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Abstract: Thermodynamic models are usually employed to predict formation condition of hydrates.
However, these thermodynamic models usually require a large amount of calculations to approach
phase equilibrium. Additionally, parameters included in the thermodynamic model need to be
calibrated based on the experimental data, which leads to high uncertainties in the predicted results.
With the rapid development of artificial intelligence (AI), machine learning as one of sub-discipline
has been developed and been widely applied in various research area. In this work, machine learning
was innovatively employed to predict the formation condition of natural gas hydrates to overcome
the high computation cost and low accuracy. Three data-driven models, Random Forest (RF), Naive
Bayes (NB), Support Vector Regression (SVR) were tentatively used to determine the formation
condition of hydrate formed by pure and mixed gases. Experimental data reported in previous
work were taken to train and test the machine learning models. As a representative thermodynamic
model the Chen–Guo (C-G) model was used to analyze the computational efficiency and accuracy of
machine learning models. The comparison of results predicted by C-G model and machine learning
models with the experimental data indicated that the RF model performed better than the NB and
SVR models on both computation speed and accuracy. According to the experimental data, the
average AADP calculated by the C-G model is 7.62 times that calculated by the RF model. Meanwhile,
the average time costed by the C-G model is 75.65 times that by the RF model. Compared with the
other two machine learning models, the RF model is expected to be used in predicting the formation
condition of natural gas hydrate under field conditions.

Keywords: gas hydrate; machine learning model; thermodynamic model; equation of state; Random
Forest

1. Introduction

“Gas hydrates” are crystalline solid inclusion compounds, composed of multiple
cavities caging individual gas molecules. The structure of the gas hydrate is determined
by two aspects: the size of the “guest” gas molecule and the composition of gas mixture.
Three types of hydrate structures have been determined, i.e., sI, sII, and sH [1]. Commonly
encaged gases are methane, ethane, propane, carbon dioxide, and hydrogen sulfide, etc.
Natural gas hydrate is a non-stoichiometric clathrate compound formed by water molecules
and methane molecules under certain temperature and pressure conditions. Back in 2007,
hydrate was considered to be a potential unconventional energy resource [2]. Shortly
afterwards, the natural gas hydrate that dominates the hydrate provides a practical solution
to the demand for alternative energy. Exploration and development of unconventional
natural gas resources is considered an important step in the development and utilization
of hydrates.

Exploration and development of unconventional natural gas resources, such as shale
gas and natural gas hydrate, are important to the challenges of energy security faced by
the world. As an energy storage medium, one m3 natural gas hydrate contains as much as
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164~180 m3 of natural gas (standard temperature and pressure (STP)). A total of 97% of
hydrate resources are explored in the submarine and the rest is buried in permafrost [3,4].
The natural gas hydrates are metastable, and its stability will be affected by pressure and
temperature [5]. Moreover, the formation of hydrate is affected not only by temperature
and pressure, but also the guest gases and their combinations [6]. Therefore, to predict the
formation of hydrate formed by pure gases and their compositions is a challenging work.

Hydrate formation experiments are usually carried out to investigate the formation
conditions of hydrates formed by pure gases and gas mixtures [7]. Additionally, based on
the thermodynamic equilibrium theories, some thermodynamic statistical models were pro-
posed to predict the hydrate stability conditions [8,9]. With the development of computing
power, the thermodynamic models are increasingly employed to characterize the formation
of hydrate due to their flexibility and liability. Among the thermodynamic models the
vdW-P model [10] is the earliest and most widely used one to predict the hydrate formation
conditions. Most of the existing thermodynamic models are derived from the vdW-P
model, such as Parrish and Prausnitz [11], Ng and Robinson [12], Tohidi et al. [13], Chen
and Guo [14], Klauda and Sandler [15], Ballard and Sloan [16], and Lee and Holder [17].
These thermodynamic models are based on three phase equilibrium in the bulk systems,
and usually require large amount of computing time to approach the equilibrium state with
different accuracies. Additionally, parameters embedded in the thermodynamic models
need to be adjusted to match the experimental data well, which introduce human errors
into the results. Therefore, it is necessary to propose a new model with high efficiency and
high accuracy.

Machine learning as a branch of artificial intelligence is one of the fastest growing
fields in computer science that are designed to emulate human intelligence by learning
from the surrounding environment [18,19]. It is a data analysis method that automates
the construction of analysis models. Machine learning can learn from data, recognize
patterns, and make decisions with minimal human intervention [20]. There are many types
of machine learning [18], including (a) Supervised Learning/Semi-Supervised Learning;
(b) Unsupervised Learning; (c) Reinforced Learning [21]. Supervised Learning and Semi-
Supervised Learning infer the underlying relationship between the observed data, when
the amount of observed data labeled is greater than zero. They can solve the problems of
“classification” and “regression”. Unsupervised learning applies to all cases where the data
are unlabeled and aims to discover the hidden structure between the given data, which
mainly solves the problem of “Clustering” and “outlier detection”. Reinforcement learning,
another area of machine learning, involves exploration of an adaptive sequence of actions
or behaviors by an intelligent agent (RL-agent) in a given environment. Its motivation
is maximizing the cumulative reward given data, and is mostly used in decision-making
problems (e.g., a computer playing chess) [22–24].

If the label in Supervised Learning is discrete, it can be handled by classification
algorithms. In another case, the data with labels being continuous should be handled by
regression algorithms. Classification is mostly used in prediction, pattern recognition, and
outlier detection, whereas regression is used for prediction and ranking. The progress of
selecting machine learning methods is shown in Figure 1. In pattern regression, the amount
of data is a critical factor affecting the performance [25]. The degree of convergence of
the algorithm depends largely on the amount of data and computational resources. In the
practical case, limited data and other resources will cause the model to overfit the training
data by losing its generalization [26]. Data augmentation can strengthen the learning of
ontology features and prevent overfitting in machine learning, improve generalization [27].

However, there are a variety of machine learning models with high computational
efficiency and accuracy, few works on the application of machine learning method to the
prediction of hydrate formation were previously reported. The aspects of the machine
learning model to be applied in this article belong to the category of “regression”. The ob-
jective of this work is to introduce the machine learning methods into calculating formation
conditions of hydrate to improve the efficiency and accuracy of prediction. The Python
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language was used to complete all the work. Three machine learning models, including
Random Forest (RF), Naive Bayes (NB), and Support Vector Regression (SVR), were firstly
selected for calculating the hydrate formation conditions. Subsequently, the machine learn-
ing models were trained and tested by experimental data reported in the previous works.
The computational efficiency and accuracy of the machine learning models were compared
with those of the conventional thermodynamic Chen–Guo model. By summarizing the
discussion on the comparison conclusions were finally drawn. This work provides an
efficient and accurate method for predicting the formation condition of hydrates formed
by different guest gases and their mixtures, and guidance for the exploration of natural
gas hydrate.
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2. Methodologies and Experimental Data
2.1. Machine Learning Model Selection

Machine learning is the study of computer algorithms that can be improved auto-
matically through the given data or the past experiences by optimizing the performance
of computer. The supervised and semi-supervised machine learning were chosen for the
regression prediction analysis. A typical example of supervised learning and unsupervised
learning is GBDT (Gradient Boosting Decision Tree), RF (Random Forest), SVM (Support
Vector Machine), Naive Bayes (NB), LR (Logistic Regression), etc. [28]. Random Forest (RF),
Naive Bayes (NB), and Support Vector Machine (SVM) were selected as statistical learning
models to predict the formation conditions of hydrates.

2.1.1. Random Forest (RF)

By adding a layer of randomness to bagging (bootstrap aggregating [29]), Random
Forest was proposed by Breiman [30] as a bagging algorithm in ensemble learning. RF is
built on the basis of decision tree, which is different from the standard trees. Randomly
select a part of the data from the original dataset, and construct a sub-dataset of the same
length and size as the original dataset. The data in the sub-data set can be repeated.
After that, use the sub-dataset to build a sub-decision tree. Select a part of the result
features obtained by each decision tree, and finally select the optimal result feature from
the randomly selected part of the result features [31].

Because the work performed in this paper is to predict the hydrate formation con-
ditions, it belongs to the regression model category. The RF for regression is formed by
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growing trees depending on a random vector, its predictor is formed by taking the average
over k of the growing trees [30]. The mathematical model of RF is as follows:

G(x) =
1
m

m

∑
i=1

gi(x) (1)

where gi(x) represents the value of each base learner.
The model is not determined by specific eigenvalues or combinations of features, and

the final prediction results are averaged, giving the overall model results generalization
performance [32] and decreasing the average error of model results. In this paper, a total of
15 decision trees are used to aggregate into a RF model. Moreover, a strategy of eight-fold
cross-validation was adopted during training models.

2.1.2. Naive Bayes (NB)

Naive Bayes (NB) is one of the most efficient and effective inductive learning algo-
rithms for machine learning and data mining [33]. It relies on an assumption that the input
variables are independent each other, but it performs well even under conditions where
the algorithm is not ideal. Compared with NB’s application in classification, it has more
limitations in regression. Although its algorithm is relatively simple, NB is surprisingly
effective and immensely appealing and performs well in most classification tasks due
to its more accurate than other complex methods [34]. This is because its algorithm is
no need to applicate complex iterative parameter estimation schemes to large datasets,
which facilitates construction and use [24]. The algorithm of NB is briefly described by the
following.

Y is defined as a numeric target value, and an example E is regard as one set consisting
of m attributes X1, X2, . . . , Xm. When NB makes regression, each attribute is numeric,
treated as a real; number or nominal. in which case it is a set of unordered values. P(Y|E)
represents the probability density function of the target value. NB can estimate it by
applying Bayes’ theorem and designating independence of the attributes X1, X2, . . . , Xm
given the target value Y. Bayes’ theorem states that:

p(Y|E) = p(E, Y)∫
p(E, Y)dY

=
p(E|Y)p(Y)∫
p(E|Y)p(Y)dY

(2)

where P(E|Y) is the probability density function (pdf) of the example E at a given target
value Y, and the prior p(T) is the pdf of the target value before any examples have been seen.

2.1.3. Support Vector Regression (SVR)

Support Vector Machine (SVM) are supervised learning methods that analyze data
and recognize patterns [24]. In its learning phase, it needs to solve the convex constrained
quadratic programming (CCQP) problem to find a set of parameters [35]. We provide the
equation of convex constrained quadratic programming below.

min
1
2
‖ω‖2 + C ∑

i
ξi (3)

s.t. yi(ω·xi + b) ≥ 1− ξi ξi ≥ 0 (4)

where yi = (ω·xi + b) represents hyperplane for SVM; for SVR, it represents a straight line.
C is the penalty factor that represents the contribution weight of points with abnormal
distribution to the objective function, C ∑i ξi is the penalty function term, ξi is called slack
variable. ω and b are the parameters to be solved.

Support Vector Regression (SVR) is a VC-theory based regression derived from Sup-
port Vector Machine (SVM) method which can overcome the difficulty of determining the
structure of traditional Neural Network (NN) and the number of hidden neurons [36].
Among them, VC-theory was developed by Vapnik and Chervonenkis [37] and Vap-
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nik [38,39] over the last three decades. VC-theory characterizes properties of learning
machines, which enables learning machines to generalize well to unseen data [40]. SVR
differs from SVM in kernels used, sparse solutions, VC control margins, and the number of
support vectors.

SVR meta-parameters, the loss function ε and the error penalty factor C determine the
quality of the SVR models. In addition, the kernel function also directly affects the end of
the model. The commonly used polynomial kernel function (Equation (5)) was employed
in this study.

K
(
x, x′

)
=
(

γxTx′ + r
)d

, γ > 0 (5)

The comparison of the three machine learning models is listed in Table 1.

Table 1. Characteristics of the three statistical learning methods.

Methods RF NB SVR

Applicable issues Multi-class classification,
regression

Multi-class classification,
regression

Two-class classification,
regression

Model characteristics Build multiple decision trees

Joint probability distribution
of features and categories,
conditional independence
assumption

Separating hyperplane

Model type Additive model Generative model Discriminant model

Learning strategy Integrate multiple
decision trees

Maximum likelihood
estimation

from the
misclassification point

Learned loss function Square loss and
exponential loss Log likelihood loss Hinge loss

Learning algorithm Integrated algorithm
composed of decision tree

Probability calculation
formula, EM algorithm

Sequence Minimum
Optimization algorithm
(SMO)

Advantage

1. Training can be
highly parallelized;
2. The trained model has
small variance and strong
generalization ability;
3. Insensitive to some
missing data.

1. Fast and easy to train;
2. Not very sensitive to
missing data.

1. Can make predictions on
small sample data;
2. It can handle
high-dimensional features;
3. The classification plane
does not depend on all data,
but is only related to a few
support vectors.

Disadvantage

1. Easy to fall into overfitting;
2. Under special
circumstances, the attribute
weights produced by random
forests are not credible.

If the input variables are
related, problems will occur.

1. Difficult to train;
2. Need to find a suitable
kernel function;
3. Sensitive to missing data.

2.2. Chen–Guo (C-G) Model

To compare the computational efficiency and accuracy of machine learning models
with conventional thermodynamic models, the Chen–Guo model was selected as the repre-
sentative of thermodynamic model. The Chen–Guo (C-G) model [41] is primarily a fugacity
based approach for hydrate phase stability prediction. Suggesting that the adsorption
process of gas molecules by water molecules is not similar to that of Langmuir isother-
mal adsorption, Chen and Guo proposed a new two-step hydrate formation mechanism.
Equating the fugacity of guest gas in gas phase with that in hydrate phase can yield.

The left-side of Equation (6) fi denotes the fugacity of gas species i in gas phase, and
the right-side of Equation (6) means the fugacity of the corresponding gas i in hydrate
phase; µw stands for the chemical potential of water; λ2 represents a constant related only
to the hydrate structure equaling 3/23 for structure I, and 1/17 for structure II, respectively;



Energies 2022, 15, 4719 6 of 18

the Langmuir constant Ci represents the interaction between the guest i in the small cage
(512) and the water molecules of the surrounding cage; θi represents the fraction of the
small cavities occupied by the gas species i, and is estimated by Equation (7); α represents
hydrate structure parameters in the model, α = λ1

λ2
; xi in Equation (6) denotes mole fraction

of hydrate form by gas component i in large cavity, and is subject to Equation (8).

fi = xiexp
(

∆µw

RTλ2

)
× 1

C1i
×
(

1−
k

∑
i=1

θi

)α

(6)

θi =
Ci fi

1 + ∑k
i=1 Ci fi

(7)

k

∑
i=1

xi = 1.0 (8)

In Equation (6) the fugacity of gas species i fi in gas phase can be calculated using the
widely used cubic equation of state Soave–Redlich–Kwong equation (SRK [42]).

ln
(

fi
φ

)
=

bi
bm

(Zm − 1)− ln(Zm − Bm) +
Am

Bm

(
bi
bm
− 2

am
∑

j
xjaij

)
ln
(

1 +
Bm

Zm

)
(9)

where fi also denotes the fugacity of species i in gas phase; Zm means the compression
factor for the m-component; xj indicates the molar fraction of j-gas component; φ means the
partial pressure, φ =

(
xj × P

)
.

The coefficients Am and Bm for a mixture of components in the vapor phase are
determined using certain rules for mixing. They can calculate by the following expression:

Am =
amP

(RT)2 (10)

Bm =
bmP
RT

(11)

am = ∑
i

∑
j

yiyjaij (12)

bm = ∑
i

yibi (13)

Z3
m − Z2

m +
(

Am − Bm − B2
m

)
Zm − AB = 0 (14)

where aij =
(
aiaj
)0.5(1− kij

)
. Zm is the compressibility factor, its value is equal to the

largest real root of Equation (14). kij is the symmetrical matrix containing binary interaction
coefficients for the components of gas mixture. yi and yj are mole or volume fractions of
component i, j in gas mixture, respectively. The coefficients ai and bi can be obtained by the
following expression:

ai = 0.42747αi(T)
Pri

T2
ri

(15)

bi = 0.08664
Pri
Tri

(16)

where Tri = T/Tci is the reduced temperature, Pri = P/Pci is the reduced pressure. T, P
are the temperature and pressure of the system, Tci, Pci are the critical temperature and
pressure for the substance i. αi(T) is the dimensionless coefficient which becomes unity at
T = Tci, and can be obtained by the following expression:

ai(T) =
[
1 + mi

(
1−

√
Tri

)]2
(17)
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where the parameter mi is calculated by

mi = 0.48 + 1.574ωi − 0.176ω2
i (18)

with as the acentric factor of a substance I, and is an indicator of the nonsphericity of the
field of intermolecular forces.

The binary interaction parameters and related physical properties of N2, CO2, CH4,
C2H6, and C3H8 were listed in Tables 2 and 3.

Table 2. Binary interaction parameters in SRK-EoS.

kij

Component

N2 CO2 CH4 C2H6 C3H8

N2 0 −0.0171 0.031199 0.031899 0.0886
CO2 −0.0171 0 0.0956 0.1401 0.1368
CH4 0.031199 0.0956 0 0.002241 0.006829
C2H6 0.31899 0.1401 0.002241 0 0.001258
C3H8 0.0886 0.1368 0.006829 0.001258 0

Table 3. Related physical properties of components in this work.

Gas
Name

Critical
Temperature, Tc (K)

Critical
Pressure, Pc (Mpa)

Acentric
Factor, ω

Molar
Weight, MW(g/mol)

N2 −146.96 3394.37 0.04 −146.96
CO2 30.95 7370 0.23894 30.95
CH4 −82.45 4640.68 0.011498 −82.45
C2H6 32.38 4883.85 0.0986 32.38
C3H8 96.75 4256.66 0.1524 96.75

2.3. Data Preparation

In this work, the experimental data used to train and test the machine learning models
were taken from a previous work [43]. The experiments were conducted in a high-pressure
autoclave with a volume of about 500 mL. the container made from corrosion and acid-
resistant stainless steel, was designed for pressures up to 25 MPa. The autoclave was
mounted inside a pressureless heating sleeve filled with a circulating water/glycol mixture
to keep temperature constant. The measuring principle selected was the isochoric method
allowing hydrate formation conditions to be determined only from the measured pressure
and temperature. The schematic of apparatus used in the work of Nixdorf and Oellrich [43]
is shown in Figure 2.
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Pure CH4, N2, CO2, C2H6, C3H8, and their combinations were used as guest gases
to form hydrates. A total of nine cases were selected in this study, including two pure
gases, two binary gas combinations, three ternary gas combinations, and one quaternary
gas combination (details are listed in Table 4). To prevent the machine learning model from
overfitting, we use data augmentation to increase the order of magnitude of training data
for machine learning from 102 to 103.

Table 4. Design of experiments. (The data are arranged in order, from left to right, from top to bottom,
the data gradually becomes larger, where Peq. is the equilibrium pressure at which hydrate is formed
at a given temperature).

System T/K Peq./MPa T/K Peq./MPa T/K Peq./MPa

P1: 100% CH4

273.49 2.716 281.12 5.822 285.99 9.874
274.36 2.961 281.38 6 286.95 10.922
275.11 3.18 282.07 6.428 287.85 12.314
276.29 3.564 283.04 7.139 288.62 13.475
277.46 3.998 283.39 7.43 289.44 15

278 4.244 284.01 7.925 290.84 17.861
278.25 4.348 284.17 7.972 291.57 19.165
279.1 4.733 284.18 7.97 291.6 19.195
280.16 5.304 285.08 8.928

P2: 100% N2

273.67 16.9350 275.77 20.7480
274.07 17.6680 277.27 24.0920
275.11 19.5210

B1: 10.74% N2 +
89.26% CH4

278.7 4.938 288.68 14.976
282.03 6.943 290.97 20.023
285.64 10.399 292.44 24.428

B2: 9.53% C2H6 +
90.47% CH4

278.21 2.254 288.12 7.208 294.63 19.891
279.6 2.628 290.44 9.992 295.52 23.198
283.69 4.191 292.97 14.849

B3: 0.03% N2 +
5% CO2 + 94.97% CH4

276.85 3.454 287.41 10.935
279.95 4.868 290.76 16.827
283.49 7.035 293.41 23.979

T1: 4.18% N2 +
4.89% C2H6 + 90.93% CH4

276.85 3.454 287.41 10.935
279.95 4.868 290.76 16.827
283.49 7.035 293.41 23.979

T2: 2.93% C3H8 +
12.55% C2H6 + 84.52% CH4

277.36 2.575 287.45 8.36 294.23 23.833
280.91 3.803 290.93 13.806
284.9 6.096 292.82 18.82

T3: 1.00% C3H8 +
3.98% C2H6 + 95.02% CH4

277.1 1.198 291.52 6.924 298.14 24.474
281.56 1.982 294.32 11.207
287.42 3.999 296.14 17.034

T4: 0.02% N2 +
5.13% C2H6 + 5.25% CO2 +

89.60% CH4

279.01 2.964 290.04 11.876
283.54 5.003 292.28 17.515
287.08 7.735 294.21 24.326

2.4. Error Analysis

In terms of the performance of machine learning models, the mean absolute percentage
error (MAPE), mean absolute error (MAE), root mean square error (RMSE), mean squared
error (MSE) were used to assess computational accuracy. Additionally, the coefficient of
determination (R2) was used to quantify the strength of relationship between the indepen-
dent variables and the dependent variables. The definitions of MAPE, MAE, RMSE, MSE,
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R2 are given by Equations (19)–(23). Higher R2 or lower MAPE, MAE, RMSE, MSE indicate
higher precision and accuracy.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (19)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (20)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (21)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (22)

R2 = 1− SSE
SST

= 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (23)

where yi is the predictive value, ŷu is the real value, y is the average of real value, the
full name of SSE is the Sum of Squares Error, and the full name of SST is the Sum of
Squares Total.

3. Results and Discussion

To investigate the feasibility of machine learning methods in predicting the hydrate
formation conditions, the computational accuracy of machine learning models was tested
based on hydrate formation experiments. In order to evaluate the computational efficiency,
the computational time costed by the three machine learning models and the thermody-
namic Chen–Guo model were compared.

Gas compositions and temperatures used in the hydrate formation experiments were
taken as input data during training and testing the machine learning models. The pressure
at which hydrate were formed at given temperature and gas composition was employed to
validate the computational accuracy and efficiency of machine learning models. A total of
70% of the experimental data randomly selected from the total data were used to train the
three machine learning models, and the rest were used to test the trained models.

3.1. Computational Accuracy
3.1.1. Comparison of Machine Learning Models with Experimental Data

The predicted pressures of hydrate formation by the machine learning models are
shown in Figure 3. From Figure 3a it can be found that for the pure methane hydrate the
predicted formation pressure by machine learning models match the experimental data
well. SVR and NB have almost the exact same behavior. At the same time, there is a large
deviation from the experimental value. However, there are also slight deviations in the
results of the two. In Figure 3a,d–f, we can see that they both show different results at
individual prediction points. NB performs slightly better than SVR. SVR underperformed
in two or three combinations of N2, CO2, CH4, C2H6, and C3H8, and NB underperformed
in two or three combinations of N2, CH4, C2H6, and C3H8. The two models deviate most
strongly for the combination of nitrogen and methane, see Figure 3c. The guess we provide
is that the importance of nitrogen is higher than that of methane. When nitrogen and
methane exist at the same time, the SVR and NB models focus more on following the
law of nitrogen, which makes it inapplicable to the mixture of the two. The convincing
explanation remains to be found.
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The reason for the large deviation of NB is that the data after data augmentation does
not fully meet the independence assumption of NB. Regression performance of NB is mainly
controlled by independence assumption [34]. After data augmentation, the independence
between data is weakened, which leads to poor regression performance of NB. For a more
intuitive explanation of the impact of independence assumption on NB prediction results,
we draw a schematic diagram of machine learning models without data enhancement, as
shown in Figure 4. Focus on NB prediction results in Figures 3c,d and 4c,d.
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Figure 4. Comparison chart of prediction results using two prediction methods: (a) description of the
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system; (e) description of the B3 system; (f) description of the T1 system; (g) description of the T2
system; (h) description of the T3 system; and (i) description of the T4 system.

SVR also has a large deviation because SVR does not apply to situations where
the sample size is particularly large [22]. We also obtain the performance of SVR in
the original data (without data enhancement) training, see Figure 4. Compared with
Figures 3c,d and 4c,d, we can find that SVR performs better when the sample size decreases
and the kernel function remains unchanged.

RF performance is good in almost all plots, in Figure 3g–i, there is a slight deviation.
Comparing Figures 3 and 4, it is not difficult to find that data augmentation is helpful to im-
prove the accuracy of RF prediction results. This is most prominent in Figures 3c,I and 4c,i.

From all figures listed in Figure 3, we can find that the predicted results using the
machine learning method are instable, some predicted points do not fit the trend of the
curve, and the calculated accuracy depends on the number of sample training and the
number of data.
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RF uses an eight-fold cross-validation training method. Among the eight-fold results,
the MAPE of the optimal result reaches 11.53% . Calculating the MAPE with all the data, the
MAPE is obtained as 1.24% . The detailed eight-fold cross-validation training effect is shown
in Figure 5. At the same time, RF can evaluate the importance of features. In the process of
training three machine learning algorithms, six parameters are selected as the main features,
which are the contents of N2, CO2, CH4, C2H6, C3H8 in mixture and temperature at which
hydrates are expected to be formed. The predicted value is equilibrium pressure of hydrate
formation under given gas mixture and temperature. Compared with other four guest
gases, the content of nitrogen is identified as the more important parameter (Figure 6).
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This work employed three machine learning models, namely RF regression model, NB
regression model and SVR model. MAPE, MAE, RMSE, MSE, R2 were used to evaluate the
machine learning models. The errors are listed in Table 5. It can be seen from the table that
the results of RF are better than those of the other two, which implies that the RF model is a
better solution.

Table 5. The error comparison of training samples.

Error Index
Methods

RF NB SVR

MAPE 1.24% 23.66% 24.21%
MAE 0.16 0.25 0.31

RMSE 0.23 0.32 0.45
MSE 0.10 0.18 0.62

R2 1.0000 0.9993 0.9993
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3.1.2. Comparison of Machine Learning Models with Chen-Guo Model

The formation conditions of hydrates formed by pure gas and mixed gases water
were evaluated employing thermodynamic C-G model. The evaluated results are shown
in Figure 3. Figure 3a,b show the predicted formation condition of methane and nitrogen
hydrates using the Chen–Guo model. From Figure 3a, it can be seen that for pure methane
hydrate, when the hydrate structure was Type I the evaluated formation pressures fitted the
experimental data well. When the temperature is lower (−6.66 ◦C~11.85 ◦C), the predicted
data were in good agreement with the measured data, while when the temperature is
higher (>11.85 ◦C), the simulated value is lower than the measured value. The overall fit is
better, and the AADP is smaller.

For pure nitrogen hydrate, we considered Type I and Type II hydrate structures.
Figure 3b shows that the structure of nitrogen hydrate is II type. Because of the different
antoine parameters (type I and type II) in the Chen–Guo model, the overall rising speed of
two type curve is different. The comparison of the calculated values with the experimental
values of binary gas hydrate was illustrated by Figure 3c,d. The B1 case contains 10.74%
N2 and 89.26% CH4 (Figure 3c). From Figure 3c,d we can find that when the formation
structure is type II, both the curves and AADP of the calculated results indicate a better
agreement with the measured data.

Compared with pure nitrogen hydrate, the formation pressure of hydrate formed by
mixture composed of nitrogen and other gases is lower. The reason is that when the content
of nitrogen in the mixture is higher than a certain value, the small molecule gas (methane)
is encaged in the small pores, reducing the pressure of macromolecular gas (nitrogen). In
the B2 case the gas mixture was composed of ethane and methane which both form type
I hydrates. Figure 3d indicates that the mixture consisting of ethane and methane forms
type I hydrate. As the temperature increases, the deviation of the simulated value from the
experimental value increases. At low temperatures (0.06–11.85 ◦C), the simulated results
matched the measured data well.

The comparison of the calculated formation conditions of hydrate formed by ternary
gas mixture with those of the experimental values are shown in Figure 3e–h. For the B3
case where the gas mixture is composed of N2, CO2, and CH4 (Figure 3e). We can find that
the fitting curves of the type I and type II structures basically overlap. The reason is that
the nitrogen accounts for 0.03% of the total components, therefore, the effect of nitrogen
on the structure of the type I hydrate is not obvious in this component. Since the type II
hydrate AADP is smaller than that of the type I hydrate, we believe that this component
forms a type II structure. It can be clearly seen from the image that the T1 component gas
generates a type II structure (Figure 3f), and the curve fits well with experimental points.
The experimental points are distributed on both sides of the curve, and the overall curve
trend follows the trend of the experimental points. Both the T2 component gas (Figure 3g)
and the T3 component gas (Figure 3h) showed that the fitting curve of type II structure
fits better with the experimental points, but the AADP is larger than that of type I, due
to the accurate hydrate formation conditions is more important, so the importance of the
degree of image matching is higher than the size comparison of AADP. In summary, for
the T2 and T3 components, we think that it generates a type II structure. Comparing the
T2 component and the B2 component, it is not difficult to find that small gas molecules,
such as ethane and methane, in the T2 component-C3H8-C2H6-CH4 system dissolve in the
small pores, reducing the generation of macromolecular gases (propane) pressure, so when
there is a small amount of propane in the gas component, it is easier to form type II hydrate.
The results of comparing the calculated values of the quaternary gas hydrate formation
conditions with the experimental values are shown in Figure 3i. The T4 components also
generate type II structures, and the type I and II structure curves of the T4 gas components
overlap. Most of the fitting curves show the simulated formation pressure under high
temperature conditions. The specific reasons need to be explored.
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Compared with the machine learning models, the accuracy of the prediction result of
the Chen–Guo model is lower. However, the overall trends of pressure curves match the
experimental value well.

According to the results of machine learning and Chen–Guo model simulation, the
comparison of computational accuracy with machine learning models was drawn in
Figure 7. The AADP (average absolute deviation percent) is used to describe computational
accuracy (see Equation (24)). For pure and quaternion cases, machine learning performed
better than Chen–Guo model on computational accuracy. The RF, NB, and SVR models are
3–36 times more accurate than the Chen–Guo model (see Figure 7a–d). For binary cases,
the RF performance is particularly outstanding, up to 40 times higher than the Chen–Guo
model. Although NB and SVR perform poorly in binary cases, this situation can also
be seen in the ternary cases (see Figure 7b,c). Although for the T1 in the ternary cases,
the prediction accuracy of SVR and NB is higher than that of Chen–Guo model, but the
performance is not outstanding. In general, the RF machine learning model is the most
stable and accurate in predicting the formation pressures of hydrates formed by pure gases
and their combinations.

AADP (%) =
1

Np

Np

∑
i=1

∣∣∣∣Pcal − Pexp

Pexp

∣∣∣∣× 100 (24)

where Pcal is the predictive value, Pexp is the experimental value, Np is the total number of
data points.

Figure 7. Accuracy of the models in calculating the formation pressure of hydrates formed by pure
gases and their combinations: (a) description of pure gas system; (b) description of binary gas system;
(c) description of ternary gas system; and (d) description of quaternion gas system.
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3.2. Comparison of Computing Time

The Chen–Guo model is based on iterative calculations for approaching the thermody-
namic equilibrium state. Each component needs to calculate the mole fraction xi in hydrate
phase, which requires a lot of computing time. To match the actual formation conditions
measured by the experiment the Antonie parameters need to be adjusted. In terms of
machine learning models, there is no need to adjust parameters and waste the time in
iterative calculations. Without relying on the theory of thermodynamic equilibrium, the
machine learning model finds laws from practical examples, consuming less time, and is
highly optimizable.

Figure 8 shows the comparison of computing time between three machine learning
models and Chen–Guo model. It can be seen that the computing time of the three machine
learning models is similar, and for different cases, it varies from 0.3 s to 3.8 s. The first
time-consuming model is RF, followed by SVR, and finally NB model. For RF model, B2
and T4 components consume the most computing time. They were found to have CH4 and
C2H6, and the components containing both gases were selected from all components: B2,
T1, T2, T3, and T4. It was found that T1, T2, and T3 did not take much time. There is no
rule obtained from the computing time of RF model. The data provided does not satisfy
the independence assumption of NB, and there is not so much time complexity in the
prediction. We believe that this is also the reason for little time change. As for SVR model,
the prediction performance is slightly worse than NB model, and the time consumption is
slightly more. Due to iterative calculations, Chen–Guo model needs 80~240 s to predict
formation pressure of different cases. Regular conclusion of calculation time costed by C-G
model and machine learning models to predict hydrate formation in different cases with
various gas mixtures was not obtained. The reason is inferred that the computing time is
independent on the gas composition for C-G model and machine learning models.
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4. Conclusions

In this work, the machine learning method was applied in calculating the formation
pressure of hydrate formed by pure gases and mixtures composed of different gases.
Experimental data previously reported were used to train and test the learning models.
A thermodynamic model, the Chen–Guo model was used to compare the computational
efficiency and accuracy of machine learning models. By discussing the results the following
conditions were drawn:

(1) After data augmentation, support vector machine regression cannot achieve the
desired prediction results directly. It also affects the independence of each feature and
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indirectly affects the prediction accuracy of Naive Bayes. They perform well in small
sample training. In this prediction, the independence between features decreases with
the increase in the number of samples, and the independence between features is not
enough to support Naive Bayes for accurate prediction.

(2) Comparisons of predicted results indicate that Random Forest performs better in
the stability and accuracy than the other two machine learning models. After data
augmentation, the prediction accuracy of Random Forest is greatly improved. Data en-
hancements can be used for data preprocessing when forecasting later using Random
Forest.

(3) In terms of computation time, Naive Bayes and Support Vector Regression take the
least computation time, followed by the Random Forest. The average time of Random
Forests is 2.497 s being substantially less than that of the Chen–Guo model (189 s).
In this work, the machine learning models show better performance in predicting
the formation conditions of hydrates formed by pure gases and mixtures. However,
the performance of machine learning model strongly depends on the training and
testing steps, which requires large amounts of data. Therefore, the experimental data
of hydrate formations are important to the performance of machine learning models.

Author Contributions: Conceptualization—Formal analysis and Software, H.T. and Z.Y.; Data
curation—Investigation and Methodology, Z.Y.; Funding acquisition—Project administration and
Resources, H.T.; Validation—Visualization and Writing—Original draft, Z.Y.; Supervision, H.T.;
Writing—Review and editing, H.T. and Z.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was performed in support of the National Natural Science Foundation of China
(Grant No. 41772247 and No. 41877185).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Key Laboratory of Groundwater Resources
and Environment, Ministry of Education, Jilin University for financial support and facilities, the
National Natural Science Foundation of China for financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Changyu, S.; Wenzhi, L.; Xin, Y.; Fengguang, L.; Qing, Y.; Liang, M.; Jun, C.; Bei, L.; Guangjin, C. Progress in research of gas

hydrate. Chin. J. Chem. Eng. 2011, 19, 151–162.
2. Sloan, E.D., Jr.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2007.
3. Makogon, Y.F. Perspectives for the development of gas hydrate deposits, Gas hydrates and permafrost. In Proceedings of the 4th

Canadian Permafrost Conference, Calgary, Alberta, 2–6 March 1982; pp. 299–304.
4. Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [CrossRef]
5. Kvenvolden, K. A primer on the geological occurrence of gas hydrate. Geol. Soc. Lond. Spec. Publ. 1998, 137, 9–30. [CrossRef]
6. Moridis, G.J.; Freeman, C.M. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and

heat flow in tight/shale gas systems. Comput. Geosci. 2014, 65, 56–71. [CrossRef]
7. Eslamimanesh, A.; Mohammadi, A.H.; Richon, D.; Naidoo, P.; Ramjugernath, D. Application of gas hydrate formation in

separation processes: A review of experimental studies. J. Chem. Thermodyn. 2012, 46, 62–71. [CrossRef]
8. Collett, T.S.; Kuuskraa, V.A. Hydrates contain vast store of world gas resources. Oil Gas J. 1998, 96, 90–95.
9. Khan, M.N.; Warrier, P.; Peters, C.J.; Koh, C.A. Review of vapor-liquid equilibria of gas hydrate formers and phase equilibria of

hydrates. J. Nat. Gas Sci. Eng. 2016, 35, 1388–1404. [CrossRef]
10. Platteeuw, J.; Van der Waals, J. Thermodynamic properties of gas hydrates. Mol. Phys. 1958, 1, 91–96. [CrossRef]
11. Parrish, W.R.; Prausnitz, J.M. Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Dev.

1972, 11, 26–35. [CrossRef]
12. Ng, H.-J.; Robinson, D.B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems. Ind. Eng.

Chem. Fundam. 1976, 15, 293–298. [CrossRef]

http://doi.org/10.1016/j.jngse.2009.12.004
http://doi.org/10.1144/GSL.SP.1998.137.01.02
http://doi.org/10.1016/j.cageo.2013.09.010
http://doi.org/10.1016/j.jct.2011.10.006
http://doi.org/10.1016/j.jngse.2016.06.043
http://doi.org/10.1080/00268975800100111
http://doi.org/10.1021/i260041a006
http://doi.org/10.1021/i160060a012


Energies 2022, 15, 4719 18 of 18

13. Tohidi, B.; Danesh, A.; Todd, A. Modeling single and mixed electrolyte-solutions and its applications to gas hydrates. Chem. Eng.
Res. Des. 1995, 73, 464–472.

14. Chen, G.-J.; Guo, T.-M. Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilibria 1996, 122,
43–65. [CrossRef]

15. Klauda, J.B.; Sandler, S.I. A Fugacity Model for Gas Hydrate Phase Equilibria. Ind. Eng. Chem. Res. 2000, 39, 3377–3386. [CrossRef]
16. Ballard, A.; Sloan, E., Jr. The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy.

Fluid Phase Equilibria 2002, 194, 371–383. [CrossRef]
17. Lee, S.Y.; Holder, G.D. Model for gas hydrate equilibria using a variable reference chemical potential: Part 1. AIChE J. 2002, 48,

161–167. [CrossRef]
18. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
19. El Naqa, I.; Murphy, M.J. What is machine learning? In Machine Learning in Radiation Oncology; Springer: Berlin/Heidelberg,

Germany, 2015; pp. 3–11.
20. Philbrick, K.A.; Weston, A.D.; Akkus, Z.; Kline, T.L.; Korfiatis, P.; Sakinis, T.; Kostandy, P.; Boonrod, A.; Zeinoddini, A.; Takahashi,

N. RIL-contour: A medical imaging dataset annotation tool for and with deep learning. J. Digit. Imaging 2019, 32, 571–581.
[CrossRef] [PubMed]

21. Ribeiro, M.; Grolinger, K.; Capretz, M.A. Mlaas: Machine learning as a service. In Proceedings of the 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 896–902.
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