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Abstract: Porous adsorbent material is promising to be used to regeneratively remove CO2 from
space shuttles. In this work, the amount and isosteric heat of CO2 adsorption in solid amine are
experimentally studied at pressures ranging from 0 to 6 bar and temperatures ranging from 20 ◦C
to 60 ◦C. The amount and isosteric heat of water adsorption in the solid amine is tested at different
humidities (relative humidity 30–80%). The effective thermal conductivity of the solid amine at
different atmospheres (air, N2, CO2 and water), pressures and temperatures is also investigated. The
results show that the best temperature for CO2 adsorption in the solid amine is 45 ◦C under dry
conditions. The amount of water adsorption increases with enhanced humidity, while the isosteric
heat of water adsorption remains a constant value. The effective thermal conductivity of the solid
amine increases with an increase in pressure. The adsorbed phase (CO2 and water) in the solid amine
makes a contribution to improving the effective thermal conductivity of solid amine particles. The
above findings can help design a better adsorption system in space.

Keywords: space shuttle; porous solid amine adsorbent materials; CO2 adsorption; effective
thermal conductivity

1. Introduction

Before the 1990s, the method used to remove CO2 from space shuttles was based
on lithium hydroxide (LiOH). Though LiOH has a high CO2 storage capacity (~30 wt%),
this material cannot be regenerated [1]. The long-term service of a space station requires
that CO2 sorbent can be easily regenerated to reduce launch weight and storage volume.
Later, 5A zeolite was used in space shuttles [2,3]. In recent years, solid amine, regarded
as a promising CO2 adsorbent for space shuttles, has been investigated due to its low
regeneration temperature (~60 ◦C) at vacuum conditions in two-bed amine solids—which
can reduce shuttle weight in space—as well as its high adsorption capacity under different
humidities [1,4].

Xu et al. [5] prepared a novel CO2 “molecular basket” adsorbent by synthesizing and
modifying a mesoporous molecular MCM-41-type sieve with polyethylenimine (PEI). The
effects of the preparation conditions (PEI loadings, preparation methods, PEI loading pro-
cedures, types of solvents, solvent/MCM-41 ratios, addition of additive, and Si/Al ratios of
MCM-41) on the CO2 adsorption/desorption performance of MCM-41-PEI were reported.
Su et al. [6] modified commercially available Y-type zeolite with a Si/Al molar ratio of 60
(abbreviated as Y60) with tetraethylenepertamine (TEPA) to study the characterization
and adsorption/desorption properties of CO2 from gas streams. The surface nature of
Y60 was changed after TEPA modification, which caused a significant enhancement in
CO2 adsorption capacity. Su et al. [7] built a dual-column temperature/vacuum swing
adsorption (TVSA) with zeolite 13X to study cyclic CO2 capture from a gas stream. The

Energies 2022, 15, 4947. https://doi.org/10.3390/en15144947 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15144947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15144947
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15144947?type=check_update&version=1


Energies 2022, 15, 4947 2 of 12

results showed that a dual-column TVSA with solid 13X could be a promising CO2 cap-
ture technology. Liu et al. [8] evaluated the adsorption behavior of CO2 on solid amine
adsorbent in simulated flue gas. The effects of amine, temperature, moisture and other
factors on the CO2 adsorption performance of the adsorbent were investigated. The re-
sults showed that amine-functionalized XAD-4 resin is a promising adsorbent for CO2
adsorption. Sanchez-Zambrano et al. [9] studied CO2 adsorption on mesoporous silica
modified with amines by double functionalization. The adsorption microcalorimetric study
suggests a change in active site distribution as the amine density increases. Ravi et al. [10]
studied amine-oxide mixed materials for CO2 separation from the bio-hydrogen model.
BET analysis confirmed that due to the low surface area of the adsorbent system, the high
amine load contributed to the reduction in CO2 adsorption. Panda et al. [11] synthesized a
new type of composite adsorbent by the amine modification of binder-containing zeolite
4A bodies, and its potential application in post-combustion CO capture was evaluated.
Fan et al. [12] developed an amine-modified silica adsorbent with high amine efficiency
and fast adsorption speed for CO2 capture by adding amines, including hydroxyl, into
mesoporous silica loaded with polyethylene imine (PEI). The adsorbent had good reversibil-
ity and the adsorption capacity was basically stable after two adsorption–desorption cycles.
Kuang et al. [13] directly modified polyacrylonitrile (PAN) fibers with amination reagent
and prepared a series of amine-containing solid fiber absorbents, including diethylen-
etriamine (DETA), triethylenetetraamine (TETA), tetraethylenepentamine (TEPA), and
polyethylene imine (PEI). The results showed that the chemical modification of PAN fiber
with amine compounds could significantly improve the adsorption capacity of amine
adsorbent for CO2. Liu et al. [14] prepared solid amine adsorbents by the suspension
polymerization of divinylbenzene (DVB) and acrylonitrile (AN), and then amination with
TEPA. The factors affecting the adsorption performance of solid amine adsorbents for CO2,
such as amine type, adsorption temperature and moisture, were investigated. Liu et al. [15]
selected commercial porous phenolic resin (XAD-761) as the carrier material to prepare
solid amine sorbents. The results showed that the Avrami kinetic model was better than
the quasi-first-order and quasi-second-order kinetic models for CO2 adsorption, indicating
that the adsorption process of CO2 by the prepared adsorbent included both physical
adsorption and chemical adsorption. Rezaei et al. [16] reported a breakthrough experi-
ment of packed-bed CO2 adsorption using amine impregnation and amine-grafted silica
adsorption material in the presence of SO2, NO and NO2 impurities. The effects of tem-
perature, feeding concentration and amine loading on the dynamic adsorption capacity
of the adsorbent were investigated. Yilmaz [17] prepared a novel amine-modified hollow
mesoporous silica (HMS)@Mg-Al layered dihydroxide (LDH) composite to evaluate its CO2
adsorption capacity. The amine-modified adsorbent showed stable adsorption performance
in four consecutive adsorption/desorption cycles. He et al. [18] prepared a carbon dioxide-
imprinted solid amine adsorbent (IPEIA-R) using polyethylene imide (PEI) as the skeleton
and glutaraldehyde crosslinked carbon dioxide as the pre-adsorption of PEI. The adsorption
results showed that NaBH4 had an imprinting effect on CO2 and the reduction in the imine
group gave the adsorbent higher CO2 adsorption capacity. Darunte et al. [19] reviewed
the latest progress of solid-loaded amines for carbon dioxide capture, with emphasis on
amine-functionalized metal–organic framework (MOF) materials. Diamine-functionalized
Mg-DOBPDC MOF has good CO2 capture performance, a unique adsorption mechanism,
and good thermodynamic characteristics. Chang et al. [20] synthesized a solid diamine
adsorbent and discussed the effects of temperature, the dosage of mixed amine, the mass
ratio of DMAEE to PEHA, and the partial pressure of CO2 on CO2 adsorption performance.
Keramati et al. [21] functionalized activated carbon with two different amines, chitosan
and triethylene tetramine. The results showed that the adsorbent functionalized by amine
could significantly improve the adsorption capacity of CO2. Bae et al. [22] functionalized
the synthesized mesoporous hollow silica with amine solid adsorbents for CO2 capture.
The morphological, structural, and textural properties of the amine-functionalized meso-
porous hollow silica were characterized. In order to alleviate the phenomenon of amine
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aggregation in solid amine sorbents and achieve efficient CO2 capture, Zhang et al. [23]
synthesized a new dual-functional adsorbent by grafting 3-aminopropyl triethoxylsilane
and impregnating tetraethylenepentamine with the original mesoporous silica molecular
sieve as the carrier. The effects of organic amine loading, gas flow rate and adsorption
temperature on the adsorption performance of CO2 were studied. Later, Wang et al. [24–27]
studied gas adsorption in metal–organic frameworks and found that they were promising
as adsorbents which could be coated by the amine.

As reviewed above, the amount and heat of CO2 adsorption in solid amines are
key parameters in space shuttles. In fact, the case of a high amount and a low heat of
CO2 adsorption in a solid amine is the best option for space shuttles. In addition, the
vapour existing in space shuttles affects CO2 capture. During the CO2 capture process, the
adsorption heat will release which increases the temperature in the adsorption bed to lower
the CO2 adsorption amount. The degree of heat accumulation is controlled by the specific
thermal conductivity of the solid amine. Therefore, water sorption and thermodynamical
parameter measurements are necessary for space shuttle applications. In the present work,
the CO2 adsorption in a solid amine (chemical adsorption) is investigated systematically
and the water adsorption in a solid amine is studied, as is the effective thermal conductivity
at different pressures, temperatures, and atmospheres (air, N2, CO2 and water).

2. Experimental Section
2.1. Material Characterization

Solid amine particles, namely, amine-functionalized porous polyacrylonitrile resin
particles, were supplied from the National Key Laboratory of Human Factors Engineering
(China). The characteristics of the solid amine, which had a polyethylene polyamine level
of ~20 wt%, are shown in Table 1.

Table 1. The details of the adsorbent.

Adsorbent Solid Amine

Type Sphere
Particle size (cm) 0.02

Particle density (g·cm−3) 0.728
BET (m2.g−1) 30.37

Pore diameter (nm) 2.5–40
Micropore volume (cc·g−1) 0.167

Thermal gravimetric analysis (TGA, Eltra, Germany) and differential scanning calorimetry
(DSC, NETZSCH, Germany) were performed. The solid amine particle was heated and
weighted from 30 to 500 ◦C at the rate of 2 ◦C/min under a N2 (99.999%) atmosphere.

2.2. Experimental Method
2.2.1. CO2 Adsorption in the Solid Amine

The adsorption calorimeter system used the PCT Proe and E and Calvet calorimeter
device (PCT and C80, French) [28], and the accuracy of the adsorption calorimeter system
was validated in refs. [29,30]. The solid amine particles in the C80 battery were heated
by a vacuum C80 at 50 ◦C for 20 h to remove the water and gas adsorbed by the solid
amine particles in the air, serving as a pretreatment. The gas supply system was connected
to the adsorption system which had three high-purity gas supply lines: carbon dioxide
(CO2), nitrogen (N2), and helium (He). Nitrogen was used to drive the pneumatic valve in
the PCT, and the sample cell in the C80 was volumetrically calibrated with helium. CO2
was then fed into the sample cell as an adsorbent gas to meet the set pressure. Different
target temperatures were controlled by C80. During the adsorption process, PCT and C80
were used to measure the adsorption capacity and heat synchronously. The test signal was
recorded by the data acquisition system. Then, the isosteric heat of CO2 adsorption in the
solid amine could be measured directly by the software in C80.
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2.2.2. Water Adsorption of the Solid Amine

The water adsorption in the solid amine was tested by using thermogravimetric
combined differential scanning calorimetry analysis (TGA-DSC, French). The solid amine
particles in the cell were pretreated at 50 ◦C and heated by TGA under vacuum for 20 h.
Then, nitrogen gas under different humidities was set to the cell at the temperature of 30 ◦C.
The TGA tested the mass change and the DSC recorded the heat of the water adsorption
during the process of water adsorption.

2.2.3. Effective Thermal Conductivity of the Solid Amine

The effective thermal conductivity of the solid amine in different environments was
measured by a Hot Disk 2500S thermal constant analyzer based on a transient plane source
method. The 1.5% accuracy of this instrument was validated by NIST1453 (0.032 W/m·K)
at 25 ◦C. The detailed process has been described elsewhere [31].

In the different pressure conditions in the N2 atmosphere, the solid amine was put
into the container kept at 50 ◦C under vacuum for 5 h as the pretreatment. Then, the
different pressures were set through the gas manometer; the accuracy of gas manometer
was 1.0%. In a N2 atmosphere under atmospheric pressure, different temperatures were
also set. The accuracy of the temperature was ±0.5 ◦C. The effective thermal conductivity
of the solid amine was recorded three times at every fixed pressure and temperature to
obtain accurate results.

In the condition of different temperatures with controllable constant temperatures,
two solid amine cases with no and saturated CO2 adsorption were tested, respectively. The
controllable constant temperature environment was provided by a hygrothermostat with
uncertainties of ±0.5 ◦C for temperature. Different temperatures were set. The effective ther-
mal conductivity of solid amine was also recorded three times at every fixed temperature.

In the condition of different humidities, the controllable constant temperature and
humidity environment was provided by a hygrothermostat with uncertainties of ±0.5 ◦C
for temperature of 25 ◦C and ±3% for the relative humidity. The water uptake of the
materials was measured by an electronic balance with an accuracy of ±0.1 mg.

Adsorbing the water vapour with the solid amine was completed as follows: firstly,
the solid amine was placed in the hygrothermostat and dried at 50 ◦C under 1.0 bar for
48 h. Then, the dried sample was wrapped in a plastic bag to keep it away from the room
air. Secondly, when the temperature and humidity of the hygrothermostat reached the
pre-set values, the dried samples were put into the hygrothermostat to absorb water vapor.
The weight of the sample was recorded at a series of time steps unless the weight did
not increase any more when the saturated adsorption was reached. Finally, the effective
thermal conductivity of the solid amine was measured more than three times after the
adsorption balance was obtained. The adsorption and thermal conductivity measurement
were conducted from low humidity to high humidity and dried once.

3. Results and Discussion
3.1. The Basic Properties of Adsorbent

Figure 1 shows the structural stability of the solid amine at different temperatures.
The solid amine lost only ~10 wt% of its original mass at a temperature of ~200 ◦C. The
slope of the mass loss curve changed from a gradual slope to a steep slope at 250 ◦C. The
amine completely disintegrated around 400 ◦C. This means that the solid amine had good
thermal stability.

Figure 2 shows the heat capacity of the solid amine at the temperature range of
35 to 80 ◦C, tested by microcalorimetry (C80, French). The heat capacity of the solid
amine increased slowly with an increase in temperature, and the heat capacity of the solid
amine decreased slightly from 70 to 80 ◦C, which means that the solid amine could store
more energy.
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Figure 1. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analysis of the
solid amine.

Figure 2. Heat capacity of the solid amine at different temperatures.

3.2. CO2 Adsorption in the Solid Amine

Figure 3a shows the CO2 adsorption in the solid amine at the temperature range of
20 ◦C to 60 ◦C and pressure ranging from 0 to 6 bar. The amount of adsorption increased
rapidly at low pressure (0–1 bar), then increased slowly at high pressure (1–6 bar) because
the CO2 adsorption in the solid amine was mainly chemical adsorption, as shown in
Equation (1).

2RxNHy+CO2 =
(
RxNHy

)
2CO3 + ∆H (1)

At low pressure, the chemisorption of CO2 in the amine-based adsorbent was more
dominant over physisorption; the CO2 molecules interacted with CO2 to form ammonium
carbamate in the dry condition [32,33]. With an increase in pressure, the amine–CO2
occupied the CO2 molecule completely. Little physical adsorption occurred at the micropore.
The effect of temperature on the amount of adsorption was inconspicuous at the study
temperature range because the chemical adsorption needed a suitable activation energy
at a certain temperature. The CO2 adsorption decreased with increased temperature; at
a high temperature, the amine may have been volatile and the adsorption amount at the
micropore absorbed by the physical adsorption desorbed, which may be different from
refs. [6,9].
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Figure 3. Amount and isosteric heat of CO2 adsorption in the solid amine. (a) Isotherm adsorption in
the solid amine. (b) Isosteric heat of adsorption in the solid amine.

The isosteric heat of the adsorption decreased with an increase in the adsorption
amount, which indicates that the interaction between the adsorbed molecules will become
weak with an increase in the adsorption molecule. The shape of the decrease in the isosteric
heat of adsorption in the solid amine was convex. Figure 3b shows that the isosteric heat
of CO2 adsorption in the solid amine decreased with an increase in temperature, then
decreased and increased again. The minimum value was at 45 ◦C under dry conditions,
which means that the heat release was at a minimum at this fixed temperature.

Parasitic energy is an index to consider desorption condition optimization in the
separation process design. This indicator is a measure of power loss caused by the increased
carbon capture and storage (CCS) process [34]. For this work, the material with the least
parasitic energy was the best material. The total amount of energy required for CCS was
the amount of heat required for separation [35]. This consists of two components: (1) the
energy required to heat the adsorbent to achieve the desorption conditions (sensible heat);
(2) the energy required to remove the adsorption process. For the endothermic process
of CO2 desorption, we need to provide an energy equivalent to adsorption heat Q in
atmospheric pressure. The total thermal energy Qthermal per kilogram of captured CO2
(mCO2 ) is given by:
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Qthermal =
Cpmadsorbent∆T

mCO2

+
Qq

mCO2

(2)

The parameters in the equation are illustrated in Table 2. The first term corresponds
to the sensible heat requirement to drive the process by heating the bed. Cp is the specific
heat capacity of the adsorbent. madsorbent is the total mass of the adsorbent. ∆T is the
temperature difference between the adsorption and desorption conditions. The second part
of heat energy is the energy required for CO2 desorption, which is composed of working
capacity and adsorption heat. Working capacity is defined as the difference between the
amount adsorbed under gas conditions (1 bar, 25 ◦C) and the remaining amount in the
material under desorption conditions. The final parasitic energy for the solid amine was
2286.3 kJ/kgCO2 , the sensible heat was 604.5 kJ/kgCO2 , and the energy needed to regenerate
was 1681.8 kJ/kgCO2 .

Table 2. The parameters of the parasitic energy model.

Parameters Solid Amine

Cp [kJ·(kg K)−1] 1.90
∆T(K) 35

mCO2

/
madsorbent

(kg·kg−1) 0.11

Q (kJ·mol−1) 74
mCO2

/
q

(g·mol−1) 44

3.3. Water Adsorption in the Solid Amine

Figure 4a,b show the amounts and the isosteric heat of the water adsorption at different
humidities at an atmosphere of 30 ◦C. Figure 4a shows that the amount of water adsorption
increases exponentially with an increase in humidity, which means the water can be easily
adsorbed in the cavity of the solid amine. The solid amine has a rich hydrogen bond, and
thus the water molecule and solid amine form the hydrogen bond easily. Figure 4b shows
that the isosteric heat of the water adsorption keeps at a constant value with an increase in
water adsorption amount. Perhaps at low coverage the heat of the water adsorption would
be high.
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From Equation (3), it can be noted that filling gas can greatly influence the effective 
thermal conductivity of a solid amine. This can be explained by the Knudsen number (Kn), 
which is defined by the mean free path of the gas molecules divided by the pore size and 
adsorbed N2. The pore size of the solid amine is calculated by nonlocal density functional 
theory (DFT) in combination with Barrett–Joyner–Halenda (BJH) provided by the manu-
facturer, as shown in Figure 6. It can be noted that the solid amine contains wide meso-
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variation mainly comes from the gaseous thermal conductivity because, at this region, Kn 
> 0.01, the collision between gas molecules increases with increasing gas pressure, and the 
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molecules. At medium pressure (0.0001–0.01 bar), the increase in effective thermal con-
ductivity comes from the gaseous thermal conductivity and adsorbed N2. At this region, 
the adsorbed N2 increases fast with the increase in pressure, which makes a contribution 
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adsorbed N2 reaches saturation and the stagnant gas can be considered as a continuum 
with a thermal conductivity independent of gas pressure, which results in the saturation 
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Figure 4. Amount and isosteric heat of water adsorption in the solid amine. (a) Isotherm adsorption
in the solid amine. (b) Heat of water adsorption of the solid amine at 30 ◦C.

3.4. Effective Thermal Conductivity of the Solid Amine
3.4.1. The Effect of Pressure

Figure 5 shows the effective thermal conductivity of the solid amine at different
pressures (0–10 bar) and ambient temperatures. The effective thermal conductivity of the
solid amine in the N2 atmosphere increased in an ‘S’ shape, which is consistent with ref. [3].
The effective thermal conductivity of the solid amine included gaseous thermal conductivity,
adsorbed thermal conductivity, and solid thermal conductivity at low temperature [3].

λe f f =
λwvo

1 + 2βKn
+

λc0(1 + aλc(T − T0))
3
√
(1 − ϕ)

µ
+

λw0(1 + aλw(T − T0)) 3
√

q(1 − ϕ)
ρz
ρw

µ
(3)

Figure 5. Effective thermal conductivity at different pressures.

From Equation (3), it can be noted that filling gas can greatly influence the effective
thermal conductivity of a solid amine. This can be explained by the Knudsen number
(Kn), which is defined by the mean free path of the gas molecules divided by the pore
size and adsorbed N2. The pore size of the solid amine is calculated by nonlocal density
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functional theory (DFT) in combination with Barrett–Joyner–Halenda (BJH) provided by
the manufacturer, as shown in Figure 6. It can be noted that the solid amine contains wide
mesopores of 4 nm (check from fitting, especially for BJH). At low pressure (0–0.0001 bar),
the variation mainly comes from the gaseous thermal conductivity because, at this region,
Kn > 0.01, the collision between gas molecules increases with increasing gas pressure, and
the exchange of energy between gas molecules is directly proportional to the number of
gas molecules. At medium pressure (0.0001–0.01 bar), the increase in effective thermal
conductivity comes from the gaseous thermal conductivity and adsorbed N2. At this region,
the adsorbed N2 increases fast with the increase in pressure, which makes a contribution
to the effective thermal conductivity of the solid amine. At high pressure (0.01–5 bar),
adsorbed N2 reaches saturation and the stagnant gas can be considered as a continuum
with a thermal conductivity independent of gas pressure, which results in the saturation
trend of the effective thermal conductivity.
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3.4.2. The Effect of Temperature at Different Atmospheres

Figure 7 shows the effective thermal conductivity of the solid amine at different
temperatures and different atmospheres: N2, air, and adsorbed CO2. The effective thermal
conductivity of the solid amine in the N2 atmosphere was lowest, while the highest was
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the condition of adsorbed CO2. However, the gaseous thermal conductivity was that
N2 > air > CO2. The main difference came from the adsorption phase. There was a little
CO2 in the air which was adsorbed by the solid amine. The adsorbed CO2 made the effective
thermal conductivity higher than that in the nitrogen atmosphere. The effective thermal
conductivity decreased with increasing temperature because the amount of adsorption
decreased, especially for the adsorbed CO2, which meant that the kind of adsorbed gases
affected the effective thermal conductivity of the adsorbent.

Figure 7. The effective thermal conductivity of the solid amine at different temperatures and different
atmospheres.

3.4.3. The Effect of Humidity on the Effective Thermal Conductivity

Figure 8 shows the effective thermal conductivity of the solid amine at different
humidities at an air atmosphere of 25 ◦C. The water uptake increased slightly with the
increment of humidity when the humidity was less than 50%, then increased rapidly with
increases in humidity over 50%, which was similar to water vapor sorption in silica nano-
porous materials [36]. This implies that the surface of the solid amine was firstly covered by
the monolayer water molecules and then the multilayer adsorption occurred. The effective
thermal conductivity of solid amine increased with an increase in humidity. The key factor
is that the increase in the thermal conductivity of the absorbed water was significant with
the increase in gaseous thermal conductivity.

Figure 8. Effective thermal conductivity and water uptake of the solid amine at different humidities.
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4. Conclusions

The solid amine, which is a promising option to regeneratively remove CO2 from
space shuttles, was studied systematically. The amount and heat of CO2 adsorption in the
solid amine was tested experimentally. The water adsorption at different humidities was
investigated, and increasing the humidity increased the amount of water adsorption in
the solid amine. The effective thermal conductivity of the solid amine was also studied
at different pressures in a N2 atmosphere. The results showed that the effective thermal
conductivity increased in the shape of an ‘S’. At different atmospheres, such as air, N2, and
adsorbed CO2 at different temperatures, the amount of adsorption played an important
role in the effective thermal conductivity. The effective thermal conductivity of the solid
amine increased with an increase in humidity. In fact, the effect of water vapour should be
considered during CO2 adsorption. In future, we can test the carbon dioxide adsorption
capacity in solid amines under different humidity conditions.
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