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Abstract: The accuracy estimation of induction motors’ efficiency is beneficial and crucial in the
industry for energy savings. The requirement for in situ machine efficiency estimation techniques
is increasing in importance because it is the precondition to making the energy-saving scheme.
Currently, the torque and speed identification method is widely applied in online efficiency estimation
for motor systems. However, the higher precision parameters, such as stator resistance Rs and
equivalent resistance of iron losses Rfe, which are the key to the efficiency estimation process with
the air gap torque method, are of cardinal importance in the estimation process. Moreover, the
computation burden is also a severe problem for the real-time data process. To solve these problems,
as for the torque and speed-identification-based efficiency estimation method, this paper presents a
lower time burden method based on Quantum Particle Swarm Optimization-Trust Region Algorithm
(QPSO-TRA). The contribution of the proposed method is to transform the disadvantages of former
algorithms to develop a reliable hybrid algorithm to identify the crucial parameters, namely, Rs and
Rfe. Sensorless speed identification based on the rotor slot harmonic frequency (RSHF) method is
adopted for speed determination. This hybrid algorithm reduces the computation burden by about
1/3 compared to the classical genetic algorithm (GA). The proposed method was validated by testing
a 5.5 kW motor in the laboratory and a 10 MW induction motor in the field.

Keywords: in situ efficiency; induction motors; quantum particle swarm optimization; trust region
algorithm; QPSO-TRA; rotor slot harmonics frequencies

1. Introduction

The increasing demand for energy combined with rising energy costs has led to
a desire to increase energy utilization efficiency. Induction motors (IMs) are the most
commonly used motors in the industry. They are essential components in the chains of
drive systems. The efficiency estimation strategies of all induction motors require good
knowledge of the machine parameters to ensure an accurate estimation. The problem
of estimating the parameters of induction motors and their efficiency is considered the
most critical and complex matter in industries, in in situ situations. However, the higher
accuracy of IM parameters is of capital importance in all industrial processes since it directly
affects the performance of the control systems. One of the main reasons for monitoring a
motor’s efficiency is to ensure that energy conversion occurs with the least energy supply.
Another reason is that the nominal parameters obtained from manufacturers might not be
the same as those under actual motor operating conditions. This is due to several factors
such as aging, rewinding, and voltage unbalance. Hence, it is necessary to estimate these
parameters in in situ for any in situ induction motors efficiency estimation. As for the
speed, it can be affected by bearing faults. Estimating the speed in in situ has several
advantages. It can be used to check bearing faults and motor efficiency estimation online.
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Therefore, estimating induction motors’ parameters and speed in in situ can be helpful
for all industrialists because it can give information about the motors’ healthy state and
avoid extra cost for speed measuring devices. While effort is being made to design and
manufacture more efficient induction motors (IMs), monitoring a machine’s operational
efficiency helps reduce energy costs by ensuring that it is running in its optimal efficiency
range. Numerous works have been published for estimating the efficiency of the electrical
machines in situ, under the loaded condition without disturbing their operation [1,2]. To
assess energy efficiency and enhance the overall performance of the industrial processes, it
is essential to identify energy loss and monitor the efficiency in real time [3].

Generally, torque and speed measurements are made to estimate the induction motor’s
efficiency. However, if an efficiency estimation of an induction motor is required for an
in situ situation, whose operation cannot be disrupted because of the ongoing critical
industrial process, torque determination becomes problematic.

The procedure of determining the parameters of an induction motor is well-known
for estimating efficiency. The parameters of the induction motor’s per-phase equivalent
model can be determined by the no-load and locked rotor test or the IEEE Standard 112
impedance test method. No-load and locked rotor tests are not practicable in in situ [4,5]. In
in situ situations, the Genetic Algorithm (GA) is mainly used for parameter identification,
demanding more central processing unit (CPU) and computational time [6]. To sum up,
the methods for efficiency estimation can be categorized as follows.

(1) Slip methods;
(2) Current methods;
(3) Segregated loss method;
(4) Equivalent circuit-based method;
(5) Nonintrusive air gap torque (NAGT) methods;
(6) Air gap torque (AGT) methods;
(7) Shaft torque method.

Among the above methods, each of the following methods for efficiency estimation
has its advantages and disadvantages according to the application domain. Some of them
cannot be employed for in situ efficiency estimation. However, the current and slip methods
are straightforward and nonintrusive, but they are lacking in high accuracy [7], which is
unsuitable for any efficiency assessment. Despite having very high precision, the segregated
loss method [8] is intrusive for use in in situ conditions. To limit the intrusiveness, empirical
results are used, which could diminish the accuracy of those procedures [9]. The equivalent
circuit method requires no-load and locked rotor tests or variable voltages and frequency
supplies, making them unsuitable for in situ applications. The air-gap torque (AGT) and
the shaft torque method consider harmonic distortion because it uses the operating voltage
and current signals to calculate this torque [10], which makes it appreciable for in situ
efficiency estimation.

The most challenging task in efficiency estimation is the determination of the output
power. The online efficiency estimation method can be classified into the equivalent
circuit and the torque and speed methods from the above analysis. The first method
must determine all the losses and subtract them from the input power. The second one
must determine the shaft torque through the air gap torque, and the speed is estimated
as described in Section 2.1 to determine the output power. For the second method, the
core losses resistance Rfe and the stator resistance Rs must first be identified online for air
gap torque calculation, these are dependent on the operating condition. Furthermore, the
problem in the current identification method of these parameters is that the time and the
computation burden of the algorithm used are high enough, or the algorithm used for
parameters identification is not accurate enough. The AGT and the shaft torque method
are adopted in this paper to calculate the output power.

The contribution of this paper is firstly to propose a new algorithm to identify the
motor parameters simultaneously. The computation time and burden can be reduced
significantly since the global search is avoided. In the presented method, a hybrid algorithm
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derived from PSO and TRA is used, the Quantum Particle Swarm Optimization-Trust
Region Algorithm QPSO-TRA, to improve the deficiencies of PSO and TRA. The time
burden of the proposed hybrid QPSO-TRA is slightly larger than that of the standard PSO,
but the identification is more accurate than the standard PSO.

2. Efficiency Estimation Method

This study adopts an efficiency estimation method based on torque and speed identifi-
cation. The output torque and rotor speed should first be determined by air gap torque
and rotor slot harmonic methods [11]. Then, the output power P2 can be obtained. The
input power P1 is calculated by measured current and voltage. Finally, efficiency can
be calculated by P2/P1. To obtain P2, several processes are involved, which have to be
accurately investigated to avoid calculation mistakes.

2.1. Torque and Speed Determination Methods

During the operation of the induction motors, despite many internal excitations that
can rise to system complexity, the external environment, such as unsymmetrical voltage
sags or external load variation, can also be unstable, etc. The electromechanical behavior
of an induction motors change according to the actual load changes from the start-up
no-load to the full-load condition. In addition, considering that the electromechanical
power is the transmitted power from the stator to the rotor through the air gap, it includes
the actual load effect since it depends on the actual current and voltage and the core loss
power Pfe as can be seen in (2) because the motors’ running current is affected by the load
changes. The AGT method was proposed in [12] for in situ efficiency estimation. It is
calculated by using the voltage, current, and stator resistance Rs and the core losses Pfe
data. However, the authors in [12] did not consider the change of the resistance under
the operating temperature, which make it unsuitable for real-time calculation. Because of
variable current in the winding under different load conditions, the temperature changes
affect the motor’s winding resistance. The temperature of a machine at the actual loading
condition is required to adjust or correct the stator and rotor windings resistances. An
initial temperature is determined from the input current at each measured load to overcome
this problem, as shown in Equation (1), or directly measured with a temperature sensor. For
the best calculation of the air gap torque, the resistance is corrected according to real-time
temperature in this study, whereas there is the presence of Rs,cor in Equation (2) instead of
Rs. The AGT is calculated as in Equation (2).

Tload,Est =
Iload
Irated

(Trated − Tambien) + Tambien (1)

where Irated is the rated load current stated on the machine’s nameplate, Iload is the actual
load current, Tload,Est is the actual temperature, Tambien is the ambient temperature, and
Trated is the rated load temperature

Tag =
p ∗
√

3
6
{(2 ∗ ia + ic) ∗

∫
[vca − Rs,cor(ic − ia)dt]− (ib − ia) ∗

∫
[vab − Rs,cor(2 ∗ ia + ib)dt]} −

60Pf e

2πn1
(2)

where p is the number of poles; ia and ic are line currents; vab and vca are line voltages;
Rs,cor is the stator resistance at the operating temperature, and Pfe is the core losses. Pfe is
calculated using the identified core resistance Rfe.

Speed determination is crucial in motors’ efficiency estimation. This technique is
designed to work without interrupting the industrial process. Measuring the speed of a
built IM is a relatively easy task. Still, to measure it, one needs an extra device (speed sensor)
which can be expensive and can increase the manufacturing costs for the manufacturer.
Therefore, we need to estimate the speed to avoid these additional costs. One phase current
is analyzed to extract the rotor harmonics high frequency and then estimate the IM speed.
In this method, one does not need to calculate the losses between the input and output
power separately to have efficiency. The output power is directly calculated by using the
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torque and speed as in (15) and (16). To do so, we need to use Rs,cor and Rfe in the air gap
torque calculation process. This method can avoid extra production costs and considers the
motor’s temperature change. The different techniques for rotor slot harmonic frequency
(RSHF) are summarized below.

An enhanced approach to speed determination utilizing the motor’s current harmonics,
which arise for stator core form, rotor shaft misalignment, bearing position, and rotor bar
resistance variation, was conducted in [13]. The current harmonics can be expressed by
Equation (3):

fsh = f1

[
(λZ + nd)

(1− s)
p

+ δ

]
(3)

where fsh is the current harmonic frequency; f 1 is the supply frequency; λ = 0, 1, 2, 3, . . . ,
Z is the number of rotor slots; nd = 0 ± 1, . . . is the order of rotor eccentricity; s is the slip
ratio; p is the number of pole pairs; δ = ±1,±3,±5, is the air gap magnetomotive force
(MMF) harmonic order.

The fast Fourier transform (FFT) technique successfully improved the speed detection
of inverter-fed induction motors via the stator current signal [14]. The generation of rotor
slot harmonics (RSHs) in machines is primarily due to the irregular allocation of rotor
currents in a finite number of slots as well as the permeance fluctuation in the air gap
related to slot opening [15]. In [16], harmonics were used to detect the rotor slot number. It
is possible to study the speed and the slip estimation in induction motors using rotor slot
harmonics. Thus, the slip can be expressed by Equation (4):

s = 1− p
Z
(

fsh
f1
− δ) (4)

From Equation (4), it is possible to determine the rotational speed on the shaft of the
induction motor. For that, the expression of the slip is required to be n = ns(1 − s), where ns
is the synchronous speed and s is the slip; ns is given by ns = 60 f 1/p. The rotational speed
is thus given by Equation (5):

n =
60
Z
( fsh − δ f1) (5)

where f 1 is supply frequency, and the rotor slot harmonics frequency fsh is determined by
applying digital signal processing techniques.

2.2. Core Losses Determination

Core losses are caused by time-varying magnetic flux. The core losses can be separated
into two components, the hysteresis and eddy current effects, as in Equation (6).

Pf e = Ph + Pe = Khωeψ2 + Keω2
e ψ2 (6)

where Ph and Pe are the hysteresis and eddy current components of core losses, respectively,
Ψ is the stator winding flux linkage, ωe is the angular frequency, and Kh and Ke are the
coefficients of hysteresis and eddy current loss, respectively.

According to Equations (7) and (8), core losses depend only on the angular frequency
and the flux linkage if the variation of the coefficients Kh and Ke are neglected. In fact,
Kh and Ke rely on the core material’s lamination and its thickness. Their variation is slow
compared to the angular frequency and flux linkage variation. However, knowing that
the core losses are linked to the winding flux linkage and based on the classical electric
machine theory, which is assumed to be a sinusoidally varying field, it is evident that the
winding flux linkage is proportional to the air gap flux density.

Pf e = ψ2(Khωe + Keω2
e ) (7)

Pf e = ω2
e ψ2/R f e (8)
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The standard way to determine the core losses is the no-load test. This method is not
practicable in the field due to the ongoing production process. After analyzing the above
phenomena, this paper proposes a new algorithm to determine the core losses resistance.
The core resistance Rfe is identified by the new algorithm QPSO-TRA and then uses the
voltage to determine the core losses as shown in Equation (9). After Rfe identification, this
method is robust and straightforward because it considers the voltage fluctuation.

Pcore = 3
V2

ph

R f e
(9)

2.3. Stray Load Loss Determination

According to the IEEE Standard 112-2004 [8], stray load loss at rated load can be
assumed, as shown in Table 1.

Table 1. Assumed values for stray load loss [8].

Machines Rating (kW) Stray Load Loss Percent

1–90 1.8%
91–375 1.5%

376–1850 1.2%
1851 and greater 0.9%

Moreover, it can also be calculated using the International Standard IEC 60034-2-1 [7],
as in Equation (10).

Psll = Pin, f l

[
0.025− 0.005 log10(

Pout

1 kW
)

]
(10)

where Psll is the full-load stray load loss, Pin,fl is the full-load input power, and Pout is the
full-load output power.

In [17], a new stray load loss formula has been proposed. It also uses the input power,
but it does not use the output power, unlike in Formula (10). The increase in input power
due to the unbalance and voltage distortion can be considered. The proposed procedure is,
as in Equation (11):

Psll = 0.011 ∗ Pin, f l (11)

where Psll is the stray load loss, and Pin,fl is the input power under full-load conditions.
Figure 1 compares three stray load loss determination methods, namely, IEEE method,

IEC method, and the improved method in [14]. It is imperative to emphasize that all of the
foregoing similarities are only valid if, and only if, the motor under test and the data motor
have an identical power rating value. It is found that compared with the tested stray losses,
the method in [14] is more accurate. Therefore, this method is adopted to estimate the stray
losses in this study.
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2.4. Friction and Winding (PFW) Losses Determination

An estimation strategy for friction and windage losses has been developed to eliminate
this intrusive requirement. This new strategy is based on full-load input power and depends
on the motor pole pair number [18], as follows:

(a) If the number of poles is 2, then the friction and windage losses will be calculated
using the Equation (12):

PFW = 2.5% ∗ Pin, f l (12)

(b) If the number of poles is 4, the friction and windage losses will be calculated by
Equation (13).

PFW = 1.2% ∗ Pin, f l (13)

(c) If the number of poles is 6, the friction and windage losses can be calculated by
Equation (14).

PFW = 1.0% ∗ Pin, f l (14)

2.5. Output Torque and Efficiency Determination

From the identified electromagnetic torque, the shaft output torque can be obtained
by subtracting stray load loss and friction windage loss as in Equation (15) [19]:

Tsha f t = Tag −
Psll + PFW

ωr
(15)

where Tshaft is the shaft torque, Tag is the air gap torque, and ωr is the rotor speed.
Then, output and input power can be calculated by Equations (16) and (17).

Poutput = Tsha f t ∗ωr (16)

Pin =
√

3 ∗U ∗ I ∗ cos ϕ (17)

where U is the phase-to-phase voltage, I is the stator current, and cos ϕ is the power factor.
The motor’s efficiency is calculated as in Equation (18).

ηest =
Pout

Pin
=

Tshaft ∗ωr

Pin
(18)

2.6. Problems in Current Efficiency Determination

The main problem with the above method is accurately identifying the parameters
Rs and Rfe, which are used in the torque estimation process. In most recent papers, the
core loss resistance Rfe is ignored, affecting the online efficiency because of the loss caused
by this resistance since the AGT will not be accurately determined for the output torque
calculation. Several versions of the GA and optimization-based algorithms were used
to help to obtain the parameters. The problems of parameters identification technique
accuracy are summarized as follows:

(1) Rs and Rfe identification with higher precision is vital in all efficiency estimation
processes. However, both of them are variants; the first one is a function of the oper-
ating condition and the second one is a function of the voltage condition. Therefore,
identifying them in real time is essential for efficiency estimation.

(2) A Genetic Algorithm (GA)’s computation time and burden are high. In [4], it is stated
that three GAs were constructed to extract the necessary parameters; some versions
of GA use binary coding [14], which demands significant time and computational
space. The standard PSO is a global search algorithm. Despite having a fast and
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straightforward convergence, one of the drawbacks of this algorithm is its global
research abilities. If the best particle is a local one in a PSO system, it cannot be
accurately identified. In fact, in PSO, the particles will congregate near the global
particles if the number of iterations increases.

A new algorithm is proposed to solve these problems. This algorithm does not need to
be used three times or coded in binary like some versions of GA, which significantly reduces
the computation time and burden, and it is not a global search algorithm. The conception
of any optimization algorithm is not a simple task. In this study, the proposed algorithm
is more complicated than the standard PSO algorithm in conception and implementation.
Still, from the point of view of accuracy, it is better than the standard PSO and some other
PSO-based algorithms since it makes full use of the research space. The details of this new
algorithm are given in Section 3.

3. Quantum Particles Swarm Optimization-Trust Region Algorithm (QPSO-TRA)

QPSO-TRA is inspired by the PSO algorithm, other PSO-based algorithms, and the
TRA algorithm. QPSO-TRA has been inspired by the advantages and disadvantages of
some standard former algorithms. It studies the weaknesses of these algorithms and
transforms them into benefits for a better investigation of the problems to be solved.

3.1. Standard Particle Swarm Optimization PSO

The mechanism of standard PSO is motivated by the complex social movement shown
by biological species such as flocks of birds, schools of fish, swarms of bees, and sometimes
social behaviors of the human being. PSO is a relatively simple algorithm and converges
fast [20].

In a PSO system, each particle represents a potential solution to the problem and it
updates its location by following two optima. One is its personal best location named Pbest,
the best position found by it so far. The other is the global best position Pgbest, namely, the
best position located by its neighborhood particles so far. The movement of every particle
is regulated by the efficacy of its previous location and that of their neighbors. The velocity
and the location are formulated as in Equations (19) and (20):

vi(t + 1) = ω ∗ vi(t) + c1 ∗ r1 ∗ (Pbesti (t)− xi(t)) + c2 ∗ r2 ∗ (PPgbesti
(t)− xi(t)) (19)

Xi(t + 1) = xi(t) + vi(t + 1) (20)

The inertia weight can be updated by Equation (21):

ω(t) = ωmax −
t(ωmax −ωmin)

itermax
(21)

The velocity value is chosen to be 0.1 ≤ k ≤ 0.5 and is set by the user [21]. However,
the problem with the PSO algorithm is that it is a global research algorithm. It quickly and
easily falls into a local optimum.

3.2. Quantum Particles Swarm Optimization (QPSO)

Inspired by trajectory analysis of the PSO and quantum mechanics, the Quantum
Particle Swarm Optimization (QPSO) is an algorithm for problem optimization. The QPSO
can find the optimal solution in search space and has the advantage of fewer control
parameters, simplicity in software programming, and a relatively fast convergence rate.
QPSO is better than standard PSO because, in the standard PSO algorithm, the particles
are restricted to a small space for every iteration of the swarm. This restriction will
weaken the global search abilities, affect the optimization accuracy, and lead to premature
convergence [22]. To improve the search abilities and optimization efficiency and to avoid
premature convergence, a quantum is introduced into the PSO. This quantum performs the
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mutations of particles to increase the particles’ diversity, and their movement is governed
by quantum displacement.

The Gaussian sample is based on the personal best position Pi and the global personal
best position Pg. The position of each particle is updated by Equation (22). However,
if the global best particle is a local optimum of the problem to be optimized, it is more
challenging to break out from this local optimum. Thus, to have a complete and satisfactory
use of research space, QPSO must join a local optimal research algorithm such as the “Trust
Region Algorithm (TRA)” to enhance its performance.

xij = (t + 1) = G
(

µij(t), σ2
ij(t)

)
(22)

where xij(t) =
(

pij(t) + pgj(t)
)
/2, σ2

ij(t) =
∣∣pij(t)− pgj(t)

∣∣ are, respectively, the mean and
standard deviation of the Gaussian distribution.

3.3. Trust Region Algorithm (TRA)

TRA is a well-known iterative approach for solving unbounded optimization problems.
It uses the method developed by Newton and offers a high degree of convergence and
stability [23]. For a given problem, TRA divides the research space into subspaces for a
better investigation. At the start, a small region is initialized at each iteration as the trust
region centering on the current iteration point. This operation is continuously conducted
until all the research space is investigated.

However, multimodal and multivariate problems which necessitate optimization are
sometimes trapped in local optima, making it challenging to obtain the optimal global
solution. This trap is due to the fact that the following searching direction of TRA is only
based on the capacity of the locally developed objective function. Therefore, to overcome
this problem, the TRA needs to be associated with a global optimization algorithm.

3.4. Hybrid Algorithm Formed by QPSO and TRA (QPSO-TRA)

Because QPSO is a global optimization algorithm, if the global best particle is a local
optimum of the problem to be optimized, it is challenging for QPSO to break out from
this local optimum. As for the TRA, it frequently becomes stuck in local optima. A hybrid
algorithm is formed by combining QPSO and TRA to avoid the early convergence at the
last step of the QPSO algorithm and improve the convergence speed. The advantage of
TRA and its research abilities is applied to QPSO. This hybrid algorithm helps to increase
or enhance the particle diversity and the global search abilities of the QPSO algorithm.
The combined, joined, or hybrid algorithm is then called QPSO-TRA. QPSO-TRA achieves
quick and efficient convergence performance at a low computational cost compared to GA.
Its computation time is slightly higher than PSO, but it is more accurate than PSO. In the
hybrid algorithm, each personal best position is updated according to Equation (23):

pq(t + 1) = xq(t + 1),

pi(t + 1) =
{

pi(t), f it(pi(t)) ≤ f it(xi(t + 1))
xi(t + 1), f it(pi(t)) > f it(xi(t + 1))

(i 6= q)
(23)

Let Equation (23) be a function (F) and
{

pg(t)
}∞

t=0 a series or succession generated by
the algorithm. Then lim

n→∞
P
(

pg(t)
)
∈ Rε = 1, where Rε is the optimal region, P

(
pg(t)

)
∈ Rε

is the probability at stage α, and the point pg(t) generated by the algorithm is in Rε.
It should be considered that

{
pg(t)

}
is a sequence generated by the QPSO-TRA

algorithm, where pg(t) is the current best position of the swarm on time (t). As the
function F is defined as in Equation (24), from the limit, it can be seen that the algorithm
converges well. {

F(pg(t), xi(t)) =
{

pg(t), f it
(

pg(t)
)
≤ f it(xi(t))

xi(t), f it
(

pg(t)
)
> f it(xi(t))

(24)



Energies 2022, 15, 4905 9 of 15

QPSO-TRA satisfies the convergence theories from the above statements, so it is an
optimization algorithm. Moreover, from the theorem, QPSO-TRA is an optimum search
algorithm that benefits from different algorithms.

The different steps of implementing the algorithm are detailed in Figure 2 and ex-
plained in the next section. As constraints, the values of each particle’s lower and upper
bounds are set. The lower bound (lb) and upper bound (ub) are set for the motor’s pa-
rameters. One can set as lb = [0.00 0.00 0.00 0.00 0.00 0.00], ub = [2.4.00 1.00 1.20 2853
155.00 5.50] for the six parameters of the motors, namely, stator resistance, stator reactance,
rotor reactance, core resistance, magnetizing reactance, and rotor resistance, respectively.
The lower and upper bounds depend on the size of the motors. Once the parameters are
obtained, they are used in the efficiency estimation process.
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4. Experimental Validation
4.1. Laboratory Test

A Matlab program was made for the implementation to identify the parameters of a
5.5 kW, 380 V, 11.7 A, 1450 r/min, and design B induction motor using the proposed algo-
rithm in the laboratory. Figure 3 depicts the test rig of 5.5 kW motor. The test was performed
with a power analyzer, a torque transducer and visualizer, a data acquisition system, a DC
generator as load, and an auto-transformer used for different voltage conditions. The motor
was run at full-load condition to obtain its stable temperature, and the hot temperature was
measured. The equivalent circuit parameters method was associated with the algorithm
to estimate the motor parameters. The optimization of parameters identification of the
induction motor was mathematically expressed as follows: find X = (x1, x2, . . . , xn) such
that F(X) is a minimum. The following are the identification variables for the optimization
(X): stator leakage reactance X1; core resistance Rfe; core magnetization reactance Xm, and
rotor resistance R2. The rotor leakage reactance X2 is calculated with the value of stator
leakage reactance X1, as shown in Table 2. Four parameters out of six will be determined
using the QPSO-TRA algorithm, as cited above.
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Table 2. Ratio of X1/X2 according to the design class [8].

Design Class X1/X2

A 1.00
B 0.67
C 0.43
D 1.00

Wound rotor 1.00

Those four parameters represent the four variable particles in the QPSO-TRA algo-
rithm. The algorithm needs one initial value, the value of stator resistance Rs. This value
is measured at standstill and is corrected with temperature rise during the identification
process. In addition, the values of Rs,cor, and X2 were monitored during all the iterations
to respect the algorithm’s lower and upper bounds constraints. A stagnation_iteration
coefficient [i] is used to monitor each particle’s fitness value to record the particle’s location
change. If the fitness value of a particle Xi does not improve during an iteration, the
stagnation_iteration [i] is extended by one, otherwise it is dropped by one. To consider
a particle to be dormant or inactive, its stagnation_iteration [i] must respond to [i] ≥ λ
and then has to be reinitialized to give it a chance to be a new candidate for the research.
Reinitialization will assist the dormant particle in escaping from the local optimum and
enhancing its search skills. The dormant coefficient is chosen by the user based on the
research space, and also its value is determined by the problem’s severity. The dormant
coefficient λ was set to 0.95 in our case.

In the iteration process of the QPSO, the TRA technique is performed on the current
global best particle at each iteration k. Considering the computing severity of TRA, this
combined approach harnesses the experience and knowledge of each particle swarm during
the iteration. In the implementation process, a beginning point α0 and trust region radius r0
are first specified. Then, using the iterative procedures, a series of points {αa} is constructed
to search for the ideal solution. At each iteration, a tiny region is created called the trust
region, centered on the current iteration point. By dealing with a subproblem inside this
region, a trial step k is determined. Next, an evaluation function is utilized to evaluate if
the trial step should be accepted, and the trust region radius for the following iteration is
determined. If the testing step is accepted, α(a+1) = αa − βa; otherwise, α(a+1) = αa. If the
trial stage is successful, the new radius will be enlarged or maintained. The trust region
exclusively uses the problem’s information and region knowledge. The ideal combination
is depicted in Equation (25). Because the original QPSO-TRA method is an optimization
technique for obtaining optimum values, it leads the particle to deviate from the subregional
minimum value and returns the optimal values when the iteration ends, where the fitness
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represents the objective function, {Xi} is the function of parameters to be identified, β = [K,α],
K is an integer in the interval [1,6], and α = 50 is the population size for the optimization:

f itness = minβ=[K,α]{Xi}
K = [1, 6]
α = 250

(25)

As constraints, the values of each particle’s lower and upper bounds are set. The
lower bound (lb) and upper bound (ub) are set for the motor’s parameters. In our case, the
lower and upper bounds were set to lb = [0.00 0.00 0.00 0.00 0.00 0.00] and ub = [2.4.00 1.00
1.20 2853 155.00 5.50] for the six parameters of the motors, namely, stator resistance, stator
reactance, rotor reactance, core resistance, magnetizing reactance, and rotor resistance,
respectively. These lower and upper bounds depend on the size of the motors. Then,
the algorithm runs until the stopping criterion is reached. After their identification by
QPSO-TRA, Rs,cor is used for air gap torque determination, and Rfe is used for core losses
determination in the proposed efficiency estimation algorithm. The remaining parameters
can be used to judge the motor winding healthy state.

The current signal is collected using a data acquisition system for the motor speed
detection technique, as shown in Figure 4a. FFT was used to obtain the current frequency
spectrum. All the frequency components in the spectrum cannot be directly used. A
range of harmonic frequencies must be defined as a criterion for harmonics frequency
determination. The number of the spectrum component is reduced by determining lower
and upper threshold values, a range of probable frequencies for harmonics investigation.
The high harmonics frequencies determine this range in no-load fsh1 and fsh2 in the full-load
conditions. For example, suppose n1, n2, and z are, respectively, the synchronous speed
(no-load speed), the rated speed, and the rotor slot number. In that case, the harmonic
frequency is determined using the formulas fsh1 = n1z

60 ± f0 and fsh2 = n2z
60 ± f0, where f 0

is the supply frequency. The frequency components that are not in the range are eliminated
to reduce or limit the research space. Then, those frequencies that are in the range are
investigated to calculate the probable rotor slot harmonic frequency (RSHF). In our case,
the determination range was 680–800 Hz. The frequency that has high amplitude is the
identified slot harmonic frequency. Once the RSHF is obtained, Equation (5) is used to
determine the motor speed. Figure 4b shows that the identified slot harmonic frequency is
734 Hz, and the speed is 1466 r/min. Figure 5a illustrates the estimated versus measured
speed according to load ratio; whiles Figure 5b depicts estimated versus measured efficiency
according to load ratio, which show a good agreement with the measured results.
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Figure 4. Measured stator current and rotor harmonic frequency: (a). measured phase-A currents;
(b). extracted rotor slot harmonics frequency (734 Hz) for 5.5 kW motor, with slot number Z = 28 and
pole pair number p = 2; the corresponding speed is 1465.71 r/min after recorded data analysis.
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Figure 5. Measured versus estimated: (a). estimated versus measured speed according to load ratio;
(b). estimated versus measured efficiency according to load ratio.

Table 3 shows the extracted parameters and compares PSO and QPSO-TRA algorithms
for motor parameters determination. The speed has also been measured using a contactless
method and both results were compared to evaluate the speed detection technique. After
the full load, partial loads such as 75%, 50%, and 25% were also tested. Table 4 depicts the
motor measured efficiencies and their associated speeds. The full charge and partial loads
results are shown in Table 4. The relative errors of both efficiencies and speed can also be
seen. Table 4 also illustrates the estimated efficiencies with PSO and QPSO-TRA and the
estimated speeds versus measured speeds of the partial loads in the laboratory. The relative
error deviations of the estimated efficiencies from the measured values are presented. For
comparison purposes, PSO and QPSO-TRA results are shown in Table 4 for a laboratory test.

Table 3. Comparison of determined parameters of 5.5 kW motor.

Parameters PSO QPSO-TRA

R1 2.43 2.43
R2 1.92 1.72
Rfe 2803.87 2687.675
Xm 114.15 150.003
X1 0.88 0.85
X2 1.31 1.27

Table 4. 5.5 kW motor estimated efficiencies and speeds versus measured in the laboratory.

Load (%)

Speeds (r/min)

Relative Errors

Efficiencies (%)
Relative Errors

PSO/QPSO-TRAMeasured Estimated Measured
Estimated

PSO QPSO-TRA

100 1468.04 1465.71 0.0158 88.63 91.05 89.32 0.1900
75 1475.08 1473.88 0.0081 91.41 90.94 91.65 −0.0780
50 1481.4 1482.5 −0.0007 90.04 89.55 89.95 −0.0446
25 1489.5 1490.8 −0.0008 83.86 89.33 83.53 0.6492

It is evident that the error increases with the load factor of 25%. At 25%, the motor is
under light load condition. At this point, the losses are more considerable than if the load
point is close to the rated load and the output power is small, which is not recommended
because it is not beneficial.

4.2. Field Application

The proposed algorithm has been applied on an 11,000 kW, 10 kV feeding pump
induction motor in a power plant, the rated current and speed are 710 A and 1491 rpm,
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respectively. Figure 6 shows the measured voltage and current waveforms of the above
motor. In the field test, a self-developed monitoring system is installed on the motor
terminal, and the running interface is to complete the corresponding data monitoring and
analysis. Besides of the voltage and current waveforms, the monitored data also include
voltage, current, torque, speed, power factor, efficiency, voltage deviation, unbalance and
harmonic components and so on. Here, when monitoring and recording a large amount of
data, only a typical example of data is given in Figure 6 and Table 5. It can be seen that.

Figure 6. Measured waveforms with the developed monitoring system and estimated air-gap torque
and slot harmonic obtained by the presented method. (a). Voltage. (b) Current. (c) Air-gap torque.
(d) Rotor slot harmonic.

Table 5. Extracted parameters by QPSO-TRA and PSO.

Parameters
10 MW Motor

QPSO-TRA PSO

R1 0.223 0.351
R2 0.172 0.272
Rfe 28,687.675 29,381.178
Xm 2350.003 2715.078
X1 0.115 0.231
X2 0.115 0.231

(1) Figure 6a,b are the measured voltage and current waveforms, and Figure 6c,d
are identified rotor slot harmonics and electromagnetic torque. The input power can be
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calculated by measured voltage and current waveforms, namely, 8922.27 kW. Furthermore,
it is difficult to measure the shaft torque directly in the field, therefore, the output power
are derived by the measured speed and pressure and flow of pumped water, namely,
8565.92 kW, respectively. And motor efficiency under this condition is 96.01%.

(2) From Figure 6c,d, the identified rotor slot harmonic is 2540 Hz, and the related
rotor speed is 1494.5 rpm, and average electromagnetic torque under this condition based
on Equation (2) is 55 kNm. It can be calculated that the output power is 8603.33 kW. And
the identified efficiencies are 95.63% and 96.43%, with PSO and QPSO-TRA, respectively.

(3) Table 5 shows the extracted parameters of the motor using QPSO-TRA and PSO
algorithms, respectively. Table 6 shows the motor data and the estimation results. It can
be concluded that the estimated results show that the relative error is about 0.83% in the
field test, which indicates that the proposed method can meet the efficiency estimation
requirement of motor systems.

Table 6. Measured versus estimated efficiencies of the motors by PSO and QPSO-TRA methods.

Measured Efficiency
(%)

Estimated Efficiency
by PSO (%)

Estimated Efficiency
QPSO-TRA (%)

Relative Errors
PSO/QPSO-TRA

96.01 95.63 96.43 0.83

To sum up, the proposed algorithm demonstrates an sufficient accuracy level when
the predicted or estimated efficiencies are compared to their related measured values.

5. Conclusions

This study proposes an approach for in situ efficiency estimation of induction motors
based on the QPSO-TRA algorithm. With the proposed method, the stator resistance Rs
and the core losses resistance Rfe can be accurately identified online. The main conclusions
are as follows.

(1) A new algorithm to identify the motor parameters is designed to deal with the problem
mentioned early for induction motor parameters identification. This new algorithm is
called QPSO-TRA. After comparing the extracted parameters with QPSO-TRA and
standard PSO, it is found that QPSO-TRA can achieve a better result than the standard
PSO, as can be seen in Tables 3 and 5.

(2) With the proposed hybrid algorithm, global research is avoided when investigating the
full research space. The computation time and burden are reduced to 1/3 compared
to the Genetic Algorithm and also the algorithm is faster, reducing the computational
time, compared to simple TRA.

(3) Experiments in the laboratory and the field were performed to analyze the perfor-
mance of the proposed efficiency estimation algorithm by testing some induction
motors of various types and rating power in the laboratory rather than in the field.
The relative errors in Tables 4 and 6 are less than 2%, which is a good indicator to
show the high accuracy of the proposed method. Finally, the high accuracy level
showed by the proposed technique validated the efficiency estimation technique.
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