Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids
Abstract
:1. Introduction
2. Modelling of R-SFCL
2.1. Step Model
2.2. Exponential Model
2.3. RQ Model
2.4. Magneto-Thermal Model
- Superconducting state: when current density (J) is low enough, the electric field (E) and resistive value are negligible as shown in Equations (11) and (12).
- Flux-flow state: the device starts developing some electric field and resistive value Equation (13).
- 3.
- Normal conducting state: the device behaves as a resistor and the relation between electric field and current density is linear, Equations (15) and (16).
3. Test Grid and Model Analysis
3.1. Step Model
3.2. Exponential Model
3.3. RQ Model
3.4. Magneto-Thermal Model
3.5. Discussion
4. R-SFCL in a HVDC Grid
4.1. Pole-to-Pole Faults
4.2. Pole-to-Ground Faults
4.3. Comparison
5. Conclusions
- The step model does not consider the dynamic performance in the transient period. Thus, it can be used for steady state analysis only.
- The exponential model is a simple model that emulates the transition phenomenon. However, it does not respond to changes in certain parameters, such as fault resistance and critical current.
- The RQ model is not complex, but still it characterizes the flux-flow state. The electric and thermal variables are decoupled, as in the preceding models. Besides, it is sensitive to fault resistance, which differentiates this model from the previous ones.
- The magneto-thermal model is the most complex, most demanding in computational cost, and most accurate model. The response shows the best resemblance to the phenomenon of all the considered models, given that electric parameters change with temperature and the realistic impact of critical current and fault resistance variations.
- The analysis of the RQ model with a M-DCCB in a HVDC grid shows an adequate performance in case of demanding faults. This way, fault currents decrease to a great extent which results in a large reduction of the converter stress and M-DCCB requirements. The power flow is restored faster and the transient stability of the system is upgraded. Therefore, the R-SFCL enables a reliable protection of the HVDC grid.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bucher, M.K.; Franck, C.M. Fault Current Interruption in Multiterminal HVDC Networks. IEEE Trans. Power Deliv. 2016, 31, 87–95. [Google Scholar] [CrossRef]
- Jovcic, D.; Tang, G.; Pang, H. Adopting Circuit Breakers for High-Voltage dc Networks: Appropriating the Vast Advantages of dc Transmission Grids. IEEE Power Energy Mag. 2019, 17, 82–93. [Google Scholar] [CrossRef] [Green Version]
- CIGRÉ WG B4.52. In HVDC Grid Feasibility Study; Cigré: Paris, France, 2013.
- Chang, B.; Cwikowski, O.; Pei, X.; Barnes, M.; Shuttleworth, R.; Smith, A.C. Impact of fault current limiter on VSC-HVDC DC protection. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China, 28–29 May 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Noe, M.; Steurer, M. High-temperature superconductor fault current limiters: Concepts, applications, and development status. Supercond. Sci. Technol. 2007, 20, R15–R29. [Google Scholar] [CrossRef]
- Tixador, P. Superconducting Fault Current Limiter. Innovation for the Electric Grids; World Scientific Publishing: Singapore, 2019. [Google Scholar]
- Moyzykh, M.; Gorbunova, D.; Ustyuzhanin, P.; Sotnikov, D.; Baburin, K.; Maklakov, A.; Magommedov, E.; Shumkov, A.; Telnova, A.; Shcherbakov, V.; et al. First Russian 220 kV Superconducting Fault Current Limiter (SFCL) For Application in City Grid. IEEE Trans. Appl. Supercond. 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Qiu, F.; Wang, S.; Zeng, R.; Wang, X. Comparative Analysis and Design of Inductive and Resistive SFCL for HB-MMC-HVDC Under DC Faults. In Proceedings of the 5th IEEE Conference on Energy Internet and Energy System Integration, Taiyuan, China, 22–24 October 2021. [Google Scholar] [CrossRef]
- Li, B.; He, J. Studies on the Application of R-SFCL in the VSC-Based DC Distribution System. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Mokhberdoran, A.; Carvalho, A.; Silva, N.; Leite, H.; Carrapatoso, A. Application study of superconducting fault current limiters in meshed HVDC grids protected by fast protection relays. Electr. Power Syst. Res. 2017, 143, 292–302. [Google Scholar] [CrossRef]
- Garcia WR, L.; Bertinato, A.; Tixador, P.; Raison, B.; Luscan, B. Protection strategy for multi-terminal high-voltage direct current grids using SFCLs at converter station output. J. Eng. 2018, 15, 1369–1374. [Google Scholar] [CrossRef]
- Larruskain, D.M.; Iturregi, A.; Saldaña, G.; Apiñaniz, S. Performance of a superconducting breaker for the protection of HVDC grids. IET Gener. Transm. Distrib. 2020, 14, 997–1004. [Google Scholar]
- Lin, Z.; Jin, J.; Yin, Q.; Liu, Y.; Xu, J.; Zeng, X. Study on Coordination of Resistive-Type Superconducting Fault Current Limiter and DC Circuit Breaker in HVDC system. In Proceedings of the 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020. [Google Scholar] [CrossRef]
- Lee, H.; Asif, M.; Park, K.; Lee, B. Feasible Application Study of Several Types of Superconducting Fault Current Limiters in HVDC Grids. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Etxegarai, A.; Zamora, I.; Buigues, G.; Valverde, V.; Torres, E.; Eguia, P. Models for fault current limiters based on superconductor materials. Renew. Energy Power Qual. J. 2016, 1, 284–289. [Google Scholar] [CrossRef]
- Singh, N.K.; Burt, G.M. Improved Model of Superconducting Fault Current Limiter for Power System Dynamic Studies; Technical Report; University of Strathclyde: Glasgow, UK, 2008. [Google Scholar]
- Blair, S.M.; Booth, C.D.; Burt, G.M. Current–Time Characteristics of Resistive Superconducting Fault Current Limiters. IEEE Trans. Appl. 2012, 22, 5600205. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, C.; Ye, S.; Yang, S.; Xin, Y.; Wen, W.; Hong, W.; Sheng, C.; Zhong, L.; Duan, X.; et al. R-Q curve based evaluation method for current-limiting performance of DC R-SFCL in high voltage DC system. Supercond. Sci. Technol. 2020, 33, 084001. [Google Scholar] [CrossRef]
- Seo, H.C.; Ko, Y.T.; Rhee, S.B.; Kim, C.H.; Aggarwal, R.K. A Novel Reclosing Algorithm Considering the Recovery Time of a Superconducting Fault Current Limiter in a Distribution System with Distributed Generation. In Proceedings of the 10th International Conference on Developments in Power System Protection, Manchester, UK, 29 March–1 April 2010. [Google Scholar]
- Dul’kin, I.N.; Yevsin, D.V.; Fisher, L.M.; Ivanov, V.P.; Kalinov, A.V.; Sidorov, V.A. Modeling Thermal Process in a Resistive Element of a Fault Current Limiter. IEEE Trans. Appl. Supercond. 2008, 18, 7–13. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, D.; Yang, H.; Lee, B.; Jung, W. Cryocooled Cooling System for Superconducting Magnet. In Proceedings of the Proceedings of the 15th International Cryocooler Conference, Long Beach, CA, USA, 9–12 June 2009. [Google Scholar]
- Zampa, A.; Tixador, P.; Badel, A. Effect of the Conductor Length on the Hot-Spot Regime for Resistive-Type Superconducting Fault Current Limiter Applications. IEEE Trans. Appl. Supercond. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Sutherland, P.E. Analytical model of superconducting to normal transition of bulk high Tc superconductor BSCCO-2212. IEEE Trans. Appl. Supercond. 2006, 16, 43–48. [Google Scholar] [CrossRef]
- Roy, F.; Dutoit, B.; Grilli, F.; Sirois, F. Magneto-Thermal Modeling of Second-Generation HTS for Resistive Fault Current Limiter Design Purposes. IEEE Trans. Appl. Supercond. 2008, 18, 29–35. [Google Scholar] [CrossRef]
- Branco, P.J.C.; Almeida, M.E.; Dente, J.A. Proposal for an RMS thermoelectric model for a resistive-type superconducting fault current limiter (SFCL). Electr. Power Syst. Res. 2010, 80, 1229–1239. [Google Scholar] [CrossRef]
- Shen, B.; Chen, Y.; Li, C.; Wang, S.; Chen, X. Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software. Energy 2021, 234, 121251. [Google Scholar] [CrossRef]
- Riva, N.; Sirois, F.; Lacroix, C.; De Sousa WT, B.; Dutoit, B.; Grilli, F. Resistivity of REBCO tapes in overcritical current regime: Impact on superconducting fault current limiter modeling. Supercond. Sci. Technol. 2020, 33, 114008. [Google Scholar] [CrossRef]
- Shen, B.; Grilli, F.; Coombs, T. Overview of H-Formulation: A Versatile Tool for Modeling Electromagnetics in High-Temperature Superconductor Applications. IEEE Access 2020, 8, 100403–100414. [Google Scholar] [CrossRef]
- Tan, X.; Ren, L.; Liang, S.; Tang, Y.; Xu, Y.; Shi, J.; Li, Z. Analysis of R-SFCL with Shunt Resistor in MMC-HVDC System Using Novel R-Q Method. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Langston, J.; Steurer, M.; Woodruff, S.; Baldwin, T.; Tang, J. A generic real-time computer Simulation model for Superconducting fault current limiters and its application in system protection studies. IEEE Trans. Appl. Supercond. 2005, 15, 2090–2093. [Google Scholar] [CrossRef]
- Blair, S.M. The Analysis and Application of Resistive Superconducting Fault Current Limiters in Present and Future Power Systems. Master’s Thesis, University of Strathclyde, Glasgow, UK, 2013. [Google Scholar]
- Duron, J.; Grilli, F.; Antognazza, L.; Decroux, M.; Dutoit, B.; Fischer. Finite-element modelling of YBCO fault current limiter with temperature dependent parameters. Supercond. Sci. Technol. 2007, 20, 338–344. [Google Scholar] [CrossRef]
- Liang, S.; Tang, Y.; Ren, L.; Xu, Y.; Wang, W.; Hu, Z.; Zhang, B.; Jiao, F. A novel simplified modeling method based on R–Q curve of resistive type SFCL in power systems. Phys. C Supercond. Its Appl. 2019, 563, 82–87. [Google Scholar] [CrossRef]
- Kumar, M.A.; Babu, S.S.; Srikanth, N.V.; Chandrasekhar, Y. Performance of superconducting fault current limiter in offshore wind farm connected VSC based MTDC transmission system. In Proceedings of the 2015 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 20–21 February 2015. [Google Scholar] [CrossRef]
- Leterme, W.; Ahmed, N.; Beerten, J.; Ängquist, L.; Hertem, D.V.; Norrga, S. A new HVDC grid test system for HVDC grid dynamics and protection studies in EMT-type software. In Proceedings of the 11th IET International Conference on AC and DC Power Transmission, Birmingham, UK, 10–12 February 2015. [Google Scholar]
Variable | Value | Unit |
---|---|---|
100 | [kV] | |
50 | [mH] | |
5 | ||
500 | ||
5 | ||
0.05 | [s] | |
10 | [kA] |
Variable | Value | Unit |
---|---|---|
290 | [uH] | |
17.7 | [uF] | |
1 | [mH] | |
1.5 | pu | |
4 | [kA] | |
17 | [ms] |
Converter 1, 2, 3 | Converter 4 | Unit | |
---|---|---|---|
Rated Power | 900 | 1200 | [MVA] |
Rated DC voltage | ±320 | ±320 | [kV] |
Rated DC Current | 1.406 | 1.875 | [kA] |
IGBT Blocking Current | 2.1 (1.5 pu) | 2.1 (1.12 pu) | [kA] |
AC Grid Voltage | 400 | 400 | [kV] |
Variable | Value | Unit |
---|---|---|
Length | 4 | [km] |
Resistance | 80 | [Ω] |
Critical current | 2 | [kA] |
Peak Current [kA] | Limited Peak Current [kA] | LF [-] | |
---|---|---|---|
Converter 1 | 11.09 | 3.98 | 2.78 |
Converter 2 | 9.55 | 4.05 | 2.35 |
Converter 3 | 8 | 1.58 | 5.05 |
Converter 4 | 9.83 | 1.50 | 6.51 |
Peak Current [kA] | Limited Peak Current [kA] | LF [-] | |
---|---|---|---|
Converter 1 | 4.25 | 2.49 | 1.70 |
Converter 2 | 4.57 | 2.94 | 1.55 |
Converter 3 | 1.49 | 1.23 | 1.20 |
Converter 4 | 1.72 | 1.07 | 1.60 |
Ref. | HVDC System (Fault Case) | DC CB | R-SFCL Model | Ic Rsfcl | I Red. (kA) | Fault Neutr. Time (ms) |
---|---|---|---|---|---|---|
[4] | 4 terminal 60 kV 1.5 kA (PtP) | Hyb | 2 state Exp MgTh | 1.8 kA 30 Ω | From 8 to 4.5 | 6.5 |
[8] | 3 terminal +160 kV 157 A | Hyb | 2 state | 0.18 kA 30 Ω | 1.8 | 5 |
[9] | 2 terminal 10 kV 10 MVA (PtP) | - | MgTh | 0.5 to 4 Ω | From 12.9 to 7.5 | 10 |
[10] | 4 terminal 320 kV 1.4/1.8 kA (PtP) | Hyb | Look up table | 20 Ω | From 7.34 to 4.65 | 4 |
[11] | 3 terminal 400 kV 500 MVA (PtG) | Mec | MgTh | 3 kA | 1.85 | <30 |
[13] | VSC 320 kV 1 kA | - | Exp | 10 Ω 20 Ω | 7 and 5 | 5 |
[14] | 2 terminal ±100 kV (PtP) | Hyb | Exp | 13 Ω | From 6.93 to 4.58 | - |
[16] | 320 kV 1.6 kA (PtG) | Hyb | Exp | 20 Ω | From 13.01 to 9.56 | 8.6 |
SC | 4-terminal 320 kV 1.4/1.8 kA (PtP) | Mec | Look up table | 2 kA 80 Ω | From 11.09 to 3.98 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, G.; Larruskain, D.M.; Etxegarai, A. Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids. Energies 2022, 15, 4605. https://doi.org/10.3390/en15134605
García G, Larruskain DM, Etxegarai A. Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids. Energies. 2022; 15(13):4605. https://doi.org/10.3390/en15134605
Chicago/Turabian StyleGarcía, Guillermo, D. Marene Larruskain, and Agurtzane Etxegarai. 2022. "Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids" Energies 15, no. 13: 4605. https://doi.org/10.3390/en15134605
APA StyleGarcía, G., Larruskain, D. M., & Etxegarai, A. (2022). Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids. Energies, 15(13), 4605. https://doi.org/10.3390/en15134605