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Abstract: Condition monitoring of high voltage apparatus is of much importance for the maintenance
of electric power systems. Whether it is detecting faults or partial discharges that take place in
high voltage equipment, or detecting contamination and degradation of outdoor insulators, deep
learning which is a branch of machine learning has been extensively investigated. Instead of using
hand-crafted manual features as an input for the traditional machine learning algorithms, deep
learning algorithms use raw data as the input where the feature extraction stage is integrated in the
learning stage, resulting in a more automated process. This is the main advantage of using deep
learning instead of traditional machine learning techniques. This paper presents a review of the
recent literature on the application of deep learning techniques in monitoring high voltage apparatus
such as GIS, transformers, cables, rotating machines, and outdoor insulators.

Keywords: high voltage apparatus; deep learning; classification; localization; partial discharge; faults;
outdoor insulators

1. Introduction

Diagnosis of electrical insulation degradation is essential for monitoring the integrity
of an electric power system. A well-known diagnostic method, which has been employed
for a number of decades, is the measurement of localized discharges known as partial
discharge (PD) [1]. Detecting fault or PD in electric apparatus, such as transformers,
rotating machines, cables, gas insulated switchgear (GIS) and outdoor insulators, has
always required the knowledge of expertise who are able to characterise and differentiate
the different sources of fault, PD, defect, or degradation. Throughout the years, different
parameters had to be extracted manually from recorded patterns or signals. The aim has
been to use the manually-extracted parameters in order to implement a classifier that
would be able to perform the task of differentiation and characterization of fault, PD, defect,
or degradation. Though the process is partially automated, the fact that experts have to
select the features presented a problem since different features might result in different
outcomes. This influences the performance of the classifier due to its dependence on the
manually-selected features.

Deep learning allows the feature selection stage to be integrated with the learning
process, thus making the process all automated. In high voltage (HV) applications, the aim
has mostly been to classify or localize faults, defects, or PD that occur in HV apparatus
or determine the degradation of insulating material. The abundance of computational
capabilities and the existence of big data has allowed researchers in different fields to
take advantage of deep learning algorithms. Other than the main purpose of classifying
and localizing the PD or fault in HV apparatus, a deep learning algorithm, namely the
Generative Adversarial Network (GAN), allows researchers to generate more input data
from a limited amount of experimental/simulation results (e.g., see [2]).

Classification refers to the process of differentiating between different sources of fault,
defect, or PD or levels of degradation. Given that in real life scenarios, fault or PD can
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happen due to various sources, it is necessary to identify the source. When the source is
identified, one can investigate techniques to eliminate that source from the high voltage
system. Different sources or causes of fault, defect, PD, or degradation exhibit different
characteristics that are unique to each source, making their classification (differentiation)
possibly feasible. On the other hand, localization refers to the process of identifying the
position of the fault or PD taking place in high voltage apparatus [3].

Extensive research has been done on the use of traditional machine learning techniques
in high voltage applications, e.g., [4–7]. This paper only considers the literature that
employs deep learning techniques. Furthermore, the focus of this review paper is solely on
the application of deep learning in high voltage engineering and not on the deep learning
algorithms themselves. Figure 1 gives an overview of the flow of this review paper.

Gas Insulated Switchgear

Transformers

Cables & Solid Insulation

Rotating Machines

Transmission Line Networks

Deep Learning in
HV Applications

Outdoor Insulators

   PD Classification

PD Classification

Mechanical Defect Diagnosis

Localization of Faults

Improved Dissolved Gas Analysis

Physical Defect Detection

Contamination Diagnosis


PD Classification
Fault Classification

Figure 1. An overview of the topics covered in this review paper.

The majority of published literature focus on employing deep learning in PD classifi-
cation and identification. Figure 2 gives an overview of the flow of the research done on
the application of deep learning algorithms for classification of PDs in HV apparatuses.

Classification of PD in HV Apparatuses

PRPD Pattern 

as Input

Time-Series
Waveform as Input

CNNs
LSTMs

Autoencoders
Combinations of Different DL Algorithms

GANs to Generate
More Input Data

Figure 2. Application of DL in classification of PDs.

A summary of the papers on classification of PD using deep learning is shown in
Table 1. Further to PD classification, deep learning has also been used for other applications
in transformers and outdoor insulators that are also reviewed in this paper.

The organization of the paper is as follows: In Section 2, four deep learning techniques
(namely convolutional neural networks, recurrent neural networks, autoencoders, and
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generative adversarial networks) are briefly reviewed. These are the commonly-used
techniques in the HV application. In Sections 3–8, a review of papers on the application
of deep learning in HV apparatus including GIS, transmission line networks, rotating
machines, cables and solid insulators, transformers, and outdoor insulators is presented.
Finally, the concluding remarks are presented in the last section of the paper, Section 9.

Table 1. Summary of deep learning algorithms used for classification of PD in various HV applica-
tions: specification of characteristics of collected data used and whether multiple-labeled sources of
PDs are mentioned.

HV Application Data Collected Field/ Lab/
Simulations

Multiple
Sources DL Technique References

GIS PRPD Lab No

Stacked Sparse AE, LSTM, Siamese CNN
network, multi-head self attention LSTM
and self attention based neural network

model

[8–11]

GIS PRPD Both No CNN(LeNet-5), Variational AE [12,13]

Solid Insulation PRPD Lab No DBN , CNN [14,15]

Transformer PRPD Lab No
CNN-LSTM, CNN, lightweight attention
mechanism Squeeze-and-Excitation (SE)

module on top of CNN, CNN
[16–19]

Transformer PRPD Lab Yes Novel architecture based on CNN, LSTM [20,21]

Transformer PRPD Lab Yes * ResNet [22]

Cables PRPD Lab No Transfer Learning on CNN [23]

Rotating
Machines PRPD Field Yes ANNs incorporated in a hierarchical

fashion [24]

Cables T-S waveforms Simulation No CNN [25]

Cables T-S waveforms Lab No CNN, DBN [26,27]

Power Cables T-S waveforms Field No
ensemble of deep learning algorithms
(CNN, convolutional RNN, LSTM and

bidirectional LSTM)
[28]

Hydro-
generators T-S waveforms Field No Variational Autoencoder [29]

GIS T-S waveforms Lab/
simulation No

Conditional Variation Autoencoder and
CNN, Convolutional Autoencoder,
CNN(AlexNet), depth-wise CNN,

1D-CNN model where a multiple scale
convolution kernel, CNN-LSTM

[30–35]

GIS T-S waveforms
Lab/

simulation/
Field

No domain adaptive deep transfer learning
(DADTL) CNN [36]

GIS T-S waveforms Simulation No CNN-LSTM [37]

Power Lines T-S waveforms Field No 1D-CNN with Global Average Pooling
layer, Dual Cycle-consistency network [38,39]

Conductors T-S waveforms Field No time-series decomposition and LSTM,
CNN-LSTM with attention layer [40,41]

Insulators T-S waveforms Lab No CNN with Bayesian optimization for
hyper-parameters tuning [42]

* Treating multiple PDs as a new class.
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2. Deep Learning

Deep learning is a branch of machine learning that enables data-driven learning of
feature representations for input data originating in diverse application domains [43–46].
Unlike traditional machine learning algorithms, where features need to be extracted explic-
itly through pre-defined hand-crafted rules, deep learning has the advantage of using raw
data, and learn to extract features depending on the task [47]. This is appreciated especially
in complex systems where such features are not necessarily known for a given dataset. As a
result, deep neural networks subsume the feature extraction step within the learning phase,
thereby computing intrinsic representations of the raw input data in an automatic manner.

Similar to traditional machine learning, deep learning also has the following three key
paradigms: supervised, unsupervised, and reinforcement learning.

For the supervised setting, a labeled dataset is required. The type of output can
either be continuous (used in a regression problem) or discrete/categorical (used for
classification). For unsupervised systems, data with no labels are given, and the objective is
either to cluster the data according to their intrinsic characteristics or learn representations
which can be later used for downstream supervised or unsupervised settings [48–50]. In
scenarios involving agent based learning, exhaustive collection of supervised data is often
prohibitively difficult. In such situations, reinforcement learning is a powerful paradigm
which allows data collection through interaction with the environment [51]. The agent’s
goal is to learn policies based on the environment in order to maximize long-term expected
rewards [51]. In recent years, research in deep reinforcement learning has gained significant
traction wherein the agent policies are learnt through deep neural networks [52–54] (see
Figure 3). Depending on the inputs and the desired outputs for most of the high voltage
application, a handful of mainly supervised deep learning algorithms have been of interest
in this area of research. In the next section of this review paper, a brief introduction on
major supervised deep learning algorithms is presented.

Deep Learning 

Unsupervised Reinforcement

Data is clustered
according to their intrinsic
characteristics and
unsupervised feature
representation.

Decision based on
experience and
interaction with
the environment. 

ClassificationRegression

Labeled data is needed.

Supervised

Figure 3. Different deep learning branches: supervised, unsupervised, and reinforcement learning.

2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) represent a class of deep learning architectures
which were originally designed for processing data represented in a grid-like topology,
e.g., images [47]. A CNN has four main components: convolutional layer, activation
function layer, pooling layer, and fully connected layers. Typically, the output of the
convolutional layer is passed to an activation function layer where the output of the latter
is passed to the pooling layer. In a deep network, this set of the three components are
often cascaded multiple times thereby constituting multiple layers and making the network
progressively deeper [43,55,56]. While the initial layers usually end up learning low-level
features, the deeper layers tend to learn more complex features. The cascade of these layers
constitutes the automatic feature extraction stage, and the fully connected layers constitute
the classification stage [57]. More details on each of these components are presented below:

Convolutional layer: This layer consists of a bank of learnable linear 1D, 2D, or 3D filters,
which are also called kernels [58]. In the high voltage applications, usually 1D and 2D
CNNs are used. The 1D-CNN, for example, is used with time-series waveforms, whereas
in problems involving phase resolved partial discharge (PRPD) patterns or spectrograms,
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a 2D-CNN is used. Some of the researchers have employed a 2D-CNN for time series
waveforms as well, where they considered an image of the signal as an input rather than
the 1D data. These filters are convolved with the input data or the output from a previous
layer. The output is a set of feature maps, where the number of feature maps is equal to the
number of the filters.

Activation function layer: The purpose of adding activation layers is to introduce nonlin-
earity in the input-to-output mapping being learned by the neural network. This is desired
because complex data include nonlinear features that need to be detected. Most frequently
employed activation functions include sigmoid, ReLU [59] and tanh [60].

Pooling layer: The aim of pooling layer is to subsample the output feature maps so that
wider receptive fields can be spanned during convolution without increasing the size of
the filter kernel. Another advantage of this layer is to provide positional invariance or
shift-invariance to the network [61]. Commonly-used pooling operations are maximum
pooling and average pooling.

Fully connected layers: In a fully connected (FC) layer, every neuron in one layer is
connected to every neuron in the next layer. FC layers are also referred to as dense layers
in the literature [47]. In a CNN, the input to the first fully connected layer is the output
of the last set of the first three components mentioned above, where the corresponding
features maps are flattened into 1D vectors. For classification problems, the architecture is
appended by FC layers and ends with a classification layer where the number of neurons is
equal to the number of classes.

A typical CNN architecture is shown in Figure 4. The main advantage of CNNs
compared to traditional neural networks is the weight sharing when training the learnable
kernels, which reduces the learnable parameters in the network [62].

Figure 4. A simple CNN architecture: a convolutional layer, pooling layer, fully connected layers
followed by the classification layer.

2.2. Recurrent Neural Networks

Recurrent Neural Network (RNN) is another family of deep learning architectures
which are intended for the processing of sequential data [63,64]. A simple illustration of an
RNN model is shown in Figure 5.

RNN process data from each time point in a sequential manner. However, the output
is not just influenced by data at the current time, but also by the entire history of inputs that
have been fed into the RNN previously. This is reflected by the cycles in the architecture,
which are maintained in the hidden unit as a state vector including the history of the previ-
ous time points. RNN cells have one common set of weights, and when backpropagation
runs, data from different time points contribute in updating the same set of weights.
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.... ....
Unfold

Figure 5. RNN architecture with no output: the network has feedback connections which can be
unfolded in time and trained using back-propagation. The input X is processed by incorporating it
into the state S that is passed forward through time.

The mathematical representation of the RNN is shown as

ht = fw(ht−1, xt) (1)

where ht represents the updated state vector, ht−1 is the hidden state vector from the
previous time step, xt represents the input vector at time t, and fw represents a given
function corresponding to learnable weight vector w. The input can either be a vector or a
sequence, and the output can either be a vector, sequence, or a value. For example, given a
high voltage problem where classification of different PD pulses is required, the input is a
vector of PD pulses and the output is a label corresponding to a PD source.

The drawback of a typical RNN is the long-term dependency where the current state
depends on all the previous states, which causes the vanishing gradient problem [47]. The
vanishing gradient emerges from the fact that, as RNN processes more time steps, repeated
multiplication of small weights causes the gradients to approach zeros. To overcome this
problem, long short-term memory (LSTM) architecture is used [65]. The main difference in
an LSTM architecture is that, instead of computing the hidden state directly from the previ-
ous one, LSTM computes additional states, and this structure allows alternative paths to
gradients to flow during the backpropagation avoiding repeated matrix multiplications [66].
An LSTM cell has two hidden states ct corresponding to the cell state and ht corresponding
to the hidden state which are calculated as

ct = f� ct−1 + i� g
ht = o� tanh(ct)

(2)

where i is the input gate, f is the forget gate, o is the output gate, and g is the gate. The
operator � is element-wise multiplication operation. The input gate decides what new
information will be stored in the cell state, the forget gate decides what information will be
removed from the cell state, and the output gate decides what information from the cell
state will be used in the output [67].

2.3. Autoencoder

Autoencoders (AE) were introduced in 1980s [68] in order to learn useful represen-
tations in an unsupervised fashion by the use of the input data on its own [69]. They
were then reintroduced in 2006 with the booming of the deep learning architectures [70].
The idea behind an autoencoder is to train a neural network such that the model learns a
latent intrinsic representation of the original input. An autoencoder consists of an encoder–
decoder architecture, wherein the role of the encoder is to transform the input to a latent
representation, while the decoder is responsible for transforming the latent representation
back to the original data. The two parts (encoder and decoder) are learned jointly so as to
minimize the reconstruction error between the decoder’s output and the network input. A
simple illustration of an autoencoder model is shown in Figure 6.
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Figure 6. Autoencoder architecture: the output x̃ is the reconstructed input where a bottleneck
enables computing a latent representation of the original input x. x is a vector consisting of n elements
from x1 to xn.

Assuming that the input is x and the reconstructed output is x̃, the model is trained to
minimize the reconstruction error L(x, x̃). The encoder and decoder can be fully connected
layer networks or any deep learning architecture. The encoder is expressed as a function G
such that

bi = G(xi) (3)

where bi represents the latent feature representation (bottleneck) of a single observation
sample xi . The decoder F accepts bi as input and produces x̃i is. This is shown in

x̃i = F(bi) = F(G(xi)). (4)

The goal is then to find F and G that would minimize

arg min
F,G

∑
i
[L(xi, F(G(xi))] (5)

where the summation is over all the observations during training.

2.4. Generative Adversarial Networks

Generative models allow sampling data from the probability distribution of a given
data. There is a long tradition of learning data distributions including methods for density
estimation [71,72]. For high-dimensional continuous data, classical density estimation
techniques become intractable. Generative Adversarial Networks (GANs) enable generative
models for data stemming from unknown probability distributions [73]. The key idea is to
learn a neural network to map a datapoint sampled from a simple distribution (such as
normal) to data from the training data distribution. To assess if the generated data have
modeled training distribution, another network, known as the discriminator, is trained to
distinguish between the generated examples and examples from the original dataset. The
goal of the GAN is to train the generator network such that the best discriminator performs
as worse as possible. In other words, when the generator parameters have been updated in
a way that it becomes difficult to train a classifier for distinguishing between generated
and real samples, it implies that the generator is producing outputs that resemble examples
from training data distribution. A simple illustration of a GAN model is shown in Figure 7.
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Input Vector: Random Noise

Generator Network

Discriminator Network

RealGenerated 

Real / Fake

Figure 7. GAN architecture: discriminator network learns a classifier to distinguish between gener-
ated and real samples. Generator network updates its parameter so that the discriminator’s task is as
difficult as possible.

3. Gas Insulated Switchgear

Classification of PDs has been a standard procedure in the maintenance of high
voltage assets. Various distinctive parameters extracted from PD measurements have been
introduced for the PD classification application. Starting with current or voltage signals,
time series waveforms have been proven to acquire unique behavior for each source of
fault or PD [74]. Phase resolved partial discharge (PRPD) patterns have also been used to
differentiate between different PD sources [75].

Gas insulated switchgear (GIS) is widely used in the industry [76]. A GIS platform is
shown in Figure 8.

Figure 8. Gas insulated switchgear.

GIS has its components close to each other which makes the fault occurrence in one
component transfer to other components easily. The components of the GIS are power
conducting components and the control system. The power conducting components are re-
sponsible for ensuring the flow of the electric current in the system, and the control systems
work on monitoring the behavior of the conducting components. Thermal, mechanical,
and electrical faults comprise the main faults that take place in a GIS platform. This section
reviews the application of deep learning to solve the problem of classification of only PDs
(electrical faults) in GIS. For the condition monitoring of GIS, different detectors have
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been used in literature including antennas, coupling capacitors, high frequency current
transformer (HFCT), UV sensor, thermal sensor and Rogowski coils.

There are different sources of PD that take place in a GIS platform. Whether using
PRPD patterns or time-series waveforms, we can divide the literature into the following
two main groups.

3.1. PD Classification Using the PRPD Pattern

In 2017, the authors of [8] simulated four sources of PDs that take place in a GIS
platform. The four sources of PDs are: protrusion, contamination, gap, and particle defects.
For each of the sources of PDs, four severity states of the PD were collected: normal state,
attention state, serious state, and dangerous state. The authors proposed a stacked sparse
autoencoder (AE) model, where the output of the middle layer (bottleneck) of the preceding
AE is the input to the next AE. The output of middle layer of the final AE is the input to
a softmax layer which decided on the assigned severity level label for each sample. The
effect of changing different hyperparameters, such as the number of stacked AE or number
of nodes in the middle layer, were examined. The proposed model was compared with
support vector machine (SVM), where nine statistical characteristics were extracted from
the PRPD patterns.The study reports enhanced average classification accuracy of the PD
severity compared to SVM.

The authors of [12] published in 2018 collected PRPD data from experimental setup
and more than 30 live GIS substations. The five defects studied in this work are floating
electrode discharge, surface discharge, corona discharge, insulation void discharge, and
free metal particle discharge. A known CNN architecture, LeNet-5, was employed and
compared with back propagation neural network (BPNN) and SVM, where statistical
features were extracted for the latter two and raw data were fed to the CNN. The statistical
features extracted from the PRPD patterns include skewness, steepness, asymmetry and
cross correlation coefficient of the PD amplitude and rate in both positive and negative half
cycles of the applied voltage. In order to optimize the weights of the CNN, the authors
trained an autoencoder and used the weights as an initialization for the CNN training. The
authors reported an improved average accuracy of the CNN compared to that of SVM
and BPNN.

A long short-term memory (LSTM) recurrent neural network (RNN) has been used
to classify PRPDs in a GIS in [9]. In this work, four different types of defects have been
simulated in a controlled lab environment, where the PRPD patterns have been collected.
The PD sources simulated are: protruding electrodes, floating electrodes, free particles, and
void defects. In addition to that, the authors simulated noise by using an air purifier and
the noise signals were obtained using the external UHF sensor. The authors compared the
classification accuracy with SVM and a fully dense artificial neural network. The study
reported that, although the proposed model takes more training time, the classification
accuracy is superior to the other two machine learning models.

In 2019, the authors of [13] simulated PDs using a laboratory setup and collected PD
data from a live substation. The four PD sources considered in this work that take place
in a GIS platform are: floating electrode defects, metallic protrusion defects, insulation
void discharge defects, and free metal particle discharge defects. A variational autoencoder
(VAE) was trained to extract the eigenvalues corresponding to the PRPD data. The training
set included a mix of both the laboratory and substation data. For the test dataset, a
matching algorithm based on cosine distance was used in order to decide to what class the
test PRPD belongs to. The proposed method was compared with statistical features, deep
belief networks (DBN) [77] and CNNs. The authors reported that the eigenvalues extracted
from the VAE feature vector have improved results over the other methods used.

Four sources of PD that usually occur in GIS (protruding electrodes, floating electrodes,
void defects, and free particles) were simulated in [10]. The authors used a Siamese network
where the raw input data are pairs of PRPDs. The motivation behind using Siamese network
is that PDs usually result in small datasets. Two identical independent CNN models are
trained, and the distance between the embedded features resulting from the two CNN
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models is calculated. As a result, a decision is made whether the pair belong to the same
or a different class. The authors compared their proposed architecture with SVM and a
CNN model. They reported that the proposed method performed better compared to the
latter two.

Ref. [11] presents the simulation of artificial defects that take place in a GIS platform,
where the PRPD patterns corresponding to each source of PD were recorded. The four
PD sources in this work are: corona, floating electrode, particle, and void. The authors
proposed a multi-head self attention LSTM based model for PD (LSANPD) and a self
attention based neural network model for PD (SANPD). They compared the classification
of the two models with their previous published work which used an LSTM-RNN based
model. They reported that SANPD and LSANPD are better in terms of classification
accuracy and that SANPD is better than the LSANPD and LSTM-RNN model in terms
of complexity.

3.2. PD Classification Using Time-Series Waveform

Some researchers have used sensors, such as HFCT or UHF sensors, to record voltage
or current waveforms induced by PD. The waveforms are in the time domain and referred
to as time-series waveforms. This section reviews the papers that have used time-series
waveforms instead of PRPD patterns to train and optimize a deep learning algorithm.

In 2018, five sources of PD were generated in a GIS tank model in a laboratory setup
that includes a floating electrode, a metal protrusion on the conductor and the tank, surface
contamination, and free metal particles [35]. Four planar spiral antennas were installed
at different locations on the tank. For each signal collected, the authors calculated three
different short time Fourier transform (STFT) by changing the window lengths. The
different window lengths correspond to high time resolution, high frequency resolution
and medium resolution. The proposed model was a CNN-LSTM based model. The three
different STFTs calculated from each signal were used to train three different CNN models,
where the three outputs of the CNN models are combined by a fully connected layer. The
output of the fully connected layer is the input to the LSTM. Since there are four sensors,
the model is comprised of four fully-connected layers which are the input to four separate
LSTMs. The outputs of the LSTMs collectively decide on the label of each input sample.
The authors compared the model performance with other baseline models and with the
case where a single window length was used for the STFT. The model showed improved
results compared to the other models.

In 2019, the authors of [30] investigated GIS PD data which were collected from
laboratory experiments and finite difference time domain simulations. A conditional
variational autoencoder (CVAE) was used to generate more training data. A seven-layer
CNN model was used for the classification of four different sources of PD, free metal
particle, metal tip defects, floating electrode defects, and insulation void. The authors
also reported a visualization of the feature maps from the first two convolutional layers.
They compared their results with support vector machine (SVM), decision trees (DT), back
propagation neural network (BPNN), and a few CNN architecture (LeNet5, AlexNet and
VGG16). The proposed CNN model outperformed the above mentioned models.

Using a laboratory setup, four defects that take place in medium voltage switchgear
were replicated [31]. The four sources of PDs included: cable termination floating earth,
earth cable in contact with cable termination insulation, voltage presence indicating systems
(VPIS) bushing screen disconnected, and earth grounding spring missing on bus bar
connector. The spectrogram of the PD signals collected using a coupling capacitor is
generated by applying the continuous wavelet transform (CWT). In addition, spectrograms
from noises and other HF signals are generated. The authors proposed a convolutional
autoencoder (CAE) that is able to reconstruct the spectrograms of the different sources of
PDs and noise. After the CAE is trained, the decoder part of the autoencoder is removed
and substituted by a fully connected layer followed by the classification layer. This model
is trained using a labeled dataset, where the model is able to output the percentage of
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belonging of a tested spectrogram to each of the four PD sources and the noise/HF signals
classes. The study reported high performance ability of the proposed model.

In another work [32], four sources of PDs in a gas-insulated switchgear were simulated
in a lab setup. An existing CNN architecture, AlexNet, was the method used in this work
where the inputs are the time series waveforms treated as images. The results of the
proposed method are compared with the fractal method and mean discharge method. The
time series waveforms were transformed into a PRPD plot for the sake of applying the
fractal method and mean discharge method. Both the fractal and mean discharge methods
provide features which are considered as input to two fully connected neural networks.
The study included reporting the average classification accuracy of the three models with
different percentage of noise added to the signals. The proposed method showed improved
results compared with the other two methods especially with a high noise percentage. In
addition, the author reported that the time consumed for PD classification was the least
using the proposed CNN-based method.

In 2021, four types of PDs that take place in a GIS platform (free metal particle defects,
metal tip defects, floating electrode defects and insulation void defects) were experimentally
simulated and time-series waveforms corresponding to each type of PD were recorded
using UHF sensors (butterfly antennas) [33]. The variability in the dataset was introduced
by randomly changing the position of the defect. The deep learning model proposed by the
authors was based on a depth-wise CNN model where the convolution is divided into two
parts: the first part is composed of convolving one channel at a time with the convolution
kernel (i.e., depth-wise convolution) and the second part is to mix the feature map using a
1× 1 convolution kernel (i.e., point-wise convolution). A generative adversarial network
(GAN) was also used in order to generate more data. The proposed model was compared
with other CNN-based models such as MobileNetV1, MobileNetV2, Xception, ResNet, and
LeNet models. The proposed model reported enhanced classification accuracy compared
to the other models. Visualization of the feature maps of some layers is presented as well,
which highlight what each layer was capable of learning.

In the same year, a research group simulated four different sources of PDs in a GIS
controlled lab environment [34]. Varying the defect location for each of the artificial defects
ensured the variability in the collected dataset. The authors proposed a 1D-CNN model
where a multiple scale convolution kernel is used instead of a single scale convolution
kernel. Channel shuffling was used on the outputs of the two feature maps produced by
the multiple scale convolutional kernel in order to have a unified feature map. Since having
labelled data is time consuming and needs expertise knowledge, the authors proposed
domain adversarial transfer strategy (DATS), which is inspired by the GAN. Four different
unbalanced datasets were acquired from an actual GIS in order to test the performance of
the proposed model. The 1D-CNN that was trained on the experimental data are used to
classify the on-site GIS PD data where some data had no labels. For the proposed 1D-CNN
model, the authors compared the results of the proposed model with traditional 1D- and 2d-
CNN models. With regard to the performance of DATS, the authors compared the results
with other transfer learning (TL) techniques such as fine-tuning TL and domain adaptation
TL. The study reports enhanced results using the proposed framework. The authors
suggested that future work will focus on the automatic optimization of hyperparameters
and on trying the platform in an online monitoring system.

In [36], the aim of the research work was to investigate transfer learning, especially
domain adaptive deep transfer learning (DADTL) CNN, for GIS PD diagnosis. The authors
used four different datasets for the training of their model. The datasets consisted of
measured and simulated data. Dataset A included field data from three types of fault
(rolling element, inner ring, and outer ring). Dataset B corresponded to the GIS PD
simulation data using the finite difference time domain (FDTD) technique, where four
sources of PDs (metal particle, tip, floating electrode, and insulator air gap defect) were
simulated. Dataset C corresponded to a 252 kV GIS experimental platform, where signals
were captured corresponding to the four defects mentioned in Dataset B. Finally, dataset D
corresponded to the PD samples collected from a provincial power company’s GIS failure.
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By the use of maximum mean discrepancy to minimize the sliced Wasserstein distance
(SWD), the authors aimed to ensure that transferable features have minimal discrepancy.
The proposed model starts with data pre-processing, where samples from the larger datasets
are classified as source domain samples, and samples from smaller dataset are classified
as target domain samples. The aim is to minimize the differences between the features
learned from both source and target datasets. The authors used residuals units in the CNN
based architecture. The authors compared the results with traditional CNNs (LeNet and
AlexNet) with the same number of layers. The proposed model reported improved results
compared to the other deep learning models especially when the dataset is small.

Another work which used simulated data are presented in [37], where a CNN-LSTM
network is proposed for the classification of PD sources in a GIS system. The model consists
of two blocks of convolutional layers followed by pooling layers. The output of the second
block is fed to an LSTM layer which is followed by a fully connected layer and ending
with the classification layer. In order to generate the dataset, simulation software XFDTD
is used. The four sources of PDs are metal tip defect, insulator air gap defect, floating
electrode defect, and free metal particle defect. The authors reported the precision, recall,
and F1-score of the four sources of PDs. They compared the performance of the proposed
model with other models like SVM, LSTM and CNN. The proposed model reported high
average classification accuracy compared to the other models.

Research has been focused on using different DL techniques for the purpose of identify-
ing PD sources in a GIS platform varying from autoencoders, CNN, LSTM, or a combination
of the above techniques. Authors have compared their proposed models with other DL
models or traditional machine learning models. Despite the advantages of using different
DL techniques, future work should focus on the quality of the input data with regard to
the interference, noise, and the fact that multiple PDs can take place at the same time. The
integration of the developed models in real-life systems would present its own challenges
especially when it comes to developing industrial standards or regulations, and implement-
ing condition-based maintenance asset management policies depending on the severity of
the situation.

4. Transmission Line Networks

Transmission line networks are used to enable the long distance transmission of power.
A few research groups have developed deep learning models to identify PD from non-
PD signals collected from a publicly-available dataset. ENET Centre in Czech Republic
developed a meter to measure the voltage signal induced by the stray electric field along
covered conductors that contained PD or fault signals. The dataset contains noisy real
world measurements from high-frequency voltage sensors, where the objective is to identify
damaged three-phase, medium-voltage overhead power lines [78].

In 2020, the authors of [39] performed pre-processing of the raw data in order to
remove noise and low-frequency components of the signals. The output of this process
was the time and frequency representation of the signal by applying short-term Fourier
transform. The time and frequency domain positive and negative half cycle signals are
the input to the proposed deep learning algorithm. The proposed model is a Dual Cycle-
Consistency network. Both time and frequency domain branches consist of three blocks.
Each block contains a 2D convolutional layer, a Rectified Linear Unit (ReLU), and a batch
normalization layer. The output from block-3 of the time-domain and frequency-domain
branches is passed through a global average pooling layer, a shared fully connected layer,
and a sigmoid layer. In order to calculate the cycle-consistency loss, the outputs are fed
to the dual-domain attention module block (DDAM) for joint learning. The prediction is
then based on the weighted average of the output from the fully connected layers and
the output from the DDAM block. The results are compared with other models such as
Random Forest, Resnet18 + VggNet11, and LSTM. The performance metric used is the
Matthews Correlation Coefficient (MCC), in addition to precision, recall, and F1-score. The
authors reported better results compared to the other approaches.
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The authors of [40] developed a model based on time-series decomposition and LSTM
for to classify PD from non-PD signals from the same public dataset. Seasonal-Trend
decomposition using Loess (STL) was used to decompose each raw signal into three parts:
trend, seasonal, and residual. PD is mostly reflected in the residual part. Four different
STL modules with different seasonal window lengths were used to generate four different
residual components. Feature engineering was then applied on the residual parts where
a sequential feature vector is extracted. As a result, many-to-one sequential data are
generated and are considered as the input to the long short-term memory network (LSTM)
classifier. The proposed model was compared with other classifiers such as fully connected
layers, SVM, XGBoost, and Multivariate Logistic Regression (MLR). The proposed model
showed enhanced classification accuracy compared to the other models.

In 2021, the authors of [38] aimed to classify PD versus no-PD signals using the same
publicly-available dataset of damaged power lines as the previous paragraph. The proposed
model was a traditional 1D CNN model where a Global Average Pooling (GAP) layer is
employed before the fully connected layer. Each sample in the dataset is compromised
of voltage of the three phases over one period. For each phase, a highpass filter is used
to remove the power frequency, after which a maximum filter is used to extract a set of
pulses. Each set of pulses from each phase is the input to the trained 1D CNN. Finally,
the decision on the label of the power line is based on the three outputs of each phase. In
order to visualize what the model is looking at, in order to decide on the label, a pulse
activation map (PAM) was used. The evaluation metrics used are Matthews Correlation
Coefficient, precision, recall, and accuracy. The authors compared their results with other
publicly reported results where models such as LSTM were used. The proposed model
showed enhanced results, and the authors suggested that a larger dataset will be more
compatible for hyperparameter tuning.

In [41], the authors aimed to classify PD versus no PD using the same dataset as the
previous papers, which included the three-phase voltage signals. FFT noise reduction
algorithms were used on the raw data. The proposed model was a CNN-LSTM model with
an attention layer before the classification layer. Starting with two blocks of convolutional
and max-pooling layers, the output is fed to a fully connected layer which is considered
as the input to the LSTM layer. The output of the LSTM is the input to an attention layer,
where multiplication of the feature vector obtained from the LSTM is done with learnable
weight coefficients. The output of the attention layer is fed to to a sigmoid which decides
on PD versus no PD label. The performance metrics used are precision, recall, and F1-
score. The proposed model is compared with other traditional models such as SVM, CNN,
and bidirectional LSTM. The study reported higher average accuracy compared to the
other models.

The papers discussed in this section used the same publicly-available dataset, where
different DL approaches were adopted to detect PD pulses from non-PD. This serves as
proof that different DL algorithms can give good results; however, the deployment of such
algorithms in real-life systems would definitely give a better perspective of what models
to use. This section was also a good example to show how various DL techniques can be
evaluated using a common dataset.

5. Rotating Machines

In rotating machines, voltages are generated due to time-varying magnetic fields,
which is the result of the the change in the flux [79]. The change in the flux results from
the mechanical motion of the rotating machine. Rotating machines consist of stator and
rotor structures which are made of thin laminations of electrical steel, insulated from each
other in order to reduce losses and prevent discharges and faults to take place. Various
types of stress, such as thermal, electrical, ambient, or mechanical stress, can affect the
insulation system of rotating machines. Statistical data show PD activities have preceded
a large number of stator failures [80] and, as such, PD detection in rotating machines has
been attracting attention. Extensive research has been done on using traditional machine
learning techniques, such as Naïve Bayes-, SVM-, and kNN-based techniques [81], for
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rotating machine electrical insulation diagnosis. This section mentions the work done using
deep learning for the rotating machine PD diagnosis.

The PPRDs of a number of sources of PD found in rotating machines through online PD
measurements in hydro-generators operating in real-world conditions have been collected
in [24]. The PD sources are: internal void, internal delamination, delamination between
conductors and insulation, slot, corona, surface tracking, and gap discharges. The authors
proposed a methodology to de-noise the PRPDs first and use an image pre-processing
technique to separate different clouds in the PRPD patterns. The output of this stage was
denoised sub-PRPDs which represent different sources of PD. Three features which are
extracted for each sub-PRPD are the input to four different artificial neural networks (ANN).
These different ANNs were incorporated in a hierarchical fashion in order to perform the
final classification. The authors reported a good overall classification accuracy for all the
PD sources.

A framework was proposed using visual data analysis for PD source classification
in hydrogenerators with a minimum of labeled data [29]. A convolutional encoder was
used to project the PD signals acquired from the generator stators to a 2D-visualization
latent space. This serves as a visual aid for the expert to analyze the distribution of the
training dataset. After being labeled by the experts, the labeled data are trained by a neural
network classifier. Other unlabeled data are tested using the already trained classifier, and
if any conflict area appeared on the 2D latent space, the human experts will have to label
by conflict area sample data. The new labeled data are then added to the dataset, and this
procedure is done in an iterative manner until the area of conflicted data is minimized. This
study reported a base that integrates both expert knowledge and the advantages of deep
learning in order to have a correctly-labeled dataset of PD sources.

Although performing preprocessing of the input data is crucial to help the models
learn the intrinsic characteristics of patterns (i.e., denoising in HV applications), future work
should focus on applying different denoising techniques. Investigating the effect of different
denoising techniques on the effectiveness of the DL models yields better understanding of
the learning process. Moreover, it is observed that more research is being directed towards
exploring the problem of unlabeled data, which is a crucial step for the deployment of any
algorithm in a real-life diagnosis system.

6. Cables and Solid Insulation

Electric power can be transmitted by underground cables or by overhead transmission
lines. The main advantage of underground cables compared to overhead lines is the low
maintenance cost. This is linked to the fact that overhead lines are exposed to environ-
mental factors such as storms or lightning. An underground cable consists of one or more
conductors which are covered with suitable insulation and the external component is the
protecting cover [82]. The major disadvantage of using underground cables though is the
problem of degradation and failure of the insulation under high voltage stress. Hence,
detecting PDs/faults is crucial for assessing the health of the system. This section reviews
the application of deep learning to solve the problem of classification of faults/PDs in cable
insulation and solid dielectric using PRPD patterns or time-series waveforms as the input
to train the classification model.

6.1. PD/Fault Classification Using the PRPD Pattern

Different sources of PD have been classified in a solid insulation in addition to the
prediction of the aging stage of the insulation in [14]. The authors of this paper classified
three different sources of PD (corona, surface, and internal discharges) which are simulated
in a lab environment. They compared the deep belief network (DBN) output with three
other machine learning approaches. The input to the DBN was the raw PRPDs, whereas the
inputs to the other approaches were features extracted using statistical and vector-norm-
based operators. Classification accuracy is the performance metric used in this study. The
authors show that the DBN learns distinguishable features without any pre-processing of
the PRPDs.
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The performance of a CNN model was evaluated on the prediction of the ageing stage
of high voltage insulation material using PRPD data [15]. Three classes of start, middle,
and end as well as noise/disturbance were defined for the electrical insulation degradation
process representing the ageing that occurs in an insulation specimen under electrical stress.
Precision, recall, and F1 score were the metrics used for the evaluation of the CNN model.
The author reported that the performance is consistent even with changes in the CNN
hyper-parameters’ values.

The effect of noise in PRPD patterns on the classification accuracy of different artificial
defects in a 11 kV cross linked polyethylene (XLPE) cable joints has been investigated
in [23]. There are a total number of five PD sources considered in this study. After training a
CNN architecture using noise-free PRPD patterns, transfer learning was performed where
the authors used this model to start training another CNN architecture but this time with
noisy PRPDs. The results were compared with those obtained using traditional machine
learning classifiers where hand crafted features were extracted. The authors reported
that the CNN-based model was able to outperform the models that use manual feature
extraction with an increase of 16.9% in the classification accuracy.

In [83], the authors simulated five different defects that take place in a 36 kV cross-
linked polyethylene (XLPE) cable terminations such as protrusion, void, and corona dis-
charge. The authors used a commercial PD detector in order to capture the PRPD patterns.
A CNN architecture was proposed where the authors investigated the effect of different
hyperparameters such as pooling and kernel size on the classification accuracy percent-
age. The authors compared their results with off-the-shelf CNN architectures such as
AlexNet, VGG, ResNet and GoogleNet. They reported higher classification accuracy of
their proposed model compared to the other models.

6.2. PD/Fault Classification Using Time-Series Waveform

In 2019, a traditional CNN model was used to differentiate between synthetic PD
pulses in power cables [25]. The variability in the synthetic dataset was introduced by
the signal-to-noise ratio (SNR) and the position at which the PD initiated. The model
was compared with a support vector machine (SVM), where the study reported enhanced
results using the proposed algorithm.

In the same year, five types of artificial defects in ethylene-propylene-rubber cables
in a high voltage laboratory were collected to generate signals containing PD data [26].
Seventeen features were extracted from the time-series waveforms corresponding to charac-
teristics such as pulse width, rise time, fall time, peak voltage, pulse polarity, mean voltage,
and root mean square (RMS) voltage. In addition, 16 wavelet features were extracted from
the transient signals using Wavelet Transform. In total, 33 features constituted the input
corresponding to each signal to the proposed CNN model. Analysis was performed on the
effect of the change in the hyperparameters of the CNN architecture such as the number of
layers and the convolution kernel sizes. The results were compared with those obtained
using SVM and back propagation neural network (BPNN) models. The study reported
better classification accuracy when compared with the other two models.

In 2020, four common DC insulation faults were simulated during the operation of
XLPE cables that include conductor burrs, external semi-conductive layer residue, internal
air gap, and scratch on the insulation surface [27]. A modified Canny edge detection
operator was used in order to extract the part of the time series signal which includes the
PD. A deep belief network is proposed by the authors where the ADAM optimizer is used.
The authors compared their model performance with naive Bayes, K-nearest neighbor
(kNN), support vector machine (SVM), and back propagation neural networks (BPNN).
The authors reported the confusion matrices of the models and compared the classification
accuracy. The proposed model outperformed the other methods, and it was reported that,
as the training dataset increases, the classification accuracy increases as well.

An ensemble of deep learning algorithms was used to differentiate between PD signals
and noise signals in medium voltage power cables [28]. The samples were collected from
offline in-service cables. The idea behind using ensemble learning is to allow more than one
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neural network to make the classification decision. CNN, convolutional RNN, LSTM, and
bidirectional LSTM (BILSTM) were used in the ensemble frame, but two of these models
were used at a time. In this paper, two scenarios were considered: In one scenario where
there is difference in the prediction of a sample between two deep learning (DL) models, a
human expert will have to decide on the label of that sample, and in the other, the output
from the activation function of two different models were added together. Five different
cables were tested on the trained models. Adaption training was done for each of the five
cables where the classifier layer is re-trained with the measured calibration pulse specific
to each cable. The authors reported the results of the five cables for the two ensemble
scenarios and with different binary selection of the above-mentioned DL algorithms. They
also reported the results when each DL model is used alone. It was reported that the CNN
paired with the BILSTM gave the best results.

In Ref. [84], the authors aimed to target the problem of losing the voltage signal
information that is used for plotting PRPD patterns. Different datasets consisting of three
types of cable joint defects were generated in a lab environment, where the signals were
recorded using an oscilloscope. Pulse sequence analysis (PSA) was performed by using the
change in the magnitude of the PD pulses resulting in a magnitude difference heat map
image that was as the input to the proposed CNN model. Investigation was carried out to
optimize the CNN hyperparameters, in addition to investigating the effect of the different
image features including the size, type, color, and marker size of the images. The authors
compared the accuracy of the model with having PRPDs as input versus the PSA as input.
The authors claimed that using PSA instead of PRPD yields a higher classification accuracy.

The authors in [85] classified and localized ten faults in an 11-kV, three-phase under-
ground cable consisting of various combinations of phase to phase or to ground faults.
The dataset was generated by simulation using PSCAD/EMTDC software with varying
different system parameters such as fault inception angle and fault location. Additive
Gaussian white noise was added to the signals. The authors proposed a CNN-LSTM
architecture along with the application of a sliding window technique. The input to the
architecture is the current and voltage signals, and the outputs are the fault location, fault
inception time, and fault type. The authors compared their results with other deep learning
architectures such as CNN and LSTM. The authors reported better performance for their
model compared with other models.

A simulation model using Matlab was developed in [86] to generate fault signals of
an underground cable distribution system consisting of sixteen cables. The fault types
are ground fault, short-circuit fault, or open-circuit fault for each of the three phases of
the sixteen cables. The authors proposed a deep belief network for this purpose and they
compared the classification accuracy with a shallow neural network. The authors reported
better results for the proposed deep learning model.

The authors of [87] located aged cable segments in underground power distribution
systems labeled as even ageing, uneven ageing, and terminal ageing patterns. The signals
were captured using an HFCT. The authors proposed a combined stacked autoencoder and
CNN architecture for detecting aged segments. When an aged segment is detected, another
CNN model was developed to indicate the location and severity of the aged segment. The
authors compared the results with other machine learning models such as support vector
regression and deep belief network. The proposed model performed better compared with
other models for both detection and localization of the aged segments.

Ref. [88] proposed a technique to detect the inception faults that take place in ca-
bles. The authors used PSCAD/EMTDC in order to simulate the inception fault signals,
over-current disturbance signals, and normal current signals. The authors proposed an
architecture that includes a sparse autoencoder followed by a deep belief network. They
compared the classification accuracy with support vector machine and K-nearest neighbor,
where they reported better results performed by the proposed model.

The authors of [89] aimed to detect inception faults as well. They used PSCAD/EMTDC
as well, where variability in the generated signals was introduced by changing some pa-
rameters in the simulation model such as fault impedance and fault location. The authors
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proposed restricted Boltzmann machine to compress the signals. This was the input to
the stacked autoencoder. The authors investigated the trained model performance with
simulated and measured data. In addition, they compared the classification accuracy with
other models such as CNN, deep belief network, and random forest. The proposed model
outperformed the other models.

In [90], the authors detected phase-to-ground faults in a typical 10 kV resonant ground-
ing distribution system, which was simulated using PSCAD/EMTDC. The signals were
generated under different fault conditions including different fault locations, different
grounding resistances, and different fault initial phase angles. Continuous wavelet trans-
form (CWT) was applied to the signals to generate 2D images. The images were transformed
to grey-scale, and this was the input to the CNN. The authors investigated the robustness
of the model to different parameters such as interference. The authors compared the results
with SVM and adaBoost, and they reported that the proposed model gave better results.

Although the investigation of different DL techniques is essential for the sake of com-
pleteness of any work, it is observed that having common, publicly-available datasets can
help in focusing on the generalization of any developed algorithm. In addition, as men-
tioned in previous sections, the investigation of the effect of any preprocessing technique is
necessary in order to have a deeper understanding of the intrinsic characteristics that the
DL model is learning.

7. Transformers

Power transformers play a significant role in power systems, so any failure in this
apparatus may interrupt the power supply and cause outages and loss of profit. A photo of
a power transformer is shown in Figure 9. One of the beneficial methods for preventing the
failure in the power transformers and raising the reliability of these systems is detecting
faults in power transformers accurately and promptly.

(a) (b)

Figure 9. (a) A photo of a power transformer, (b) acoustic sensors installed on the tank of a transformer.

Whether the target is to classify/localize the sources of PDs/faults taking place in
a transformer, or to identify overheat or vibration, deep learning has been used for this
purpose. The following section summarizes the literature on the use of deep learning for
the transformer application.

7.1. PD Classification Using the PRPD Pattern

Four typical transformer insulation defects were simulated in [16] that include metal
protrusion, oil paper void, surface discharge, and floating potential defects. The authors
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developed a CNN-LSTM based model where the input is the PRPD data. They compared
the results with a CNN-only model and an LSTM-only model. The evaluation metric used
was the classification accuracy where the authors reported that CNN-LSTM has better
overall recognition accuracy than CNN and LSTM alone.

In 2020, the authors of [17] simulated six types of PDs that take place in power
transformers using artificial cells in a laboratory setup. They collected the PRPDs of
the six PDs which include protruding electrode, moving particle, floating object, surface
discharges, bad contact between windings, and void. In order to reduce the input size
of the PRPD, the authors used the phase-amplitude (PA) response that is extracted from
PRPDs. The authors proposed a CNN model for classification of PD sources. Comparing
the classification accuracy of the proposed architecture versus other machine learning
classifiers, such as linear and nonlinear SVM, the authors reported a better performance.
They also reported that using the PA response as an input increases the accuracy by 1.46%
compared to using the raw PRPDs as the input to the CNN model.

The PRPD data of different PD sources in a transformer were collected in a laboratory-
controlled setup and reported in [18]. The PD sources included tip discharge, surface
discharge, air gap discharge and suspended discharge. The squeeze-and-excitation (SE)
module that is a lightweight attention mechanism and the nonlinear function hard-swish
(h-swish) were used in addition to a CNN model in order to decrease the accuracy loss
of the model further. The authors performed image pre-processing such as segmentation,
binarization and enhancement of the data before feeding it to the training model. They
compared the results of their model versus other models such as AlexNet, ResNet-18, and
VGG16. They reported enhanced average accuracy versus the other models, in addition to
less weight storage and reduction of parameters.

In the same year, an investigation of a transformer bushing insulation quality, which
was affected by poor drying and impregnation, was reported in [19]. The authors used a
simple CNN (i.e., 3300 parameters) for the identification of four types of dry impregnation
defects using PRPDs as the input to the proposed CNN. The performance metrics used for
the evaluation of the model are the precision rate, recall rate, and F1 score. The authors
reported 97.1% average accuracy rate and indicated that their model can be used for online
monitoring as it is a small model.

A novel convolutional architecture for single and multiple source PD classification,
where the model is trained on single-source PDs, was proposed in [20]. The dataset included
PRPDs of single and multiple sources of PD taking place in air, oil, and SF6 which mimic
common sources of PD. The six single PD sources of floating electrode in SF6, moving
particle in SF6, fixed protrusion in SF6, free particle in transformer oil, needle electrode
in transformer oil, and corona in air were simulated in a laboratory setup. The proposed
architecture has a convolutional backbone feeding into multiple fully connected neural
networks (FCNs). The performance metrics used are the arithmetic mean of recall and
precision in addition to the classification accuracy and false negative rate. The authors
compared their results with one-versus-all CNN and reported that their model has better
results than the traditional single-branch CNN architecture.

Adam et al. [21] simulated six artificial PD sources in a controlled lab environment
that mimics PDs in a power transformer. The PD sources include two discharge sources
in air and four discharge sources in mineral oil. The time at which the discharge takes
place, the apparent discharge in pC, and the phase angle are recorded for each PD event.
In addition, 100 PD events constituted a sample. Superimposed patterns were created by
using the single sources patterns, where 30 different combinations of samples with two
class labels are formed. The authors proposed an LSTM model which is able to classify
multiple and single sources of PDs, where the training was done just on single sources of
PDs. The study reported the multi-label accuracy in addition to the single-label accuracy.
The multi-label accuracy is defined as the proportion of the correctly predicted labels to
the total number of labels for each sample. The model showed a 99% average accuracy for
single PD sources and 43% for the average multi-label classification problem.
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Ref. [22] outlined the same objective as the previous two papers. Single and mul-
tiple sources of corona discharge in a controlled lab environment were simulated. The
four single sources were: sphere–plane, sphere–sphere, needle–plane, and needle–needle.
The three multiple sources were: needle–needle and sphere–sphere, needle–plane and
sphere–sphere, and sphere–plane and needle–needle. The PRPD patterns were collected,
and pre-processing was performed by filtering discharges that have small magnitude. The
input to the deep learning models were greyscale images of 75 by 75 pixels. The classes
were labeled from 0 for the first single class to 6 for the double-sourced configuration that
is considering the multi-source classes as a new class. The authors proposed an optimized
ResNet model which they compared with other DL models such as AlexNet, Inception-V3,
residual network (ResNet), and DenseNet. The study reported enhanced classification
accuracy and least computational cost.

7.2. Dissolved Gas Analysis Using Deep Learning

The dissolved gas analysis (DGA) is an established method for detecting internal faults
in transformers. In recent years, the application of deep learning in DGA has received more
attention. This section reviews the literature where the researchers have used deep learning
to improve the accuracy of the DGA.

The DGA of insulating oil was conducted for transformer fault diagnosis by Dai et al. in
2017 [91]. To improve the efficiency of diagnosis, the authors proposed a novel transformer
fault diagnosis approach based on deep belief networks (DBN), which outperforms power
transformer fault diagnosis using support vector machine (SVM), back-propagation neural
network (BPNN), and ratio methods. A variety of sources were used to collect the input
DGA data, including data provided by the State Grid Corporation of China and previous
publications. The proposed model was trained using different combinations of DGA ratios
associated with fault patterns (the so-called non-code ratios). The training and testing
accuracy of 96.4% and 95.9% were observed for the DBN with non-code ratios in this study,
respectively.

In 2020, a semi-supervised autoencoder with an auxiliary task (SAAT) was introduced
by Kim et al. to extract a health feature space for power transformer fault diagnosis consid-
ering DGA [92]. The DGA dataset was provided by Korea Electric Power Corporation. The
proposed SAAT achieved an accuracy of over 90% in both fault detection and fault identifi-
cation. The same group has also developed a framework that bridges Duval’s method with
a deep neural network (DNN) technique for power transformer fault diagnosis employing
DGA [93]. The dataset employed contains 4000 unlabeled and 117 labeled DGA data. The
obtained results emphasize the superiority of the proposed method compared with the
existing AI-based methods in terms of accuracy.

Wu et al. introduced a CNN-LSTM deep parallel diagnostic method for transformer
DGA employing its ability to extract nonlinear features [94]. The authors showed that
this method has a better anti-interference ability compared to the other techniques studied
in the paper. In this parallel CNN-LSTM based diagnostic method, the input was in the
form of an image derived from the DGA numerical data. The issue of insufficient data
was overcome by using the transfer learning technology. The results obtained in this study
indicate that the diagnostic accuracy rate is 96.9% without complicated feature extraction.

In 2021, Taha et al. presented a CNN model to precisely diagnose a variety of trans-
former faults using DGA data and considering different noise levels [95]. The results
obtained from applying the proposed method on 589 dataset samples, collected from util-
ities and literature with various noise levels up to ±20%, indicate that the CNN model
with combined input ratios improves the prediction accuracy. The obtained accuracy was
compared to traditional machine learning methods as well.

To improve fault diagnosis in transformers, Hu et al. [96] proposed a method based
on refined deep residual shrinkage network (DRSN). The input dataset was based on the
amount of gas in the transformer oil, the temperature data, and the number of collected
data points based on the timing sequence. The recognition results indicate that the average
accuracy of refined DRSN is around 99.67% for the training set and 97.82% for the test set.
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On average, the proposed method could improve the recognition accuracy by 2% compared
to the existing fault diagnosis methods.

A probabilistic neural network (PNN)-based fault diagnosis model was presented by
Zhou et al. for power transformers [97]. This model optimizes the smoothing factor of
the pattern layer of PNN using an optimization technique, improved gray wolf optimizer
(IGWO), to enhance the classification accuracy of the PNN. Different fault types data from
a real transformer were collected using smart sensors. The obtained results indicate a high
diagnostic accuracy of 99.71% achieved by the IGWO-PNN model.

7.3. Detect Mechanical Defects in Winding

In 2021, Rucconi et al. [98] analyzed the vibration data measured by transformer
sensors, such as accelerometers, installed on the transformer tank. These sensors record
time series waveforms to build a dataset. An ensemble of fully-connected, feedforward
deep neural networks was employed to classify the transformer winding condition (tight or
loose). The robustness of the models was investigated by testing them with data collected
by sensors at locations other than those used for training. The authors reported a high
accuracy in the results.

Li et al. used the frequency response analysis (FRA) for detecting the mechanical
defects of power transformers in 2021 [99]. The authors employed a lumped-parameter
transformer model since creating actual faults experimentally on a real transformer was not
practical. The proposed deep learning approach was based on a decision tree classification
model and a fully connected neural network that used the FRA data for training. Fifty-five
FRA samples were generated as the input to the proposed model by simulating a variety of
transformer fault types and levels. The mean absolute error (MAE) and mean square error
(MSE) of the validation set were both at a low level, which were employed to reflect the
accuracy of the model.

A fault diagnosis technique was proposed in [100] by Hong et al. using the vibration
analysis. The vibration samples were collected in more than 100 operating transformers and
were divided into the categories of normal, degraded, and anomalous. Next, the vibration
monitoring data were converted into an image. A deep learning method based on a CNN
was employed to classify the images of various input sizes, which indicated an overall
accuracy of 98.3%.

A fault diagnosis method based on a deep learning model was presented by Wang
et al. applied on a 110 kV three-phase oil-immersed transformer in 2018 [101]. The model
used self-powered radio-frequency identification (RFID) sensors and employed the stacked
denoising autoencoder (SDA) to learn features. Based on experimental results, the highest
accuracy was achieved by the proposed methods and in the shortest time in comparison
with other existing methods.

In 2021, a method was proposed by Moradzadeh et al. for analyzing a transformer
FRA using image processing and a deep learning method, graph convolutional neural
network (CNN) [102]. The obtained results using simulation data indicate that the normal
mode of CNN (without considering visual images) and with considering the visual images
have an accuracy of 97.28% and 98.33%, respectively. Using experimental data, an accuracy
of 98.01% and 100% was reported, respectively.

7.4. Detect Electrical Faults in Winding

The authors of [103] proposed a CNN model for the identification and localization of
faults in transformer winding. The dataset was collected by generating single/multiple disc-
to-disc faults of winding insulation in a transformer model at different winding positions,
where the current waveforms were recorded. The faults were generated in an analog model
of a 33 kV winding of a 3 MVA transformer. The training dataset was generated using an
EMTP (Electromagnetic Transient Programming) based digital model, and the test dataset
included the data collected from the analog model of the transformer. The results of the
CNN model were compared with other methods such as self-organizing maps, fractal
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features aided SVM, and wavelet-aided SVM. The CNN showed improved classification
results compared to the other methods.

In 2019, Duan et al. [104] presented an inter-turn fault diagnosis technique to diagnose
15 types of an inter-turn short circuit fault. A multi-channel signal matrix that contains
voltage and current waveforms of a simulated transformer was generated as the input of a
deep learning-based model. An autoencoder was employed for feature extraction followed
by a classifier consisting of convolutional and pooling layers. The proposed model could
achieve a recognition accuracy of 99.5%.

An online continuously-operating fault monitoring system for cast-resin transformers
was presented by Fanchiang et al. in [105]. They presented an overheating fault diagnosis
approach with a maximum accuracy of 99.95%. The model used infrared thermography
(IRT) images as input provided by a thermal camera monitoring system. The images were
used to train a Wasserstein autoencoder reconstruction (WAR) model and a differential
image classification (DIC) model to classify a number of faults such as inter-turn short
circuit or poor contact of primary and secondary sides.

Wu et al. introduced an approach to obtain an optimal identification of the operation
state of a converter transformer based on vibration detection technology and a deep belief
network optimization algorithm [106]. The fused feature extraction technique considered
in this study accurately extracted the eigenvectors of the vibration signals. This deep belief
network optimization algorithm has offered a high classification accuracy.

Similar to the application of DL in any area, the prerequisite of developing any
DL algorithm to assess the health of a transformer is the availability of reliable training
data. Some data acquisition techniques for transformers are easy to implement even
with the transformer in operation (such as DGA or acoustic signals) while some (such as
FRA) require an outage. Equipping transformers with sensors that can collect internal
data will enhance the application of DL techniques. Most of the papers in the literature
either employ simulated lab data or even numerically-generated data. Training a DL
algorithm with such data will make the performance of the algorithm in the field require
proper validation. Furthermore, research on the application of DL techniques that employ
polarization methods data, such as recovery voltage method (RVM), polarization and
depolarization currents (PDC), and frequency-domain dielectric spectroscopy (FDS) will
enhance the ageing diagnosis of the transformer dielectric materials.

8. Outdoor Insulators

Outdoor insulators play an important role in distribution and transmission overhead
lines. They mechanically support the high voltage conductors and electrically insulate
the high voltage lines from the grounded tower structure. Although they account for
approximately 5–8% of the total capital cost of transmission lines, they are responsible for
more than 70% of power line outages [107]. Therefore, it is crucial to continuously inspect
them to avoid any risks of premature failure. A photo of a 220-kV overhead transmission
line is shown in Figure 10.

Outdoor insulators are classified into ceramic and non-ceramic insulators. Despite
the differences in their characteristics, both are prone to aging due to the combined effect
of electrical, mechanical, and environmental stresses. The main problems associated with
outdoor insulators can be categorized into physical defects and pollution related issues.
Physical defects like cracks in any parts of the insulator, air voids in the housing material or
in the interface between various insulator materials and metallic sharp edges of insulator
fittings can cause localized partial discharge (PD) activities to occur. These discharge
activities can contribute to the insulation degradation. On the other hand, the accumulation
of pollutants on the surface of insulators in the presence of moisture can reduce the leakage
resistance and allow leakage currents (LCs) to flow on the surface. Therefore, heat is
dissipated, evaporating part of the moisture, and forming dry bands. Since dry bands
possess a relatively higher resistance compared to the wet surfaces, voltage stress will
concentrate across these bands resulting in the formation of dry band arcing which may
lead to complete flashover. As a result, estimating and forecasting pollution levels is critical
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for utilities to plan their washing schedule to avoid power interruption. Both the Equivalent
Salt Deposit Density (ESDD) and the Non-Soluble Deposit Density (NSDD) are commonly
used to assess pollution severity.

(a) (b)

Figure 10. Photos of (a) a 220-kV overhead transmission line where outdoor insulators are employed
to electrically isolate the conductors from the grounded towers, and (b) is a 12.47-kV wooden post
using polymer insulators for isolating the conductors from the pole.

Nowadays, it is estimated that approximately 150 million ceramic insulators are
deployed in North American overhead transmission and distribution networks [108]. A
significantly high portion of them had either approached or exceeded their lifetime. As
a result, utilities are increasingly favoring defective insulator detection systems that are
fast, reliable, and cost-effective. To achieve this objective, it is crucial to select the proper
sensors and measurement techniques, as well as to use effective machine/deep learning
tools [109,110].

Condition monitoring techniques of outdoor insulators can be classified into intrusive
and non-intrusive techniques. Since intrusive techniques are not safe, costly and may
require the removal of the insulators from the field for further examination, they are
time consuming and are not field inspection friendly. Non-intrusive techniques, on the
contrary, are faster methods for assessing the health conditions of outdoor insulators and
are therefore more favored in field inspections.

One of the most common non-intrusive inspection techniques deployed in the field
involves the use of manned helicopters equipped with several sensors (like Cameras, IR
Cameras, UV Cameras, etc.) for the purpose of recording inspection data. However, this
possesses some risk since helicopters require hovering very closely to the electric power
transmission line to obtain a better quality of the inspection data. To address this, several
alternative solutions were proposed, and they fall mostly under two main categories:
Unmanned Aerial Vehicles (UAVs) [111] and Rolling on Wire robots (ROW) [112]. Most of
the work in the literature is moving towards UAVs because they have a slight advantage
over ROW in the sense that their design does not need to adapt to different physical
structures. However, UAVs also exhibit some restrictions in terms of the flying duration,
which introduces some challenges when it is required to inspect a large number of insulators
in the same trip. The massive volumes of data acquired throughout the inspection process
are examined by an experienced crew of human inspectors, hence, the procedure may be
time consuming, and the decisions made can be very subjective. Therefore, it is crucial to
fuse artificial intelligence modules with UAVs for faster and better inspection performance.

In the recent years, machine leaning methodologies have evolved towards the use
of deep learning techniques, which have proved to deliver excellent results for pattern
recognition problems in a variety of applications. As a result, several authors have used
deep learning models to assess the insulator condition. One of the drawbacks of deep
learning models is its requirement of a large amount of training data. Despite this limitation,
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proper use of augmentation techniques can resolve this issue by altering the existing data
to create more data for the model training process.

The aim of this section is to review deep learning applications along with non-intrusive
condition monitoring techniques to assess both ceramic and non-ceramic insulators. In
general, the work in the literature can be classified into two main categories, i.e., using
deep learning models to detect different physical defects and/or predict the pollution
severity level. Both categories relied primarily on either image processing or radiation-
based approaches for classification. In the next sections, each category will be discussed
along with the most recent research findings.

8.1. Physical Defect Detection

In ceramic insulators, researchers focused on detecting cracks, broken and missing
discs in using UAVs. Most of the proposed methods based on deep learning algorithms
share the same concept, i.e., the insulator in each image is located using object detection
techniques; then, the defect is identified by a pre-trained deep neural network. The existing
deep learning algorithms for object detection can be classified into two main categories:
one stage and two stage networks [113]. Two stages networks consist of one stage for
object detection and another stage for classification, while one-stage networks are end-
to-end methods which can predict the position information and classification probability
simultaneously in a rapid manner. Generally, two-stage networks possess a higher detection
accuracy compared to one-stage networks; however, they have a relatively lower detection
speed and thus may not be the best option for real-time operations. Some examples of two
stage networks include: regions with convolutional neural networks (RCNN), Fast R-CNN,
Region based fully convolutional neural network (R-FCN) and Mask R-CNN and examples
of one-stage networks include algorithms like YOLO and single multi-box detector (SSD).

An example of two-stage networks is proposed in [114]. It is based on a novel deep
CNN cascading architecture. The cascaded architecture is composed of two networks: the
first network is responsible for detecting all the insulators in the images by confining them
inside detection boxes and cropping them while the rest of the image is discarded. On the
other hand, the second network detects the missing caps from the cropped images. The
scarcity of the defective images for training was addressed by different data augmentation
methods. The precision and recall of the proposed method were found to be 91% and 96%,
respectively.

To address the issues of slow detection speeds, the authors of [115] proposed a one-
stage network using a YOLOv3 deep learning model to recognize and classify images.
Moreover, their proposed system combines deep learning with Internet of Things (IoT)
through a Raspberry Pi. The work also considered the motion blur in aerial images
by implementing a super resolution CNN to reconstruct the blurry images to a high-
resolution image before classification. The results show that the proposed system obtains
rapid and high accuracy of 95.6% in the identification and classification of insulators’
defects. One of the early signs of surface damage of non-ceramic insulators is the loss of
their hydrophobicity. Hence, measuring the hydrophobicity is crucial for assessing the
insulator surface condition. According to IEC 62073, there are three methods to estimate
the hydrophobicity level of insulators, i.e., the contact angle, surface tension and the spray
methods [116]. Among these three methods, the spray method is the one that can be applied
in the field. The method involves spraying distilled water on the non-ceramic insulator
surface; then, the surface can be classified from HC1 (highly hydrophobic) to HC7 (Highly
hydrophilic) as shown in Figure 11. The classes are determined based on the size of the
wetted area and the contact angle of the droplets. Unfortunately, the main drawback of
this method is the subjectivity of human judgment. To overcome this issue, numerous
researchers have proposed digital image processing methods to analyze and quantify the
hydrophobicity class.
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Figure 11. Hydrophobic classes from HC1 (highly hydrophobic) to HC6 (highly hydrophilic) [117].

In [118], the spray method was used to generate a huge amount of data images which
were fed to a deep convolutional neural network model (AlexNet) for the purpose of
wettability classification. Compared to other machine learning algorithms, deep learning
overcomes the manual dependency on feature extraction and involves less training time
due to the transferred learning approach that was used in the article. The algorithm’s per-
formance was very promising when compared to other networks like ResNet50, VGGNet16,
VGGNet19 and GoogleNet with an overall accuracy of approximately 96%. However, this
method may require the removal of the insulator from the field which can be impractical.

To resolve this problem, the authors of [119] proposed a method to detect the hy-
drophobicity of composite insulators using a UAV technology. The drone is equipped
with a camera and water spray device in addition to an embedded artificial intelligence
(AI) module for non-intrusive classification. Initially, the You Only Look Once version3
(YOLOv3) is used to locate the wet umbrella skirt area of the composite insulator in the
complex aerial image, then VGGNet16 was used to classify the Hydrophobicity of the
images. An overall classification accuracy of 92.57% was achieved.

Other approaches included using image data and deep learning algorithms to assess
the material surface degradation in composite insulators. Tracking and Erosion is one
of the irreversible physical defects that occurs in non-ceramic insulators which can lead
to insulator failure. In [120,121], the authors used transfer learning to train CNN to
estimate the severity of erosion in silicone rubber insulators. The algorithm showed
robust performance against different lighting conditions which shows the potential of their
proposed model in practical applications.

To the best of our knowledge, there seems to be a gap in the literature that in-
volves training deep learning models to detect internal and external physical defects
using radiation-based measurements like RF antenna and ultrasonic sensors. All the work
that has been done on radiation-based techniques involves the use of feature extraction and
machine learning techniques [122–126].

8.2. Contamination Diagnosis

Several methods have utilized image processing techniques to classify the pollution
severity. In [127], for example, a total of 4500 images of ceramic and silicone rubber post
insulators were captured under different surface conditions, i.e., clean dry surface, clean
with water droplets, contaminated surfaces with cement, contaminated surfaces with soil,
wet surface contaminated with soil and wet surface contaminated with cement. Deep
CNNs were employed for classification, and a brute-force model selection was introduced
to identify and optimize the structure of the CNN classifiers. It was demonstrated that this
model selection has achieved a highly accurate architecture. Furthermore, a complexity
reduction technique was then applied to achieve lighter architectures. This considers the
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potential of implementing the CNN classifier in resource limited embedded devices. The
results show that this proposed model reduction technique corresponds to a three times
lighter architecture at the expense of a slight reduction in the classification accuracy (6.5%
only). This is intended to reduce memory usage and flop counts when implemented using
embedded devices.

In [128], the pollution severity was estimated using UV images. First, Insulator
samples were uniformly contaminated with an ESDD level of 0.1 mg/cm2, 0.2 mg/cm2 and
0.4 mg/cm2. After applying the voltage, a UV camera was used to capture the discharge
activities on the surface of contaminated porcelain insulators. The images were then
preprocessed by first graying the image, then changing the pixels to 0 or 255. When
doing so, the light spot becomes white, while the rest of the image becomes black, thus
highlighting the regional characteristics of the discharge spot in the image. Finally, CNN
was used to evaluate the pollution severity of the insulators. It has been found that there is
a positive correlation between the pollution level and the severity of the discharge activities
under the same voltage level.

Other approaches used deep learning models to estimate the LC and an indirect
method to estimate the contamination level. For example, the authors of [129] proposed
an online monitoring system that uses real-time weather data to predict and classify
the LC using bidirectional long short-term memory (Bi-LSTM) model. The sequential
weather data consist of parameters like humidity, temperature, rainfall, dew point, solar
illumination, wind speed, air pressure and wind direction. They are measured hourly and
transferred to data servers. Besides the meteorological data, the LCs are also measured
for the purpose of training and validation of the networks using the current transformer.
The LC is classified into one of eight groups (levels): i.e., 100 µA–500 µA, 500 µA–1 mA,
1 mA–5 mA, 5 mA–10 mA, 10 mA–100 mA, 100 mA–1 A, 1 A–10 A, and greater than 10 A.
Grid search is used to tune the hyperparameters involved in the Bi-LSTM model. The
results show that the model achieved an improvement by 12.8% in accuracy compared to
other models like LSTM, GRU and RNN.

Seven PD sources pertinent to artificially damaged insulator sheds in a controlled
lab experiment were simulated in [42]. The first three sources corresponded to damage
in one shed of an HV insulator. The other four correspond to damage in two or all sheds
in the HV insulator. For this matter, the CNN was used, however, in order to tune the
hyperparameters in the CNN architecture, the authors used Bayesian optimization. To
generate the training data, the scalogram pattern of the PD signal was generated and trans-
formed using wavelets. Three different mother wavelets (Morse, Amor, and Bump) were
used. In addition, different training optimizers’ (including stochastic gradient descent with
momentums (SGDM), RMSprop, Adam, and Nadam) were used. The authors compared
the Bayesian-CNN (B-CNN) with the traditional CNN with no Bayesian optimization in
addition to other off-the-shelf deep learning architectures such as VGG19, Resnet 50, and
Googlenet. The average classification accuracy was used as the performance metric. The
study reported enhanced results for the B-CNN compared to the other architectures with
the Bump mother wavelet. The authors also tested the model on another 15-kV porcelain
insulator dataset, and the average classification accuracy showed optimistic results which
reflect the generalization capabilities of the B-CNN.

In general, the literature shows an inadequate amount of work that has been devoted
to train deep network architectures to classify and predict pollution levels non-intrusively.
All the work done is either focused on applying deep learning models to intrusive mea-
surement techniques [130,131] or applying classical machine learning using non-intrusive
techniques [132–135]. More research is needed to combine deep learning models with
non-intrusive approaches for monitoring, particularly those based on radiation type sen-
sors. Furthermore, the majority of the publications were focused on employing one type
of sensor for their diagnostics, although this may yield satisfactory results, but could be
further improved using multiple sensors. For example, ultrasonic sensors can detect both
low and high frequency surface discharges, but it might be difficult to detect internal
discharges. On the other hand, RF antennas can be utilized to detect internal and external
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high frequency discharges but cannot be used to detect low frequency discharges. Thus,
combining ultrasonic sensors and RF antenna can be used to detect and classify a wider
range of defects.

9. Conclusions

Monitoring of electrical insulation of high voltage apparatus is crucial for the reliable
operation of power systems. Such a high voltage apparatus includes but is not limited
to gas-insulated switchgear (GIS), transformers, cables, rotating machines, and outdoor
insulators. Extensive research has been done on the classification of sources of partial
discharge (PD), detection and localization of faults that take place in such apparatus,
and the quality and remaining lifetime of insulating material. Modern techniques have
been based on machine learning methods, where the input to such methods is composed
of manually-extracted features, i.e., feature extraction has required the intervention of
human experts. Deep learning, which is a branch of machine learning, has been used to
enhance the performance of PD classification, fault and defect detection, contamination
diagnosis of outdoor insulators, etc. This enhancement is attributed to the capability of
deep learning techniques to use raw data as the input to the classification model. In other
words, instead of using manually-extracted features, raw data such as PRPD patterns,
time-series waveforms, or images are used as the input to the deep learning systems. This
allows the classification model to be fully automated where the feature extracting stage is
integrated into the learning stage.

In this article, the potential of applying deep learning in assessing the health conditions
of different power system assets is highlighted. The following shortcomings/future needs
are identified:

1. Most published research employs training data generated in a laboratory environment
or by computer simulation that leads to achieving high classification accuracy. A
limitation is always presented when data are collected in a controlled lab environment
due to the fact that acquiring real data is expensive, intrusive, and time-consuming.
Hence, integrating research work in real online or offline systems is always appreciable
in order to incorporate all the uncertainties of such systems in the learning process of
deep-learning models. Moreover, future research should focus more on the utilization
of the use of a generative adversarial network in order to generate more data that
mimic real data instead of using lab data that present its own limitations. In addition,
future directions should focus more on the utilization of DL techniques such as one
shot learning [136] towards the issue of small datasets, which is a typical restriction in
the HV application.

2. Prior knowledge of the defect types and/or knowing the exact location of the defect is
far from the reality of the field conditions. Moreover, unknown sources and types of
external noise may hinder the deep learning algorithms capabilities to identify and/or
localize the defect type. Hence, future research needs to focus more on unsupervised
learning when it comes to high voltage applications.

3. More work should focus on the occurrence of multiple, simultaneous PDs or faults.
The reason is that, in real-life systems, multiple sources of faults or PDs can take place
at the same time. Therefore, more focus should be directed towards this problem.

4. One of the limitations of the reported research is the utilization of single sensors like
ultrasonic sensors, RF antenna, or IR camera. It is expected that the use of multiple
sensors can improve the overall classification accuracy when sensor fusion is applied
and different 1D and/or 2D signals are fed to the deep learning classifiers.

5. Integrating the state-of-the-art deep learning algorithms along with promising tech-
nologies like drones can improve the inspection efficiency of outdoor insulation
systems. With the current improved computational power of micro-controllers, real-
time condition monitoring and diagnostics of different defects are feasible using
drones and deep learning algorithms.
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6. Future research directions should focus on developing electrical insulation ageing
models using DL techniques that employ polarization methods data, such as RVM,
PDC, and FDS.

7. Using deep learning techniques in the high voltage application is still in the starting
stage. More work should be done on deciding on the best standard to specify the
optimal architecture per application. One aspect of this is utilizing the use of already
established hyperparameter optimization techniques such as the Bayesian optimiza-
tion technique. In addition, the industrial deployment of the DL algorithms should be
addressed, since this requires a different action for each scenario. If the deployment is
taking place on a local server, the aim would be to maximize the performance of the
algorithm while taking advantage of high-speed and high-end hardware resources.
This is different in case the deployment is to take place on a portable monitoring
device, where the restriction of space and speed will be presented.

8. With the emerging of the digital twin technologies, deep learning should be utilized
for different digital twins of assets, such as transformers or rotating machines. Digital
twins are virtual representations of the interactions and behavior that assets can
undergo in the physical world. More information on the application of digital twins
in power system assets can be found in [137–139].
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