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Abstract: In this analysis, we considered a comparative study of micropolar Casson nanofluid flow
on a vertical nonlinear Riga stretching sheet. Effects of thermal and velocity slip are considered under
thermophoresis and Brownian motions. Select nonlinear PDEs transformed into nonlinear coupled
ODEs using the set of suitable transformations. The nonlinear coupled ODEs are solved through
a numerical technique along with the Runge–Kutta 4th-order scheme. The impacts of pertinent flow
parameters on skin friction, Nusselt number, temperature, and velocity distributions are depicted
through tabular and graphical form. Brownian motion and the magnitude of the Sherwood number
have opposite performances; likewise, the Nusselt number and Brownian motion also have opposite
performances. The Sherwood number and Nusselt number succeeded with higher values. The
increment of the Casson fluid parameter declined with fluid velocity, which shows that thickness is
reduced due to the increment of the Casson fluid parameter. Fluid velocity distribution curves show
increasing behavior due to increments of the micropolar parameter.

Keywords: vertical Riga sheet; micropolar-Casson fluid; thermal slip; numerical technique

1. Introduction

Non-Newtonian fluids play an important role in the field of engineering and its re-
lated industries. Research on non-Newtonian liquids is prominent due to the wide range
of potential uses, including the extraction of crude oil from petroleum products, the cre-
ation of plastic materials, and the development of syrup medications. Casson fluid is
a non-Newtonian fluid with unique characteristics; it acts like an elastic solid and the
basic equation includes a yield shear stress in this type of fluid. Non-Newtonian transport
phenomena occur in a variety of mechanical and chemical engineering disciplines, as well
as in food preparation. The authors of this study focused on investigating the mix of models
of Casson and micropolar fluids in order to establish the theoretical results in different
assumptions. We developed the mixed stress tensor of Casson fluid and micropolar fluid,
which becomes the Casson micropolar fluid model. In our research, the Casson micropolar
fluid, Brownian motion, and thermophoresis effects on the variable Riga stretching sheet
is considered. Erigen [1] pioneered the micropolar fluid theory and highlighted the idea
of thermo-micropolar fluid [2]. The micropolar fluid theory is familiar as an analytical
miniature that can be used to characterize the action of non-Newtonian liquid in numerous
constructive appliances. Micropolar fluids attract consideration from prosecutors, which
has resulted in the spread of their application in industrial, accomplishment, and engineer-
ing uses. Micropolar fluid displays a conflict in the passage of fluid in relation to Newtonian
fluid, which adds a large quantity of micropolar specification accompanying the absolute
viscosity in the fluid flow. The micropolar fluid can be an intensely affective fluid medium
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in the environmental aspect of the examination of laminar flow. Micropolar theory inves-
tigates the impact of micro-rotation in fluid mechanics that consist of micro-constituents
that force rotation. Comprehensive analysis of the theory and its appliances is established
in an article by Ariman et al. [3], as well as a recent book written by Lukaszewicz [4] and
Eringen [5] on the application of microfluid. Ahmadi [6] discussed the boundary layer
flow for micropolar fluid over a semi-infinite plate under the effects of natural, forced,
or mixed convection. Jena and Mathur [7] introduced the similarity solutions for the in-
compressible thermo-micropolar fluid flow past vertical non-isothermal flat plates and
highlighted the impacts of forced, natural, and mixed convection for thermo-micropolar
fluid. Gorla et al. [8] expand on this work by developing the results of micropolar fluid
asymptotic boundary layer flow. Bhargava et al. [9] highlighted the influence of micropolar
fluid flow with mixed convection using the finite element scheme on porous surfaces. The
time-dependent flow of micropolar fluid on a sheet was studied by Hayat et al. [10] using
the HAM technique. Ahmad et al. [11] investigated the impact of viscous dissipation on
micropolar fluid flow with a nonlinear stretching sheet. Reddy et al. [12] studied the time-
dependent flow of micropolar fluid using a vertical slender hollow cylinder. Lund et al. [13]
studied the MHD micropolar fluid flow over a vertical shrinking sheet. Dawar et al. [14]
discussed the influence of chemical radiations and microstructural slip over a stretching
sheet. Singh et al. [15] discussed the influence of micropolar fluid flow numerically. Several
investigators are developing the results concerning dynamic problems (see Refs. [15–18]).

The past research on flow and heat transmission on stretching sheets caught the
attention of scholars in a variety of fields. It is important in polyamide production due to
the many mechanical developments of polymers. This type of flow is also important in
engineering appliances, such as dealing with polymers in the basics of chemical engineering,
and also functions in metallurgy. The concept of movement restricting planes along with
velocity, which linearly alters the distance from fixed points on a sheet, is examined by
Crane [19]. Recently, a large number of creators have continued to utilize non-Newtonian
fluids beyond, and along with, heat and mass transfer [20,21]. Nadeem et al. [22] examined
the time autonomies stretching second-grade fluid. Majeed et al. [23] recommended the
consequence of suction over a stretching surface for ferromagnetic non-Newtonian fluid
flow. The most compelling results regarding micropolar fluid on various stretching surfaces
are discussed under the assumptions (see Refs. [24–28]).

In this analysis, we analyzed the combined effects of the Casson micropolar fluid model
over a vertical variable stretching Riga sheet. The Brownian motion and thermophoresis
are considered to analyze the impacts over the vertical variable stretching Riga sheet in this
analysis; thermal and velocity slip impacts are also analyzed. From the above assumptions,
the coupled nonlinear PDEs transformed into nonlinear coupled ODEs using the set of
suitable transformations. The nonlinear coupled ODEs are solved through numerical
techniques along the Runge–Kutta scheme. The combined Casson and micropolar fluid
models under the Brownian motion and thermophoresis over a vertical variable stretching
Riga sheet is not discussed. When we compared our results to decay results, we found
that our results were more suited with decay literature. These results are noteworthy and
practical in both engineering and industry. The impacts of pertinent flow parameters on
skin friction, the Nusselt number, and temperature and velocity distributions are depicted
through tabular form, as well as in graphical form.

2. Flow Formulation

We considered the micropolar–Casson fluid flow with the Buongiorno Model on
a vertical Riga sheet (see in Figure 1); the thermal slip and velocity slip were also imple-
mented on the vertical Riga sheet. Heat and mass transportation is explored in the presence
of a modified Hartmann number, buoyancy forces, thermophoresis, and Brownian motion.
Cw and C∞ wall concentration corresponded with ambient concentration. u and v are
the velocity component along x- and y-direction. Tw and T∞ are the corresponding wall
temperature and ambient temperature. Under the above assumptions, the mathematical
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model is developed by means of boundary layer approximation in the form of partial
differential equations which is presented below (see Refs. [29–32]):

∂u
∂x

+
∂v
∂y

= 0, (1)

u ∂u
∂x + v ∂u

∂y = ν
(

1 + 1
β + K

)
∂2u
∂y2 + M0 J0

8πρ exp
(
−π

a y
)
+

g[β(T − T∞) + β∗(C− C∞)] + K
ρ

∂N
∂y ,

(2)

u
∂N
∂x

+ v
∂N
∂y

=
γ

ρj

∂2N
∂y2 −

K
ρj

(
2N +

∂u
∂y

)
, (3)

u
∂T
∂x

+ v
∂T
∂y

=
k f(

ρcp
)

f

∂2T
∂y2 + g

[
Dt

T∞

(
∂T
∂y

)2
+ DB

∂C
∂y

∂T
∂y

]
, (4)

u
∂C
∂x

+ v
∂C
∂y

=
Dt

T∞

∂2T
∂y2 + DB

∂2C
∂y2 , (5)

Figure 1. Flow pattern of micropolar–Casson fluid.

The suitable boundary conditions are stated as
u = Uw + λ2

∂u
∂y , v = 0, N = −m0

∂u
∂y , −λ∗ ∂T

∂y = T − T∞, ∂C
∂y = −

(
Dt

DBT∞

)
∂T
∂y ,

as y→ 0,
u→ 0, N → 0, T → T∞ , C → C∞ as y→ ∞.

(6)

where the constant m0 ranges from 0 ≤ m0 ≤ 1. The concentrated particle flows (m0 = 0.0)
cannot rotate due to a strong concentration of elements near the wall surface (Jena and
Mathur [6]). When m0 = 1/2, the anti-symmetrical part of the stress tensor vanishes
(Ahmadi [7]). In the case of turbulent boundary layer flows, Peddieson [33] suggests that
m0 = 1. Introducing the suitable transformations are

u = Uw f ′(η), v = −
√

νa f (η), η =
(

Uw
νx

)
y, ψ = (νxUw ) f (η), N =

Uw

√(
Uw
νx

)
g(η), Φ(η) = T−T∞

Tf−T∞
, R(η) = C−C∞

Cw−C∞
.

(7)
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The coupled nonlinear PDEs are changed into connected non-linear ODEs (ordinary
differential equations) by adopting the similarity transformations given above. The con-
tinuity equation is directly fulfilled by adopting the suitable transformations which are
represented as Equation (1) in this paper. The reduced nonlinear system of equations is
presented as below:(

1 + K +
1
β1

)
f ′′′ − f ′2 + f f ′′ + Mexp(−εη) + λtΦ(η) + Kg′(η) + λcR(η) = 0, (8)(

1 +
K
2

)
g′′ − f ′g + f g′ − K(2g + f ′′ ) = 0, (9)

1
Pr

Φ′′ + f Φ′ + NbΦ′R′ + NtΦ′2 = 0, (10)

R′′ + Sc f R′ +
Nt

Nb
Φ′′ = 0. (11)

With boundary conditions
1 + λ f ′′ (0)− f ′(0) = 0, f (0) = 0, f ′(∞)→ 0,

g(0) + mo f ′′ (0) = 0, λ1Φ′(0) + 1 = Φ(0), R′(0) + Nt
Nb

Φ′(0) = 0,

Φ(∞)→ 0, R(∞)→ 0.

(12)

3. Numerical Solution

The highly non-linear connected boundary layer problem of the third-order and
the second-order form the Equations (8)–(11)—given the related boundary conditions in
Equation (12)—and are solved through a numerical technique using the Matlab software
packages. We started with an initial guess value and selected and solved the problems with
certain subjective physical parameters to acquire the numerical results. These results are
revealed by numerical data as well as in graphical form. The above network of connected
nonlinear ODEs (ordinary differential equations) is solved with the help of the Runge–
Kutta scheme’s built-in strategy. The significant value of the η is chosen for the set of
subjective physical parameters. From there, the Runge–Kutta methodology is applied to
solve numerically ordinary differential equations. The description of the methodology
diagram is provided in Figure 2. The numerical procedure is defined as:

y(1) = f (η),

y(2) = f ′(η),

y(3) = f ′′ (η),

yy1 = f ′′′ (η),

yy1 = −
[
1 + K + 1

β

]−1
(y(2)2 − y(1)y(3) + Mexp(−εη) + λcy(8) + λty(6) + Ky(5),

y(4) = g(η)

y(5) = g′(η),

yy2 = g′′ (η),

yy2 = −
((

1 + K
2

)−1
)
(y(1)y(5)− y(2)y(4)− K(2y(4) + y(3))),

y(6) = Φ(η),

y(7) = Φ′(η),

yy3 = Φ′′ (η),

yy3 = −Pr
(
y(1)y(7) + Nby(9)y(7) + Nty(7)2),

y(8) = R(η),

y(9) = R′(η),

yy4 = −
(

Scy(1)y(9) + Nt
Nb

yy3
)

.
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Figure 2. Description of the numerical scheme.

Subject to the boundary conditions

y0(1); 1 + λy0(3)− y(2); y0(4) + moy0(3); λ1y0(7) + 1− y0(6);

y0(9) +
Nt

Nb
y0(7) = 0; yin f (2); yin f (4); yin f (6); yin f (8);

The nonlinear higher-order differential system is solved by using the fifth-order Runge–
Kutta–Fehlberg scheme. The numerical results will converge if the boundary residuals
are less than tolerance error, i.e., 10−6. Introductory approximations are altered with the
Newton method and the method is repeated unless it meets the required convergence basis.
The boundary residuals are presented as:

R1(u1, u2, u3, u4 ) = |y2(∞)− ŷ2(∞)|,

R2(u1, u2, u3, u4 ) = |y4(∞)− ŷ4(∞)|.

R3(u1, u2, u3, u4 ) = |y6(∞)− ŷ6(∞)|,

R4(u1, u2, u3, u4 ) = |y8(∞)− ŷ8(∞)|.
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Hence, ŷ2(∞), ŷ4(∞), ŷ6(∞), and ŷ8(∞) are computed boundary values.

4. Results and Discussion

The impact of the numerous dimensionless parameters of the fluid velocity, micropo-
lar, temperature, and concentration distributions are revealed through graphs and tables.
Figures 3–9 show the impacts of the Casson fluid parameter (β1), dimensionless parameter
(ε), micropolar parameter (K), buoyancy parameters (λc and λt), velocity slip (λ), and
modified the Hartman number (M) on the fluid velocity distribution (F ′(ζ)). The influ-
ence of Casson fluid parameter (β1) on fluid velocity distribution (F ′(ζ)) is presented in
Figure 3. The increment of Casson fluid parameter (β1) declined the fluid velocity. The
momentum thickness was physically enhanced due to the increment of the Casson fluid
parameter (β1). The influence of the dimensionless parameter (ε) on fluid velocity distri-
bution (F ′(ζ)) is expressed in Figure 4. The curves of fluid velocity distribution declined
due to the increment of the dimensionless parameter (ε). Physically, the distance from
the sheet to magnetic fields declined exponentially, which ultimately reduced the fluid
velocity function. The impact of the micropolar parameter (K) on fluid velocity distribution
(F ′(ζ)) is exhibited in Figure 5. The fluid velocity distribution curves show increasing
behavior due to increments of the micropolar parameter (K) due to the increase in the
rotation of the fluid the velocity of fluid increased. Figures 6 and 7 reveal the indication
of buoyancy force parameters (λc and λt) on fluid velocity distribution (F ′(ζ)). The fluid
velocity distribution (F ′(ζ)) and buoyancy force parameters (λc and λt) revealed similar
increasing behavior due to the increased gravity force, which developed pressure and
led to enhanced fluid velocity distribution near the surface. Figure 8 exhibits the effect
of the velocity slip (λ) on fluid velocity distribution (F ′(ζ)). The reduction in curves of
fluid velocity distribution (F ′(ζ)) is revealed due to the increment in velocity slip (λ). The
velocity slip (λ) is increased, which causes a decline in the thickness of velocity distribution.
The effect of the modified Hartman number (M) on the fluid velocity distribution (F ′(ζ))
is presented in Figure 9. The increment in the modified Hartman number (M) increased
the momentum boundary layer thickness. The modified Hartmann number is the relation
between electromagnetic and viscous forces; as the viscous forces declined, fluid velocity
and electromagnetic force increased. Figure 10 shows the influence of micropolar param-
eter (K) on micropolar distribution (g(ζ)). The curves of micropolar distribution (g(ζ))
are enhanced due to an increment of the micropolar parameter (K) ; the rotation of the
fluid parameter increased and enhanced the micropolar fluid distribution. Figures 11–13
indicate the influence of thermal slip (λ1), Brownian motion (Nb), and thermophoresis (Nt)
parameters on temperature distribution (φ(ζ)). Figure 11 connects the impact of thermal
slip (λ1) on the temperature distribution (φ(ζ)). The curves of temperature distribution
(φ(ζ)) decline due to the enhancement in thermal slip (λ1). The increment in thermal slip
physically declined because the surface drag led to a decline in the production of heat
amount and reduced the temperature distribution. Figure 12 communicates the impacts of
Brownian motion (Nb) on the temperature distribution (φ(ζ)). The curves of temperature
distribution (φ(ζ)) show declined behavior due to the enhancement in Brownian motion
(Nb). According to Brownian motion, the nanoparticles in fluid transfer randomly. In addi-
tion to accelerating the collision between nanoparticles and fluid molecules, this random
movement also converts the kinetic energy of molecules into thermal energy, which in-
creased the temperature profile. Figure 13 indicates the influence of thermophoresis (Nt) on
temperature distribution (φ(ζ)). Increments in the thermophoresis (Nt) parameter declined
the curves of temperature distribution (φ(ζ)), causing nanofluid particles suspended in the
fluid to migrate through the direction of the declining temperature of fluid. Figures 14–16
indicate the influence of Brownian motion (Nb), thermophoresis (Nt), and Schmidt number
(Sc) parameters on concentration distribution (R(ζ)). Figure 14 indicates the influence
of Brownian motion (Nb) on concentration distribution (R(ζ)). Increments in Brownian
motion (Nb), which declined the curves of concentration distribution (R(ζ)), increased
curves of temperature distribution (φ(ζ)) after point of intersection. The influence of ther-
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mophoresis (Nt) on concentration distribution (R(ζ)) is indicated in Figure 15. Increments
in thermophoresis (Nt) increased the curves of concentration distribution (R(ζ))because
the particles increased; the concentration profile also increased, but the curves of concen-
tration distribution reduced (R(ζ)) after the point of intersection. Figure 16 indicates the
influence of the Schmidt number (Sc) on concentration distribution (R(ζ)). Increments
in the Schmidt number (Sc) caused a decline in the curves of concentration distribution
(R(ζ)) but increased curves of concentration distribution (R(ζ)) after point of intersection.

Figure 3. Variation of β1 and F ′(ζ).

Figure 4. Variation of ε and F ′(ζ).
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Figure 5. Variation of K and F ′(ζ).

Figure 6. Variation of λc and F ′(ζ).
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Figure 7. Variation of λt and F ′(ζ).

Figure 8. Variation of λ and F ′(ζ).
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Figure 9. Variation of M and F ′(ζ).

Figure 10. Variation of K and F ′(ζ).
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Figure 11. Variation of λ1 and φ(ζ).

Figure 12. Variation of Nb and φ(ζ).
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Figure 13. Variation of Nt and φ(ζ).

Figure 14. Variation of Nb and R(ζ).
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Figure 15. Variation of Nt and R(ζ).

Figure 16. Description of the numerical scheme.
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Table 1 indicates the effects of the Casson fluid parameter (β1), dimensionless parame-
ter (ε), buoyancy parameters (λc and λt), micropolar parameter (K), modified Hartman
number (M), and velocity slip (λ) on skin friction (C f Re

1
2 ) for both weak (m0 = 0.5) and

strong (m0 = 0.0) cases of concentration. Increment in the Casson fluid parameter declined
skin friction in both weak (m0 = 0.5) and strong (m0 = 0.0) concentration cases. Table 1
indicates the impact of the dimensionless parameters on skin friction (C f Re

1
2 ). The skin

friction (C f Re
1
2 ) and dimensionless parameter have the same growing behavior; physically,

the distance from surface to magnetic field declines exponentially and ultimately enhances
the skin friction. The impression of buoyancy force parameters (λc and λt) on skin friction
is exhibited in Table 1. The increment in λt is increased skin friction (C f Re

1
2 ); however,

λc and skin friction (C f Re
1
2 ) have been found to behave oppositely. The influence of the

micropolar parameter (K) on skin friction (C f Re
1
2 ) is indicated in Table 1. Micropolar

parameters (K) and skin friction (C f Re
1
2 ) are found to be an increasing behavior. Rotation

of fluid also increased, which, in turn, increased the friction between surface and fluid.
Table 1 indicates the effects of the modified Hartman number (M) on skin friction (C f Re

1
2 );

the impression shows that the modified Hartman number (M) and skin friction (C f Re
1
2 )

have opposite performances. The modified Hartmann number is the relation between
electromagnetic and viscous forces; as the viscous forces declined, the electromagnetic force
increased and skin friction declined. Table 1 indicates the effects of velocity slip (λ) on
skin friction (C f Re

1
2 ). The impression shows that velocity slip (λ) and skin friction (C f Re

1
2 )

have opposite performances. The velocity slip is the contact point for the ratio of fluid
and surface. As the skin friction declined, the velocity slip increased. Table 2 indicates the
impacts of Brownian motion (Nb), thermophoresis (Nt), Schmidt number (Sc), thermal slip
(λ1), Casson fluid parameter (β1), and micropolar parameter (K) on the Sherwood number
(ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ). The impact of Brownian motion (Nb) on the

Sherwood number (ShxRe
1
2 ) and Nusselt number (NuxRe

1
2 ), which are presented in Table 2,

show that Brownian motion (Nb) and the magnitude of the Sherwood number (ShxRe
1
2 )

have opposite performances; the Nusselt number (NuxRe
1
2 ) and Brownian motion (Nb)

also have opposite performances in cases of both weak (m0 = 0.5) and strong (m0 = 0.0)
concentration. The Sherwood number (ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ) show suc-

cessively higher values in case of strong (m0 = 0.0) concentration as compared to weak
concentration (n = 0.5). In addition to accelerating the collision between nanoparticles
and fluid molecules, this random movement also converts molecules’ kinetic energy into
thermal energy, which reduced both the Nusselt number and Sherwood number. The
impact of thermophoresis (Nt) on the Sherwood number (ShxRe

1
2 ) and Nusselt number

(NuxRe
1
2 ) is presented in Table 2. Thermophoresis (Nt) and the magnitude of the Sherwood

number (ShxRe
1
2 ) both increase, while the Nusselt number (NuxRe

1
2 ) and thermophoresis

(Nt) have opposite performances in cases of both weak (m0 = 0.5) and strong (m0 = 0.0)
concentration. The Sherwood number (ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ) showed

higher values in case of strong (m0 = 0.0) concentration as compared to weak (m0 = 0.5)
concentration. Increments in the thermophoresis (Nt) parameter declined with the Nusselt
number. Nanofluid particles suspended in the fluid migrate through the direction of decline
with the Nusselt number but react oppositely with the thermophoresis parameter. The
influence of the Schmidt number (Sc) on the Sherwood number (ShxRe

1
2 ) and Nusselt

number (NuxRe
1
2 ) is indicated in Table 2. The values of the Sherwood number (ShxRe

1
2 )

and Nusselt number (NuxRe
1
2 ) both decline due to increments in the Schmidt number (Sc).

The Sherwood number (ShxRe
1
2 ) and Nusselt number (NuxRe

1
2 ) show higher values in

cases of strong (m0 = 0.0) concentration as compared to weak (m0 = 0.5) concentration.
Variations in thermal slip (λ1), Sherwood number (ShxRe

1
2 ), and Nusselt number (NuxRe

1
2 )

are shown in Table 2. It is noted that thermal slip (λ1) and the magnitude of the Sherwood
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number (ShxRe
1
2 ) and Nusselt number (NuxRe

1
2 ) have opposite performance in both cases

of weak (m0 = 0.5) and strong (m0 = 0.0) concentrations. Variations of the Casson fluid
parameter (β1) and Sherwood number (ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ) are shown

in Table 2. The Casson fluid parameter (β1) and the magnitude of both the Sherwood
number (ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ) have opposite performance in both cases

of weak (m0 = 0.5) and strong (m0 = 0.0) concentration as the shear-thinning is increased,
which declines with the Sherwood number (ShxRe

1
2 ) and Nusselt number (NuxRe

1
2 ). The

indications of the micropolar parameter (K), Sherwood number (ShxRe
1
2 ) and Nusselt

number (NuxRe
1
2 ) are shown in Table 2. It is noted that micropolar parameter (K) and

magnitude of both the Sherwood number (ShxRe
1
2 ) and Nusselt number (NuxRe

1
2 ) have

similar increases in cases of both weak (m0 = 0.5) and strong (m0 = 0.0) concentration.
Table 3 is provided the comparison of results with two different techniques—bvp4c and
NDsolve—for different values of β1 and ε while the rest of physical parameters remained
fixed, which was found to be in agreement with other results. Table 4 is presented the
comparison of our results with Khan and Pop [34], Wang [35], and Gorla and Sidawi [36]
when the rest of the physical parameters were considered zero. Our results are in agreement
with decay results.

Table 1. Numerical results of skin friction for different values of parameters.

Physical Parameters C f Re
1
2

β1 ε λt λc K M λ m0 = 0.0 m0 = 0.5

0.2 0.3 0.4 0.5 0.6 0.4 0.2 −1.673226 −1.725221

0.4 - - - - - - −1.214027 −1.270021

0.6 - - - - - - −1.037617 −1.095173

0.8 - - - - - - −0.9431868 −1.001566

0.4 0.1 - - - - - −1.022292 −1.069329

- 0.3 - - - - - −1.214027 −1.270021

- 0.5 - - - - - −1.315013 −1.375856

- 0.7 - - - - - −1.375353 −1.439143

- 0.3 0.0 - - - - −1.310721 −1.371746

- - 0.2 - - - - −1.262185 −1.320671

- - 0.4 - - - - −1.214027 −1.270021

- - 0.6 - - - - −1.166235 −1.219783

- - 0.4 0.0 - - - −1.200159 −1.255625

- - - 0.5 - - - −1.214027 −1.270021

- - - 1.0 - - - −1.229498 −1.28614

- - - 1.5 - - - −1.241787 −1.303813

- - - 0.5 0.0 - - −1.103828 −1.103828

- - - - 0.3 - - −1.162278 −1.189609

- - - - 0.6 - - −1.214027 −1.270021

- - - - 0.9 - - −1.262202 −1.34753

- - - - 0.6 0.0 - −1.649318 −1.726431

- - - - - 0.2 - −1.426766 −1.492998

- - - - - 0.4 - −1.214027 −1.270021
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Table 1. Cont.

Physical Parameters C f Re
1
2

β1 ε λt λc K M λ m0 = 0.0 m0 = 0.5

- - - - - 0.6 - −1.008469 −1.054712

- - - - - 0.4 0.0 −1.397646 −1.472076

- - - - - - 0.2 −1.214027 −1.270021

- - - - - - 0.4 −1.075704 −1.119696

- - - - - - 0.6 −0.9672141 −1.002867

Table 2. Numerical results of the Sherwood number and Nusselt number for different values
of parameters.

Physical Parameters m0 = 0.0 m0 = 0.5

Nb Nt Sc λ1 β1 K NuxRe
1
2 ShxRe

1
2 NuxRe

1
2 ShxRe

1
2

0.2 0.4 0.5 0.5 0.4 0.6 0.7248814 −1.449763 0.7232926 −1.446585

0.4 - - - - - 0.724467 −0.724467 0.7228847 −0.7228847

0.6 - - - - - 0.7243141 −0.4828761 0.7227331 −0.4818221

0.8 - - - - - 0.7242348 −0.3621174 0.7226542 −0.3613271

0.4 0.2 - - - - 0.7282771 −0.3641386 0.726704 −0.363352

- 0.4 - - - - 0.724467 −0.724467 0.7228847 −0.7228847

- 0.6 - - - - 0.7205841 −1.080876 0.7189916 −1.078487

- 0.8 - - - - 0.716627 −1.433254 0.7150231 −1.430046

- 0.4 0.0 - - - 0.7290085 −0.7290085 0.727124 −0.727124

- - 0.5 - - - 0.724467 −0.724467 0.7228847 −0.7228847

- - 1.0 - - - 0.7177105 −0.7177105 0.7161199 −0.7161199

- - 1.5 - - - 0.7119261 −0.7119261 0.7103585 −0.7103585

- - 0.5 0.1 - - 1.015862 −1.015862 1.012863 −1.012863

- - - 0.3 - - 0.8460207 −0.8460207 0.8438948 −0.8438948

- - - 0.5 - - 0.724467 −0.724467 0.7228847 −0.7228847

- - - 0.7 - - 0.6332804 −0.6332804 0.6320583 −0.6320583

- - - 0.5 0.2 - 0.7308407 −0.7308407 0.7299368 −0.7299368

- - - - 0.4 - 0.724467 −0.724467 0.7228847 −0.7228847

- - - - 0.6 - 0.7212873 −0.7212873 0.7192414 −0.7192414

- - - - 0.8 - 0.7193347 −0.7193347 0.7169546 −0.7169546

- - - - 0.4 0.0 0.7219191 −0.7219191 0.7219191 −0.7219191

- - - - - 0.3 0.7232098 −0.7232098 0.7223637 −0.7223637

- - - - - 0.6 0.724467 −0.724467 0.7228847 −0.7228847

- - - - - 0.9 0.7256365 −0.7256365 0.7234127 −0.7234127
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Table 3. Comparison of results with two different techniques (bvp4c and NDsolve) for β1 and ε while
the rest of physical parameters remained fixed.

bvp4c Method ND-Solve Method

Physical Parameters C f Re
1
2 C f Re

1
2

β1 ε m0 = 0.0 m0 = 0.5 m0 = 0.0 m0 = 0.5

0.2 0.3 −1.673226 −1.725221 −1.664712 −1.7246872

0.4 - −1.214027 −1.270021 −1.205987 −1.2687431

0.6 - −1.037617 −1.095173 −1.0368794 −1.0946261

0.8 - −0.9431868 −1.001566 −0.924786 −1.0014782

0.4 0.1 −1.022292 −1.069329 −1.021578 −1.068673

- 0.3 −1.214027 −1.270021 −1.208762 −1.270011

- 0.5 −1.315013 −1.375856 −1.308763 −1.375632

- 0.7 −1.375353 −1.439143 −1.368974 −1.375632

Table 4. The comparison results of Khan and Pop [34], Wang [35], and Gorla and Sidawi [36] with
present analysis when the rest of the physical parameters were considered zero.

Pr Khan and Pop [34] Wang [35] Gorla and Sidawi [36] Present Analysis

0.70 0.45390 0.45390 0.53490 0.4538741

2.00 0.91130 0.91140 0.91140 0.9113825

7.00 1.89540 1.89540 1.89050 1.89538941

20.00 3.35390 3.35390 3.35390 3.3537654

70.00 6.46210 6.46220 6.46220 6.4621698

5. Final Remarks

The investigation of micropolar Casson nanofluid flow with thermal and velocity slip
over vertical Riga stretching surfaces has been discussed in this study. Significant effects of
physical parameters, namely the Casson fluid parameter (β1), dimensionless parameter (ε),
micropolar parameter (K), buoyancy parameters (λc and λt), velocity slip (λ), Brownian
motion (Nb), thermophoresis (Nt), Schmidt number (Sc), thermal slip (λ1), and modified
Hartman number (M) on the fluid velocity distribution (F ′(ζ)), temperature distribution
(φ(ζ)), concentration distribution (R(ζ)), micropolar distribution (g(ζ)), Sherwood number
(ShxRe

1
2 ), skin friction (C f Re

1
2 ), and Nusselt number (NuxRe

1
2 ) are presented through

graphs and tabular form. Some useful results are discussed below:

• The increment of the Casson fluid parameter (β1) declined with the fluid velocity;
thus, thickness is reduced due to the increment of the Casson fluid parameter (β1);

• Fluid velocity distribution curves show increasing behavior due to increments of the
micropolar parameter (K);

• The reduction in curves of fluid velocity distribution (F ′(ζ)) is revealed due to the
increment in velocity slip (λ);

• The curves of temperature distribution (φ(ζ)) show declining behavior due to enhance-
ment in Brownian motion (Nb);

• Increments in Brownian motion (Nb) led to declining curves of concentration distribu-
tion (R(ζ)); increased curves of concentration distribution (R(ζ)) were found after the
point of intersection;

• The curves of temperature distribution (φ(ζ)) show declining behavior due to an
enhancement in Brownian motion (Nb);
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• Brownian motion (Nb) and the magnitude of the Sherwood number have opposite
performances; Nusselt number and Brownian motion (Nb) also have opposite perfor-
mance in cases of both weak (m0 = 0.5) and strong (m0 = 0.0) concentration. The
Sherwood number and Nusselt number achieved higher values in cases of strong
(m0 = 0.0) concentration;

• Thermophoresis (Nt) and the magnitude of the Sherwood number show similar be-
havior; Nusselt number and thermophoresis (Nt) have opposite performances in cases
of both weak (m0 = 0.5) and strong (m0 = 0.0) concentration. The Sherwood number
and Nusselt number showed higher values in cases of strong (m0 = 0.0) concentration
when compared to cases of weak (m0 = 0.5) concentration.
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Nomenclature

β1 Casson fluid parameter
ε Dimensionless parameter
λc and λt Buoyancy force parameters
K Micropolar parameter
M Modified Hartman number
λ Velocity slip
Nb Brownian motion
Nt Thermophoresis
C f Re

1
2 Skin friction

NuxRe
1
2 Nusselt number

u, v Velocity components
Sc Schimdt number
λ1 Thermal slip
C∞ Ambient concentration
T∞ Ambient temperature
Tw Wall temperature
R(ζ) Concentration distribution
φ(ζ) Temperature distribution
F ′(ζ) Velocity distribution
ShxRe

1
2 Sherwood number

g(ζ) Micropolar distribution
C∞ Wall concentration
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