Thermal Comfort—Case Study in a Lightweight Passive House
Abstract
:1. Introduction
- Predicted mean vote (PMV)—expressing, on a seven-point scale, the average thermal feeling rating of a large group of people;
- Predicted Percentage of Dissatisfied (PPD)—describing the percentage of people dissatisfied with the thermal conditions.
2. Materials and Methods
2.1. Case Study
2.2. Measurement of Microclimate Parameters in the Building
- Temperature measurement:
- Accuracy: 0.1 °C;
- Measurement range: −40–85 °C;
- Resolution: 0.1 °C.
- Relative humidity measurement:
- Accuracy: 2%;
- Range: 0–100%;
- Resolution: 0.1%.
- Accuracy: 0.3 °C;
- Range: −50–200 °C;
- Resolution: 0.1 °C;
- Diameter: 150 mm, ball 150 mm;
- Material: matte, blackened, copper, diameter.
2.3. Measurement of Outdoor Climate Parameters
2.4. Complementary Calculations
2.5. Assumptions for the Comfort Analysis
- During the day, two clothing insulation values were assumed: 0,5 clo (e.g., underwear, short-sleeved shirt, light pants, thin socks, and shoes [14]) and 1.0 clo (e.g., briefs, shirt, pants, jackets, socks, and shoes [14]), which correspond to the thermal insulation proposed for winter and summer as standard [15]. An activity of 1.0 met was assumed (seating, writing, and reading [63]).
- I (A) category—PMV < ±0.2 and PPD < 6%;
- II (B) category—PMV < ±0.5 and PPD < 10%;
- III (C) category—PMV < ±0.7 and PPD < 15%.
3. Results and Discussion
3.1. Outdoor Climate
3.2. Indoor Air Temperature and Relative Humidity
3.3. Surface Temperature
3.4. Radiant and Operative Temperature
3.5. PMV and PPD Indicators
3.6. Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piasecki, M.; Fedorczak-Cisak, M.; Furtak, M.; Biskupski, J. Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building. Sustainability 2019, 11, 2461. [Google Scholar] [CrossRef] [Green Version]
- Kisilewicz, T. Overheating of Low-Energy Buildings. Available online: http://beta.nis.com.pl/userfiles/editor/nauka/122013_n/Kisilewicz_12-2013.pdf (accessed on 9 June 2022).
- Mlakar, J.; Štrancar, J. Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy Build. 2011, 43, 1443–1451. [Google Scholar] [CrossRef]
- O’Donovan, A.; Murphy, M.D.; O’Sullivan, P.D. Passive control strategies for cooling a non-residential nearly zero energy office: Simulated comfort resilience now and in the future. Energy Build. 2021, 231, 110607. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Furtak, M.; Gintowt, J.; Kowalska-Koczwara, A.; Pachla, F.; Stypuła, K.; Tatara, T. Thermal and Vibration Comfort Analysis of a Nearly Zero-Energy Building in Poland. Sustainability 2018, 10, 3774. [Google Scholar] [CrossRef] [Green Version]
- Ballarini, I.; De Luca, G.; Paragamyan, A.; Pellegrino, A.; Corrado, V. Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance. Energies 2019, 12, 895. [Google Scholar] [CrossRef] [Green Version]
- Truonga, H.; Garvie, A.M. Chifley Passive House: A Case Study in Energy Efficiency and Comfort. Energy Procedia 2017, 121, 214–221. [Google Scholar] [CrossRef]
- Berr, S.; Whaley, D.; Davidson, K.; Saman, W. Near zero energy homes—What do users think? Energy Policy 2014, 73, 127–137. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Fabbri, K. A Brief History of Thermal Comfort: From Effective Temperature to Adaptive Thermal Comfort. Indoor Therm. Comf. Percept. 2015, 7–23. [Google Scholar] [CrossRef]
- Myhren, J.; Holmberg, S. Comfort temperatures and operative temperatures in an office with different heating methods. In Proceedings of the 8th International Conference and Exhibition of the Healthy Building, Lisboa, Portugal, 4–8 June 2006. [Google Scholar]
- Zhang, S.; Lin, Z. Standard effective temperature based adaptive-rational thermal comfort model. Appl. Energy 2020, 264, 114723. [Google Scholar] [CrossRef]
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- EN 16798-1:2019; Energy Performance of Buildings. Ventilation for Buildings. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Committee for Standardization: Brussels, Belgium, 2019.
- Humphreys, M.; Nicol, F. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy Build. 2002, 34, 667–684. [Google Scholar] [CrossRef]
- Humphreys, M.; Nicol, J. Effects of measurement and formulation error on thermal comfort indices in the ASHRAE database of field studies. ASHRAE Trans. 2000, 106, 493–502. [Google Scholar]
- Havenith, G.; Holmér, I.; Parsons, K. Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Almeida, R.; Ramos, N.; de Freitas, V. Thermal comfort models and pupils’ perception in free-running school buildings of a mild climate country. Energy Build. 2016, 111, 64–75. [Google Scholar] [CrossRef]
- Gilani, S.; Khan, M.; Ali, M. Revisiting’s Fanger’s thermal comfort model using mean blood pressure as a bio-marker: An experimental investigation. Appl. Therm. Eng. 2016, 109, 35–43. [Google Scholar] [CrossRef]
- Pan, D.; Lin, Z.; Deng, S. A mathematical model for predicting the total insulation value of a bedding system. Build. Environ. 2010, 45, 1866–1872. [Google Scholar] [CrossRef]
- Lin, Z.; Deng, S. A study on the thermal comfort in sleeping environments in the subtropics—Measuring the total insulation values for the bedding systems commonly used in the subtropics. Build. Environ. 2008, 43, 905–916. [Google Scholar] [CrossRef]
- Lan, L.; Pan, L.; Lian, Z.; Huang, H.; Lin, Y. Experimental study on thermal comfort of sleeping people at different air temperatures. Build. Environ. 2014, 73, 24–31. [Google Scholar] [CrossRef]
- Lu, Y.; Nu, M.; Song, W.; Liu, Y.; Wang, M. Investigation on the total and local thermal insulation of the bedding system: Effects of filling materials, weights and body postures. Build. Environ. 2021, 204, 108–161. [Google Scholar] [CrossRef]
- Berardi, U. Clarifying the new interpretations of the concept of sustainable building. Sustain. Cities Soc. 2013, 8, 72–78. [Google Scholar] [CrossRef]
- Mahdavi, A.; Doppelbauer, E. A performance comparison of passive and low-energy buildings. Energy Build. 2010, 42, 1314–1319. [Google Scholar] [CrossRef]
- Marszal, A.; Heiselberg, P.; Bourrelle, J.; Musall, E.; Voss, K.; Sartori, K.; Napolitano, A. Zero Energy Building—A review of definitions and calculation methodologies. Energy Build. 2011, 43, 971–979. [Google Scholar] [CrossRef]
- Voss, K.; Musall, E.; Lichtmeß, M. From Low-Energy to Net Zero-Energy Buildings: Status and Perspectives. J. Green Build. 2011, 6, 46–57. [Google Scholar] [CrossRef]
- Sartori, I.; Napolitano, A.; Vossc, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Altobello, A.; Misceo, M.; Russo, P.; Stefanizzi, P.; Vignola, I. Comparison of numerical and experimental performances of nZEB residential building in Putignano (Apulia Region). In Materials Science and Engineering, Proceedings of the IOP Conference Series: Materials Science and Engine, Palembang, Indonesia, 5–16 October 2019; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Kampelis, N.; Sifakis, N.; Kolokotsa, D.; Gobakis, K.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response. Energies 2019, 12, 2177. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Feng, G.; Chi, D.; Liu, M.; Dou, B. Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings. Energies 2018, 11, 3252. [Google Scholar] [CrossRef] [Green Version]
- Passive House Institute (PHI). Available online: https://passivehouse.com (accessed on 24 May 2022).
- Sadineni, S.; Madala, S.; Boehm, R. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- PASSIPEDIA. What Is a Passive House? Available online: https://passipedia.org/basics/what_is_a_passive_house (accessed on 24 May 2022).
- The European Parliament and the Council of the European Union. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; The European Parliament and the Council of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Ridley, I.; Bere, J.; Clarke, A.; Schwartz, Y.; Far, A. The side by side in use monitored performance of two passive and low carbon Welsh houses. Energy Build. 2014, 82, 13–26. [Google Scholar] [CrossRef]
- Ridley, I.; Clarke, A.; Bere, J.; Altamirano, H.; Lewis, S.; Durdev, M.; Farr, A. The monitored performance of the first new London dwelling certified to the Passive House standard. Energy Build. 2013, 63, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Rohdin, P.; Molin, A.; Moshfegh, B. Experiences from nine passive houses in Sweden–indoor thermal environment and energy use. Build. Environ. 2014, 71, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Schnieders, J.; Feist, W.; Rongen, L. Passive Houses for different climate zones. Energy Build. 2015, 105, 71–87. [Google Scholar] [CrossRef]
- Dahlstrøm, O.; Sørnes, K.; Eriksen, S.; Hertwich, E. Life cycle assessment of a single-family residence built to either conventional-or passive house standard. Energy Build. 2012, 54, 470–479. [Google Scholar] [CrossRef]
- Proietti, S.; Sdringola, P.; Desideri, U.; Zepparelli, F.; Masciarelli, F.; Castellani, F. Life Cycle Assessment of a passive house in a seismic temperate zone. Energy Build. 2013, 64, 463–472. [Google Scholar] [CrossRef]
- Badea, A.; Baracu, T.; Dinca, C.; Tutica, D.; Grigore, R.; Anastasiu, M. A life-cycle cost analysis of the passive house ‘POLITEHNICA’ from Bucharest. Energy Build. 2014, 80, 542–555. [Google Scholar] [CrossRef]
- Galvin, R. Are passive houses economically viable? A reality-based, subjectivist approach to cost-benefit analyses. Energy Build. 2014, 80, 149–157. [Google Scholar] [CrossRef]
- Stephan, A.; Crawford, R.; Myttenaere, K. A comprehensive assessment of the life cycle energy demand of passive houses. Appl. Energy 2013, 112, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Chel, A.; Janssens, A.; De Paepe, M. Thermal performance of a nearly zero energy passive house integrated with the air–air heat exchanger and the earth?water heat exchanger. Energy Build. 2015, 96, 53–63. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P. European smart cities: The role of zero energy buildings. Sustain. Cities Soc. 2015, 15, 86–95. [Google Scholar] [CrossRef]
- Georges, L.; Skreiberg, Ø.; Novakovic, V. On the proper integration of wood stoves in passive houses: Investigation using detailed dynamic simulations. Energy Build. 2013, 59, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Rekstad, J.; Meir, M.; Murtnes, E.; Dursun, A. A comparison of the energy consumption in two passive houses, one with a solar heating system and one with an air-water heat pump. Energy Build. 2015, 96, 149–161. [Google Scholar] [CrossRef]
- Moran, F.; Blight, T.; Natarajan, S.; Shea, A. The use of Passive House Planning Package to reduce energy use and CO2 emissions in historic dwellings. Energy Build. 2014, 75, 216–227. [Google Scholar] [CrossRef]
- Leardini, P.; Manfredini, M.; Callau, M. Energy upgrade to Passive House standard for historic public housing in New Zealand. Energy Build. 2015, 95, 211–218. [Google Scholar] [CrossRef]
- Sage-Lauck, J.; Sailor, D. Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. Energy Build. 2014, 79, 32–40. [Google Scholar] [CrossRef]
- Němeček, M.; Kalousek, M. Influence of thermal storage mass on summer thermal stability in a passive wooden house in the Czech Republic. Energy Build. 2015, 107, 68–75. [Google Scholar] [CrossRef]
- Radoń, J.; Wąs, K.; Flaga-Maryanczyk, A.; Schnotale, J. Experimental and theoretical study on hygrothermal long-term performance of outer assemblies in lightweight passive house. J. Build. Phys. 2018, 41, 299–320. [Google Scholar] [CrossRef]
- Wąs, K. Wpływ Konstrukcji Ściany Lekkiej Szkieletowej na Zjawiska Cieplno-Wilgotnościowe w Budynku Pasywnym (Impact of Light-Frame Wall Structure on Hygrothermal Performance in a Passive House). Ph.D. Thesis, Cracow University of Technology, Kraków, Poland, 2016. [Google Scholar]
- Kaklauskas, A.; Rute, J.; Zavadskas, E.; Daniuna, A.; Pruskus, V.; Bivainis, J.; Plakys, V. Passive House model for quantitative and qualitative analyses and its intelligent system. Energy Build. 2012, 50, 7–18. [Google Scholar] [CrossRef]
- Langer, S.; Bekö, G.; Bloom, E.; Widheden, A.; Ekbe, L. Indoor air quality in passive and conventional new houses in Sweden. Build. Environ. 2015, 93, 92–100. [Google Scholar] [CrossRef]
- Fokaides, P.; Christoforou, E.; Ilic, M. Performance of a Passive House under subtropical climatic conditions. Energy Build. 2016, 133, 14–31. [Google Scholar] [CrossRef]
- Radoń, J.; Wąs, K.; Flaga-Maryańczyk, A.; Antretter, F. Thermal Performance of Slab on Grade with Floor Heating in a Passive House. Tech. Trans. Civ. Eng. 2014, 3, 405–413. [Google Scholar]
- Nawalany, G.; Sokołowski, P. Building–Soil Thermal Interaction: A Case Study. Energies 2019, 12, 2922. [Google Scholar] [CrossRef] [Green Version]
- Michalak, P. Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland. Energies 2021, 14, 860. [Google Scholar] [CrossRef]
- Thermishe Behaglikheit. Available online: http://www.bosy-online.de/thermische_Behaglichkeit.htm (accessed on 11 May 2022).
- ASHRAE Handbook—Fundamentals. Available online: https://www.ashrae.org/technical-resources/ashrae-handbook (accessed on 11 May 2022).
- Climate.OneBuilding.Org. Available online: https://climate.onebuilding.org/WMO_Region_6_Europe/POL_Poland/index.html (accessed on 11 May 2022).
- Foster, J.; Sharpe, T.; Poston, A.; Morgan, C.; Musau, F. Scottish Passive House: Insights into Environmental Conditions in Monitored Passive Houses. Sustainability 2016, 8, 412. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Average heat transfer coefficient of opaque, outer building walls | 0.08 W·m−2·K−1 |
Heat transfer coefficient of windows (3 glass panes) | 0.74 W·m−2·K−1 |
Solar heat gain coeficient (average) | 0.6 |
Efficient heat recovery ventilation unit | 93% |
Airtightness, ACH | 0.5 h−1 |
Heating energy demand | 7.5 kWh·m−2·year−1 |
Primary energy demand | 104.4 kWh·m−2·year−1 |
Temperature | Relative Humidity | |||||
---|---|---|---|---|---|---|
Bedroom | Livingroom | Bathroom | Bedroom | Livingroom | Bathroom | |
Bedroom | 1.000 | 0.680 | 0.878 | 1.000 | 0.891 | 0.872 |
Livingroom | 0.680 | 1.000 | 0.686 | 0.891 | 1.000 | 0.858 |
Bathroom | 0.878 | 0.686 | 1.000 | 0.872 | 0.858 | 1.000 |
1 clo | 0.75 clo | 0.5 clo | ||||
---|---|---|---|---|---|---|
Parameter | hours | % | hours | % | hours | % |
I category | 2027 | 34.7 | 599 | 10.3 | 149 | 2.6 |
II category | 2268 | 38.8 | 1343 | 23.0 | 255 | 4.4 |
III category | 951 | 16.3 | 1153 | 19.7 | 300 | 5.1 |
Beyond applicability—cool | 503 | 8.6 | 2750 | 47.1 | 5141 | 88.0 |
Beyond applicability—warm | 99 | 1.7 | 0 | 0.0 | 0 | 0.0 |
2.0 clo | 3.7 clo | |||
---|---|---|---|---|
Parameter | hours | % | hours | % |
I category | 403 | 13.8 | 840 | 28.8 |
II category | 590 | 20.2 | 857 | 29.3 |
III category | 403 | 13.8 | 390 | 13.4 |
Beyond applicability—cool | 1497 | 51.3 | 383 | 13.1 |
Beyond applicability—warm | 27 | 0.9 | 450 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wąs, K.; Radoń, J.; Sadłowska-Sałęga, A. Thermal Comfort—Case Study in a Lightweight Passive House. Energies 2022, 15, 4687. https://doi.org/10.3390/en15134687
Wąs K, Radoń J, Sadłowska-Sałęga A. Thermal Comfort—Case Study in a Lightweight Passive House. Energies. 2022; 15(13):4687. https://doi.org/10.3390/en15134687
Chicago/Turabian StyleWąs, Krzysztof, Jan Radoń, and Agnieszka Sadłowska-Sałęga. 2022. "Thermal Comfort—Case Study in a Lightweight Passive House" Energies 15, no. 13: 4687. https://doi.org/10.3390/en15134687
APA StyleWąs, K., Radoń, J., & Sadłowska-Sałęga, A. (2022). Thermal Comfort—Case Study in a Lightweight Passive House. Energies, 15(13), 4687. https://doi.org/10.3390/en15134687