Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Specimen Preparation
2.3. DC Conductivity Test
2.4. Breakdown Field Strength Test
3. Experimental Results
3.1. Conductive Current
3.2. Dielectric Strength
4. Simulation Study on the Conductivity and Carrier Transport Mechanism of Micro and Nanocomposites
4.1. Micron SiC/EP Composite Model Finite Element Analysis
4.1.1. Potential Distribution under a Constant Electric Field
4.1.2. Electric Field Distribution of SiC Cut Surface
4.2. Nanocomposite Model
4.3. Analysis of Electron Motion State and Spatial Charge
5. Conclusions
- The conductivity characteristics of micro-nanocomposites are related to the dispersion of inorganic particles, and the dispersion of nano-SiO2 is also affected by the doping concentration of micron SiC. When the doping concentration of SiC is 20 wt%, the dispersion of nano-particles is better at low concentrations, and the nano-effect shows deep traps. When SiO2 is aggregated, the linked SiO2 will form uniformly arranged crystalline regions, increasing the range of electron-free movement, reducing the jump potential barrier between crystalline regions, and showing the trend of increasing conductivity.
- The breakdown field strength of the composites decreases with the increase in SiC content when the doping content of nano-SiO2 is the same, and the breakdown field strength of the composites tends to increase and then decrease with the increase in nano-SiO2 concentration when the micron SiC content is the same. When the concentration of nano-SiO2 is small, it will show the tendency to obstruct the carrier movement and reduce the electron-free travel, thus increasing the breakdown voltage of the composites.
- The calculated results of the electric field model at the EP/SiC interface show that inside the dielectric doped with micron SiC, the electric field near the particle surface appears to be concentrated, and the electric field intensity at the interface increases exponentially relative to the applied electric field intensity, and the maximum electric field intensity at the interface increases to 40 kV/mm at 30 wt% doping.
- The increase in nanofiller concentration can make the electrode injected charge in the shallow layer of the medium gather, weaken the internal electric field there, more effectively inhibit the subsequent electrode charge injection into the medium, reduce the medium space charge and increase the medium breakdown field strength in the case of good dispersion of nanoparticles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Frigione, M.; Lettieri, M. Recent Advances and Trends of Nanofilled/Nanostructured Epoxies. Materials 2020, 13, 3415. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Wang, H. Design and Simulation Analysis of Anti-Corona Structure at the End of the Stator Bar of Large Hydrogenerators. In Proceedings of the 2021 IEEE International Conference on Electronic Technology, Communication and Information, ICETCI, Changchun, China, 27–29 August 2021; pp. 77–83. [Google Scholar]
- Han, Y.S.; Li, S.T.; Min, D.M. Space Charge Distribution and Nonlinear Conduction of Epoxy Nanocomposites. Sens. Mater. 2017, 29, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, X.; Gao, J.; Guo, N. Dielectric and AC Breakdown Properties of SiO2/MMT/LDPE Micro–Nano Composites. Energies 2021, 14, 1235. [Google Scholar] [CrossRef]
- Oh, D.-H.; Kim, H.-S.; Shim, J.-H.; Jeon, Y.-H.; Kang, D.-W.; Lee, B.-W. Characteristics of Gel Time and Dielectric Strength of Epoxy Composite According to the Mixing Ratio of Micro-Fillers. Energies 2020, 13, 5165. [Google Scholar] [CrossRef]
- Naveen, J.; Babu, M.S.; Sarathi, R.; Velmurugan, R.; Danikas, M.G.; Karlis, A. Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites. Energies 2021, 14, 8005. [Google Scholar] [CrossRef]
- Wang, S.; Yu, S.; Li, J.; Li, S. Effects of Functionalized Nano-TiO2 on the Molecular Motion in Epoxy Resin-Based Nanocomposites. Materials 2020, 13, 163. [Google Scholar] [CrossRef] [Green Version]
- Maji, P.; Choudhary, R.; Majhi, M. Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik 2016, 127, 4848–4853. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Yang, H.; Zhou, K.; Ning, X. Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci. Mater. Electron. 2018, 29, 12765–12770. [Google Scholar] [CrossRef]
- Darani, S.Z.; Naghdabadi, R. An experimental study on multiwalled carbon nanotube nanocomposite piezoresistivity considering the filler agglomeration effects. Polym. Compos. 2021, 42, 4707–4716. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites: A Review. Polym. Sci.-Ser. A 2019, 61, 439–460. [Google Scholar] [CrossRef]
- Kausar, A. Nanocarbon and macrocarbonaceous filler–reinforced epoxy/polyamide: A review. J. Thermoplast. Compos. Mater. 2020. [Google Scholar] [CrossRef]
- Muthukumaravel, C.; Karunakaran, U.; Mangamma, G. Local grain-to-grain conductivity in an SnO2–V2O5 nanocomposite ethanol sensor. Nanotechnology 2020, 31, 344001. [Google Scholar] [CrossRef] [PubMed]
- Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M. Predicting effective electrical resistivity and conductivity of carbon nanotube/carbon black-filled polymer matrix hybrid nanocomposites. J. Phys. Chem. Solids 2021, 161, 110444. [Google Scholar] [CrossRef]
- Fiolhais, M.C.N. The Cabibbo-Kobayashi-Maskawa density matrices. Eur. Lett. 2012, 98, 51001. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chevali, V.; Xu, Z.; Hui, D.; Wang, H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018, 136, 197–214. [Google Scholar] [CrossRef]
- Dagar, J.; Yadav, V.; Tyagi, P.; Singh, R.K.; Suman, C.K.; Srivastava, R. Effect of reduction of trap charge carrier density in organic field effect transistors by surface treatment of dielectric layer. J. Appl. Phys. 2013, 114, 224504. [Google Scholar] [CrossRef]
- Jeong, I.-B.; Kim, J.-S.; Lee, J.-Y.; Hong, J.-W.; Shin, J.-Y. Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler. Trans. Electr. Electron. Mater. 2010, 11, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Owolabi, T.O.; Saleh, T.A.; Olusayo, O.; Souiyah, M.; Oyeneyin, O.E. Modeling the Specific Surface Area of Doped Spinel Ferrite Nanomaterials Using Hybrid Intelligent Computational Method. J. Nanomater. 2021, 2021, 9677423. [Google Scholar] [CrossRef]
- Chi, Q.G.; Cui, S.; Zhang, T.D.; Yang, M.; Chen, Q.G. SiC/SiO2 filler reinforced EP composite with excellent nonlinear conductivity and high breakdown strength. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 535–541. [Google Scholar] [CrossRef]
- Tanaka, T. Multi-Core Model for Nanodielectrics as Fine Structures of Interaction Zones. In Proceedings of the Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Nashville, TN, USA, 16–19 October 2005; Volume 2005, pp. 713–716. [Google Scholar]
- Ru, J.; Min, D.; Ma, B.; Pan, S.; Xing, Z.; Li, S. Influence of Surface Trap Parameters on DC Flashover in Vacuum of Epoxy Composites. In Proceedings of the CMD 2016-International Conference on Condition Monitoring and Diagnosis, Xi’an, China, 25–28 September 2016; pp. 1008–1011. [Google Scholar]
- Simmons, J.G.; Tam, M.C. Theory of Isothermal Currents and the Direct Determination of Trap Parameters in Semiconductors and Insulators Containing Arbitrary Trap Distributions. Phys. Rev. B 1973, 7, 3706–3713. [Google Scholar] [CrossRef]
- Williams, C.K. Kinetics of Trapping, Detrapping and Trap Generation. J. Electron. Mater. 1992, 21, 711–720. [Google Scholar] [CrossRef]
- Duan-Lei, Y.; Dao-Min, M.; Yin, H.; Dong-Ri, X.; Hai-Yan, W.; Fang, Y.; Zhi-Hao, Z.; Xiang, F.; Sheng-Tao, L. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Phys. Sin. 2017, 66, 097701. [Google Scholar] [CrossRef]
Specimen | Filler | Specimen | Filler |
---|---|---|---|
#001 | 1 wt% SiO2 | #002 | 2 wt% SiO2 |
#200 | 20 wt% SiC | #300 | 30 wt% SiC |
#400 | 40 wt% SiC | #500 | 50 wt% SiC |
#201 | 20 wt%SiC + 1 wt% SiO2 | #202 | 20 wt% SiC + 2 wt% SiO2 |
#301 | 30 wt% SiC + 1 wt% SiO2 | #302 | 30 wt% SiC + 2 wt% SiO2 |
#401 | 40 wt% SiC + 1 wt% SiO2 | #402 | 40 wt% SiC + 2 wt% SiO2 |
#501 | 50 wt% SiC + 1 wt% SiO2 | #502 | 50 wt% SiC + 2 wt% SiO2 |
Specimen | α (kV/mm) | β |
---|---|---|
#400 | 13.09 | 13.411 |
#401 | 13.39 | 4.611 |
#402 | 20.44 | 4.976 |
#403 | 17.02 | 7.391 |
#404 | 16.82 | 6.659 |
Parameter Name | Numerical Value |
---|---|
Diameter of SiC | 24 μm |
Radius of EP model | 400 μm |
Thickness of EP model | 100 μm |
Density of SiC | 3.2 × 103 (kg/m3) |
Density of EP | 980 (kg/m3) |
Micron SiC | Numerical Value | EP | Numerical Value |
---|---|---|---|
γ (S/m) | 1 × 10−7 | γ (S/m) | 1 × 10−15 |
εr | 3.97 | εr | 3.50 |
Doping Concentration of SiC | 10 wt% | 20 wt% | 30 wt% |
---|---|---|---|
Spacing of micron particles/μm | 50 | 32 | 23 |
Number of SiC micron particles | 59 | 133 | 226 |
Applied Electric Field (kV/mm) | Maximum Electric Field at Interface (kV/mm) | ||
---|---|---|---|
10 wt% | 20 wt% | 30 wt% | |
2 | 16.16 | 19.43 | 20.17 |
2.2 | 17.78 | 21.37 | 22.19 |
2.4 | 19.40 | 23.31 | 24.20 |
2.6 | 21.01 | 25.26 | 26.22 |
2.8 | 22.63 | 27.20 | 28.24 |
3 | 24.25 | 29.14 | 30.26 |
3.2 | 25.86 | 31.09 | 32.27 |
3.4 | 27.48 | 33.03 | 34.29 |
3.6 | 29.10 | 34.97 | 36.31 |
3.8 | 30.71 | 36.91 | 38.32 |
4 | 32.33 | 38.86 | 40.34 |
1 wt% | 2 wt% | 3 wt% | |
---|---|---|---|
Nanoparticle spacing/nm | 221 | 176 | 153 |
Number of SiO2 nanoparticles | 66 | 135 | 204 |
Dielectric | Average Surface Charge Density/(C/m2) |
---|---|
EP | 3.10 × 10−4 |
1 wt% | 3.09 × 10−4 |
2 wt% | 3.08 ×10−4 |
3 wt% | 3.07 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Meng, R.; Gao, J.; He, M.; Zhang, Y.; He, L.; Hu, H. Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite. Energies 2022, 15, 4821. https://doi.org/10.3390/en15134821
Guo N, Meng R, Gao J, He M, Zhang Y, He L, Hu H. Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite. Energies. 2022; 15(13):4821. https://doi.org/10.3390/en15134821
Chicago/Turabian StyleGuo, Ning, Ruixiao Meng, Junguo Gao, Mingpeng He, Yue Zhang, Lizhi He, and Haitao Hu. 2022. "Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite" Energies 15, no. 13: 4821. https://doi.org/10.3390/en15134821
APA StyleGuo, N., Meng, R., Gao, J., He, M., Zhang, Y., He, L., & Hu, H. (2022). Properties and Simulating Research of Epoxy Resin/Micron-SiC/Nano-SiO2 Composite. Energies, 15(13), 4821. https://doi.org/10.3390/en15134821