Long-Term Thermal Cycling Test and Heat-Charging Kinetics of Fe-Substituted Mn2O3 for Next-Generation Concentrated Solar Power Using Thermochemical Energy Storage at High Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Evaluation of Redox Material
2.2. Long-Term Thermal Cycling Stability Test in Non-Isothermal Charge/Discharge Modes
2.3. Kinetic Analysis of Non-Isothermal HC Mode for the Long-Term Cycled Sample
3. Results and Discussion
3.1. Structural, Thermodynamic, Thermochemical, and Long-Term Thermal Stability
3.2. Kinetic Analysis of HC Mode for Long-Term Cycled Sample
3.3. Kinetic Analysis of the HC Mode for the As-Prepared Sample
3.4. Comparison with the Previous Kinetic Analysis of the HC Mode
Material | Atmosphere | Reaction Model | Equation (dα/dt) | References |
---|---|---|---|---|
As-prepared sample (Mn0.8Fe0.2)2O3 | Air:N2 = 4:1 | R3 (α = 0–1.0) | Present study | |
F1 (α = 0.46–1.0) | ||||
Long-term cycled sample (Mn0.8Fe0.2)2O3 | Air:N2 = 4:1 | A2 (α = 0.20–0.48) | Present study | |
R2 (α = 0.49–1.0) | ||||
Mn2O3 | N2 | F1 | [77] | |
(Mn0.8Fe0.2)2O3 | Ar | Sestak-Berggren (A3→A4) | [65] | |
(Mn0.33Fe0.67)2O3 | Ar | D3 | [69] | |
(Mn0.75Fe0.25)2O3 | N2 | A (n = determined by exp) | [66] | |
Mn2O3 | N2 | A2 | [79] | |
Air | A1.2 | |||
Mn2O3 | Ar | D1 | [80] |
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Encinas-Sánchez, V.; Batuecas, E.; Garcia, A.M.; Mayo, C.; Díaz, R.; Perez-Trujillo, F.J. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology. Sol. Energy 2018, 176, 688–697. [Google Scholar] [CrossRef]
- Giglio, A.; Lanzini, A.; Leone, P.; García, M.M.R.; Moya, E.Z. Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system. Renew. Sustain. Energy Rev. 2017, 74, 453–473. [Google Scholar] [CrossRef]
- Irwin, J.S.L.; Pfefferkorn, C.; Pitchumani, R. Thermochemical energy storage for concentrating solar thermal (CST) systems. In Advances in Concentrating Solar Thermal Research and Technology; Santigosa, L.R., Blanco, M.J., Eds.; Woodhead Publishing Series in Energy: Amsterdam, The Netherlands, 2016; pp. 247–266. [Google Scholar]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Arce, P.; Medrano, M.; Gil, A.; Oró, E.; Cabeza, L.F. Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Appl. Energy 2011, 88, 2764–2774. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- 10 MW Solar Thermal Power Plant for Southern Spain; Final technical progress report for NNE5-1999-356 contract with the European Commission; European Union: Brussels, Belgium, 2006.
- Kearney, D.; Kelly, B.; Herrmann, U.; Cable, R.; Pacheco, J.; Mahoney, R.; Price, H.; Blake, D.; Nava, P.; Potrovitza, N. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 2004, 29, 861–870. [Google Scholar] [CrossRef]
- Fernández, A.; Ushak, S.; Galleguillos, H.; Pérez, F. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl. Energy 2014, 119, 131–140. [Google Scholar] [CrossRef]
- Rodríguez, I.; Pérez-Segarra, C.; Lehmkuhl, O.; Oliva, A. Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants. Appl. Energy 2012, 109, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Chacartegui, R.; Vigna, L.; Becerra, J.; Verda, V. Analysis of two heat storage integrations for an Organic Rankine Cycle Parabolic trough solar power plant. Energy Convers. Manag. 2016, 125, 353–367. [Google Scholar] [CrossRef]
- Kuravi, S.; Goswami, D.Y.; Stefanakos, E.K.; Ram, M.; Jotshi, C.; Pendyala, S.; Trahan, J.; Sridharan, P.; Rahman, M.; Krakow, B. (Eds.) Thermal energy storage for concentrating solar power plants. Technol. Innov. 2012, 14, 81–91. [Google Scholar] [CrossRef]
- Karagiannakis, G.; Pagkoura, C.; Zygogianni, A.; Lorentzou, S.; Konstandopoulos, A. Monolithic Ceramic Redox Materials for Thermochemical Heat Storage Applications in CSP Plants. Energy Procedia 2014, 49, 820–829. [Google Scholar] [CrossRef] [Green Version]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Zalba, B.; Marın, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2012, 104, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Do Couto Aktay, K.S.; Tamme, R.; Müller-Steinhagen, H. Thermal conductivity of high-temperature multicomponent materials with phase change. Int. J. Thermophys. 2008, 29, 678–692. [Google Scholar] [CrossRef]
- Tamme, R. Trough Power Systems with Direct Steam Generation. In Proceedings of the Workshop on Thermal Storage for Trough Power Systems, Golden, CO, USA, 20–21 February 2003. [Google Scholar]
- Zhao, C.; Opolot, M.; Liu, M.; Bruno, F.; Mancin, S.; Hooman, K. Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams. Int. J. Heat Mass Transf. 2020, 150, 119348. [Google Scholar] [CrossRef]
- Morisson, V.; Rady, M.; Palomo, E.; Arquis, E. Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem. Eng. Process. Process Intensif. 2008, 47, 499–507. [Google Scholar] [CrossRef]
- Birchenall, C.E.; Reichman, A.F. Heat-storage in eutectic alloys. Metall. Trans. A 1980, 11, 1415–1420. [Google Scholar] [CrossRef]
- Khare, S.; Dell’Amico, M.; Knight, C.; McGarry, S. Selection of materials for high temperature latent heat energy storage. Sol. Energy Mater. Sol. Cells 2012, 107, 20–27. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Chen, Y.; Xiang, H.; Ma, B.; Xu, Z.; Ma, X. Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 128, 131–137. [Google Scholar] [CrossRef]
- Zanganeh, G.; Khanna, R.; Walser, C.; Pedretti, A.; Haselbacher, A.; Steinfeld, A. Experimental and numerical investigation of combined sensible–latent heat for thermal energy storage at 575 °C and above. Sol. Energy 2015, 114, 77–90. [Google Scholar] [CrossRef]
- Chacartegui, R.; Alovisio, A.; Ortiz, C.; Valverde, J.; Verda, V.; Becerra, J. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 2016, 173, 589–605. [Google Scholar] [CrossRef]
- Sánchez Jiménez, P.E.; Perejón, A.; Benítez Guerrero, M.; Valverde, J.M.; Ortiz, C.; Pérez Maqueda, L.A. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants. Appl. Energy 2019, 235, 543–552. [Google Scholar] [CrossRef]
- Wong, B. Thermochemical Heat Storage for Concentrated Solar Power; Final Report; US Department of Energy: San Diego, CA, USA, 2011.
- Generation 3 Concentrating Solar Power Systems (Gen3 CSP) Phase 3 Project Selection. 2021. Available online: https://www.energy.gov/eere/solar/generation-3-concentrating-solar-power-systems-gen3-csp-phase-3-project-selection (accessed on 10 June 2022).
- Schwarzbözl, P.; Giuliano, S.; Noureldin, K.; Doerbeck, T.; Rosselló, A.; Schrüfer, J. Annual Performance Assessment of a 50 MWe Commercial Solar Tower Plant with Improved Open Volumetric Receiver. In Proceedings of the SolarPACES 2020, Online Event, 28 September–2 October 2020. [Google Scholar]
- Fontalvo, A.; Guccione, S.; Wang, Y.; Wang, S.; Kee, Z.; Asselineau, C.-A.; Potter, D.; Venn, F.; Martinek, J.; Turchi, C.; et al. System-level comparison of sodium and salt systems in support of the Gen3 liquids pathway. AIP Conf. Proc. 2022, 2445, 030007. [Google Scholar] [CrossRef]
- Coventry, J.; Andraka, C.; Pye, J.; Blanco, M.; Fisher, J. A review of sodium receiver technologies for central receiver solar power plants. Sol. Energy 2015, 122, 749–762. [Google Scholar] [CrossRef] [Green Version]
- N’Tsoukpoe, K.E.; Liu, H.; Le Pierrès, N.; Luo, L. A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 2009, 13, 2385–2396. [Google Scholar] [CrossRef]
- Fahim, M.; Ford, J. Energy storage using the BaO2 BaO reaction cycle. Chem. Eng. J. 1983, 27, 21–28. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 4: Screening of oxides for use in cascaded thermochemical storage concepts. Sol. Energy 2016, 139, 695–710. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Sastre, D.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 8039–8048. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Schmücker, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders. Sol. Energy 2014, 102, 189–211. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Tescari, S.; Roeb, M.; Schmücker, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers. Sol. Energy 2015, 114, 459–475. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Schmücker, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: Redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol. Energy 2015, 114, 440–458. [Google Scholar] [CrossRef]
- Block, T.; Knoblauch, N.; Schmücker, M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material. Thermochim. Acta 2014, 577, 25–32. [Google Scholar] [CrossRef]
- Pagkoura, C.; Karagiannakis, G.; Zygogianni, A.; Lorentzou, S.; Kostoglou, M.; Konstandopoulos, A.G.; Rattenburry, M.; Woodhead, J.W. Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants. Sol. Energy 2014, 108, 146–163. [Google Scholar] [CrossRef]
- Karagiannakis, G.; Pagkoura, C.; Halevas, E.; Baltzopoulou, P.; Konstandopoulos, A.G. Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multi-cyclic assessment and semi-quantitative heat effects estimations. Sol. Energy 2016, 133, 394–407. [Google Scholar] [CrossRef]
- Schrader, A.J.; Muroyama, A.P.; Loutzenhiser, P.G. Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: Thermodynamic analysis. Sol. Energy 2015, 118, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Gokon, N.; Yokota, S.; Cho, H.S.; Hatamachi, T.; Kodama, T. Redox and fluidization performances of Co3O4/CoO for solar thermochemical energy storage. In Proceedings of the International Solar Energy Society/Solar World Congress 2015, Daegu, Korea, 8–12 November 2015. [Google Scholar]
- Tescari, S.; Agrafiotis, C.; Breuer, S.; de Oliveira, L.; Neises-von Puttkamer, M.; Roeb, M.; Sattler, C. Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts. Energy Procedia 2014, 49, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Neises, M.; Tescari, S.; de Oliveira, L.; Roeb, M.; Sattler, C.; Wong, B. Solar-heated rotary kiln for thermochemical energy storage. Sol. Energy 2012, 86, 3040–3048. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Moya, J.; Bayón, A.; Jana, P.; de la Peña O’Shea, V.A.; Romero, M.; Gonzalez-Aguilar, J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones. Sol. Energy Mater. Sol. Cells 2014, 123, 47–57. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: Influence of the initial particle size on the morphological evolution and cyclability. J. Mater. Chem. A 2014, 2, 19435–19443. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe–Cu co-doping. J. Energy Storage 2016, 5, 169–176. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Improving the thermochemical energy storage performance of the Mn2O3/Mn3O4 redox couple by the incorporation of iron. ChemSusChem 2015, 8, 1947–1954. [Google Scholar] [CrossRef]
- Droege, P.; Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Thermochemical heat storage at high temperatures using Mn2O3/Mn3O4 System: Narrowing the redox hysteresis by metal Co-doping. Energy Procedia 2015, 73, 263–271. [Google Scholar]
- Gokon, N.; Nishizawa, A.; Yawata, T.; Bellan, S.; Kodama, T.; Cho, H.-S. Fe-doped manganese oxide redox material for thermochemical energy storage at high-temperatures. AIP Conf. Proc. 2019, 2126, 210003. [Google Scholar] [CrossRef]
- Block, T.; Schmücker, M. Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems. Sol. Energy 2016, 126, 195–207. [Google Scholar] [CrossRef]
- Alonso, E.; Pérez-Rábago, C.; Licurgo, J.; Fuentealba, E.; Estrada, C.A. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Sol. Energy 2015, 115, 297–305. [Google Scholar] [CrossRef]
- Babiniec, S.M.; Coker, E.N.; Miller, J.E.; Ambrosini, A. Doped calcium manganites for advanced high-temperature thermochemical energy storage. Int. J. Energy Res. 2015, 40, 280–284. [Google Scholar] [CrossRef]
- Babiniec, S.M.; Coker, E.; Miller, J.E.; Ambrosini, A. Investigation of LaxSr1−xCoyM1−yO3−δ (M = Mn, Fe) perovskite materials as thermochemical energy storage media. Sol. Energy 2015, 118, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Imponenti, L.; Albrecht, K.J.; Braun, R.J.; Jackson, G.S. Measuring thermochemical energy storage capacity with redox cycles of doped-CaMnO3. ECS Trans. 2016, 72, 11–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Andre, L.; Abanades, S. Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage. Sol. Energy 2016, 134, 494–502. [Google Scholar] [CrossRef]
- André, L.; Abanades, S.; Flamant, G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew. Sustain. Energy Rev. 2016, 64, 703–715. [Google Scholar] [CrossRef]
- Imponenti, L.; Albrecht, K.J.; Wands, J.W.; Sanders, M.; Jackson, G.S. Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications. Sol. Energy 2017, 151, 1–13. [Google Scholar] [CrossRef]
- Galinsky, N.; Mishra, A.; Zhang, J.; Li, F. Ca1−xAxMnO3 (A = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Appl. Energy 2015, 157, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, K.J.; Jackson, G.S.; Braun, R.J. Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage. Appl. Energy 2016, 165, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Vieten, J.; Bulfin, B.; Call, F.; Lange, M.; Schmücker, M.; Francke, A.; Roeb, M.; Sattler, C. Perovskite oxides for application in thermochemical air separation and oxygen storage. J. Mater. Chem. A 2016, 4, 13652–13659. [Google Scholar] [CrossRef]
- Gokon, N.; Yawata, T.; Bellan, S.; Kodama, T.; Cho, H.S. Thermochemical behavior of perovskite oxides based on LaxSr1−x(Mn, Fe, Co)O3−δ and BaySr1−yCoO3−δ redox system for thermochemical energy storage at high temperatures. Energy 2019, 171, 971–980. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage. J. Phys. Chem. C 2016, 120, 27800–27812. [Google Scholar] [CrossRef]
- Wokon, M.; Block, T.; Nicolai, S.; Linder, M.; Schmücker, M. Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage. Sol. Energy 2017, 153, 471–485. [Google Scholar] [CrossRef]
- Wokon, M.; Kohzer, A.; Linder, M. Investigations on thermochemical energy storage based on technical grade manganese-iron oxide in a lab-scale packed bed reactor. Sol. Energy 2017, 153, 200–214. [Google Scholar] [CrossRef]
- André, L.; Abanades, S.; Cassayre, L. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides. J. Solid State Chem. 2017, 253, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, M.; Bayon, A.; Wheeler, V.M.; Kreider, P.; Wallace, M.A.; Tsuzuki, T.; Catchpole, K.; Weimer, A.W. Reduction kinetics for large spherical 2:1 iron–manganese oxide redox materials for thermochemical energy storage. Chem. Eng. Sci. 2019, 201, 74–81. [Google Scholar] [CrossRef]
- Li, C.; Tang, T.B. Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data. J. Mater. Sci. 1999, 34, 3467–3470. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Flynn, J.H. The ‘Temperature Integral’—Its use and abuse. Thermochim. Acta 1997, 300, 83–92. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–766. [Google Scholar] [CrossRef]
- Factsage, GTT-Technologies Kaiserstrase 100, 52134 Herzogenrath, GERMANY. Available online: http://www.gtt-technologies.de/ (accessed on 10 June 2022).
- Khawam, A.; Flana, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Fedunik-Hofman, L.; Bayon, A.; Donne, S.W. Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems. Energies 2019, 12, 2981. [Google Scholar] [CrossRef] [Green Version]
- Botas, J.A.; Marugán, J.; Molina, R.; Herradón, C. Kinetic modelling of the first step of Mn2O3/MnO thermochemical cycle for solar hydrogen production. Int. J. Hydrog. Energy 2012, 37, 18661–18671. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Pizarro, P.; Coronado, J.M. Assessing Cr incorporation in Mn2O3/Mn3O4 redox materials for thermochemical heat storage applications. J. Energy Storage 2021, 33, 102028. [Google Scholar] [CrossRef]
- Li, L.; He, M.; Zhang, A.; Zhou, J. A study on non-isothermal kinetics of the thermal decompositions of β-manganese dioxide. Thermochim. Acta 2011, 523, 207–213. [Google Scholar] [CrossRef]
- Alonso, E.; Romero, M. A directly irradiated solar reactor for kinetic analysis of non-volatile metal oxides reductions. Int. J. Energy Res. 2015, 39, 1217–1228. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.; Criado, J.; Málek, J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J. Non-Cryst. Solids 2003, 320, 84–91. [Google Scholar] [CrossRef]
- Pap, A.E.; Kordás, K.; George, T.F.; Leppävuori, S. Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics. J. Phys. Chem. B 2004, 108, 12744–12747. [Google Scholar] [CrossRef]
- Carniti, P.; Gervasini, A.; Bennici, S. Experimental and Modelization Approach in the Study of Acid-Site Energy Distribution by Base Desorption. Part I: Modified Silica Surfaces. J. Phys. Chem. B 2005, 109, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokon, N.; Hayashi, K.; Sawaguri, H.; Ohashi, F. Long-Term Thermal Cycling Test and Heat-Charging Kinetics of Fe-Substituted Mn2O3 for Next-Generation Concentrated Solar Power Using Thermochemical Energy Storage at High Temperatures. Energies 2022, 15, 4812. https://doi.org/10.3390/en15134812
Gokon N, Hayashi K, Sawaguri H, Ohashi F. Long-Term Thermal Cycling Test and Heat-Charging Kinetics of Fe-Substituted Mn2O3 for Next-Generation Concentrated Solar Power Using Thermochemical Energy Storage at High Temperatures. Energies. 2022; 15(13):4812. https://doi.org/10.3390/en15134812
Chicago/Turabian StyleGokon, Nobuyuki, Kosuke Hayashi, Hiroki Sawaguri, and Fumiya Ohashi. 2022. "Long-Term Thermal Cycling Test and Heat-Charging Kinetics of Fe-Substituted Mn2O3 for Next-Generation Concentrated Solar Power Using Thermochemical Energy Storage at High Temperatures" Energies 15, no. 13: 4812. https://doi.org/10.3390/en15134812
APA StyleGokon, N., Hayashi, K., Sawaguri, H., & Ohashi, F. (2022). Long-Term Thermal Cycling Test and Heat-Charging Kinetics of Fe-Substituted Mn2O3 for Next-Generation Concentrated Solar Power Using Thermochemical Energy Storage at High Temperatures. Energies, 15(13), 4812. https://doi.org/10.3390/en15134812