Sub-sample 2
in-sample 1.6419 3.6687 2.0939 3.1260

out-of-
sample 0.0200 0.4123 0.1133 0.9473

Also, we implement the Wilcoxon–Mann–Whitney test to compare the level differences
of out-of-sample performance during different sampling periods. We are interested in
knowing whether such differences across data samples are statistically significant. For
this purpose, we compare the distributions of either the returns or the Sharpe ratios for
the full sample (or the sub-sample 2) to those for the sub-sample 1. The steps of the
Wilcoxon–Mann–Whitney test are outlined below:

1. Let the distribution of the strategy returns for the full sample be F(x), and the corre-
sponding distribution for the sub-sample 1 be G(x). In the Wilcoxon–Mann–Whitney
test, the null hypothesis, H0, is:

H0 : F(x) = G(x− θ), θ = 0;

and the alternative hypothesis, H1, is

H1 : F(x) = G(x− θ), θ < 0.

That is, we want to test whether the distribution of the returns for the sub-sample 1 is
a location shift to the right of the corresponding distribution of the returns for the full
sample.

2. The p-value of the test is computed.
3. A similar test is conducted to compare the distributions of the Sharpe ratios.



Energies 2022, 15, 4584 10 of 13

4. The same procedure is repeated to compare the distributions of returns and Sharpe
Ratios between sub-sample 2 and sub-sample 1.

The p-values of the above tests are reported in Table 3. From this table, we conclude
that the performance of pairs trading based on the sub-sample 1 is better than the full
sample or the sub-sample 2. The results from the Wilcoxon–Mann–Whitney test imply that
the out-of-sample performance of pairs trading has declined on a statistically significant
sense during the COVID-19 pandemic.

Table 3. p-values for the Wilcoxon–Mann–Whitney Test.

Data Period Returns Sharpe Ratios

Full sample 0.0035 *** 0.0130 **

Sub-sample 2 0.0014 *** 0.0036 ***

*** and ** denote significance level of 1% and 5% respectively.

Finally, we report the ratio of the in-sample performance with respect to the out-of-
sample performance for the three data periods in Figures 9–11. The ratio in these figures is
defined as:

ratioi =
Z2,i − Z1,i

‖Z1,i‖
where Z1,i is the return or Sharpe ratio of the in-sample set for the i-th pair, and Z2,i
is the corresponding value of the out-of-sample set for the i-th pair. It is clear that in
Figures 9 and 10, most of the points are above the 45 degree line, while in Figure 11, most
of the points are below the 45 degree line. This pattern implies that the pandemic increased
the return volatility of energy-related securities, and made pairs trading more risky when
the training data included the time period after the pandemic started.

Figure 9. The ratio of the Sharpe ratio between in-sample and out-of-sample data vs. The ratio of the
return between in-sample and out-of-sample data, in the whole sample period.
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Figure 10. The ratio of the Sharpe ratio between in-sample and out-of-sample data vs. The ratio of
the return between in-sample and out-of-sample data, in the first sub-sample period.

Figure 11. The ratio of the Sharpe ratio between in-sample and out-of-sample data vs. The ratio of
the return between in-sample and out-of-sample data, in the second sub-sample period.

5. Conclusions

In this paper, we have investigated one aspect of the COVID-19 effects on the en-
ergy market. By constructing pairs trading portfolios from a representative group of
energy-related securities and examining their performances, we can draw a few important
implications.

First, we find that the performance of the strategy degenerated sharply in the face
of COVID-19, as shown by the much lower out-of-sample average Sharpe ratios, lower
average realized returns and higher variation of Sharpe ratios. The huge gap between the in-
sample and out-of-sample performance measures suggests that simply recycling parameters
does not generate sound results in the pandemic era. Second, the same strategy works
much better if only the pre-pandemic data (sub-sample period 1) is studied. Performance
measures improve: higher average Sharpe Ratios and lower variation of Sharpe ratios. It
indicates that the arbitrage trading strategy works before the COVID-19 emerged, and the
pandemic completely reshapes the strategy. Third, using data after the pandemic started
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(sub-period 2) only sightly improves the performance. Out-of-sample results are still poor
after controlling sub-samples, implying that the effect of COVID-19 is adverse or even
destructive. Besides, two other implications are especially important for practitioners. First,
increasing the asset span, as we do in the present paper, does not necessarily improve the
results. Second, a heat map might serve as a good graphical indicator and an intuitive
visual tool in the preparatory analysis for arbitrage-based trading strategies. Detailed usage
and a more deterministic link between heat maps and strategy performance may warrant
further examination for the interested parties.

The findings in this paper point out the importance of model innovations or mod-
ifications during the pandemic. Future research could be taken in multiple directions.
For example, we can allow for time-varying parameters in the baseline model, or relax
the model with more general set-ups. ref. [30] proposes a pairs trading algorithm based
on general state spaces. They find that both the Sharpe ratios and realized returns are
improved by applying their framework to the equity market. Further investigations can
be performed by following this line of research by viewing COVID-19 as a change in the
model’s state space. We leave this for future investigation.
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Abbreviations
The following abbreviations are used in this manuscript:

BZ Brent crude oil
CL Crude oil
HO Heating oil
NG Natural gas
RB RBOB gasoline
XOM Exxon Mobil Corporation
CVX Chevron Corporation
RDS-A Royal Dutch Shell
RDS-B Shell Transport and Trading Company
PTR PetroChina Company Limited
MTR Mesa Royalty Trust
CRT Cross Timbers Royalty Trust
NRT North European Oil Royalty Trust
MVO MV Oil Trust
FET Forum Energy Technologies, Inc
XLE Energy Select Sector SPDR Fund

https://finance.yahoo.com/
https://sites.google.com/view/guang-zhang/research
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VDE Vanguard Energy Index Fund ETF Shares
XOP SPDR Series Trust—SPDR S&P Oil & Gas Exploration & Production ETF
IYE iShares U.S. Energy ETF
OIH VanEck Vectors Oil Services ETF
WTI West Texas Intermediate Crude Oil
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