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Abstract: Knowing the methane adsorption dynamic is of great importance for evaluating shale gas
reserves and predicting gas well production. Many experiments have been carried out to explore
the influence of many aspects on the adsorption dynamic of methane on shale rock. However, the
temperature effect on the adsorption dynamic as a potential enhanced shale gas recovery has not been
well addressed in the publications. To explore the temperature effect on the adsorption dynamic of
methane on gas shale rock, we conducted experimental measurement by using the volumetric method.
We characterized the adsorption dynamic of methane on gas shale powders and found that the curves
of pressure response at different pressure steps and temperatures all have the same tendency to
decrease fast at first, then slowly in the middle and remain stable at last, indicating the methane
molecules are mainly adsorbed in the initial stage. Methane adsorption dynamic and isotherm can
be well fitted by the Bangham model and the Freundlich model, respectively. The constant z of
the Bangham model first decreases and then increases with equilibrium pressure increasing at each
temperature, and it decreases with temperature increasing at the same pressure. The adsorption
rate, constant k of the Bangham model, is linearly positively correlated with the natural log of the
equilibrium pressure, and it decreases with temperature increasing at the same pressure. Constant
K and n of the Freundlich model all decrease with temperature increasing, indicating that low
temperatures are favorable for methane adsorption on shale powders, and high temperatures can
obviously reduce constant K and n of the Freundlich model. Finally, we calculated isosteric enthalpy
and found that isosteric enthalpy is linearly positively correlated with the adsorption amount. These
results will be profoundly meaningful for understanding the mechanism of methane adsorption
dynamic on shale powders and provide a potential pathway to enhance shale gas recovery.

Keywords: adsorption dynamic; Longmaxi shale; Bangham model; Freundlich model; adsorption
isotherm; isostatic enthalpy

1. Introduction

Shale gas, as one of the most promising unconventional natural gas resources, has
attracted increasing attention in recent years. As we know, adsorbed gas is a major type
of shale gas stored in shale gas reservoir [1,2], which distributes from 20% to 85% of the
total gas in shale gas reservoirs [3,4]. Therefore, characterizing the adsorption dynamic
and knowing the temperature influence is of great significance for exploring the methane
adsorption mechanism on gas shale.

In recent years, the experiments of methane adsorption dynamic have been conducted
in many publications by using volumetric and gravimetric methods [5–7]. Gas-in-place
evaluation can be accurately calculated based on the experimental measurements from
laboratory [8]. Many scholars have pointed out that the methane adsorption on the gas
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shale is closely correlated with kerogen types [9], TOC [10], mineral constituents of shale
rock [11], pore structure [12,13], temperature [14] and moisture [15]. At the same time, the
characteristics of methane adsorption and desorption are always revealed by fitting adsorp-
tion or desorption equations, such as the Langmuir model [16], Freundlich model [17,18]
and modified Dubinin−Radushkevich model [19].

Meanwhile, methane adsorption dynamics have attracted attention from many schol-
ars [1,20–22]. Yuan et al. [23] investigated the pore structure characteristics of Lower
Silurian shale and the diffusion behavior of methane molecules, as well as the shale sample
size influence on the adsorption and diffusion of methane. Chen et al. [24] studied the
mechanisms of methane adsorption in terms of methane adsorption thermodynamics under
the condition of high pressure. Rani et al. [25] characterized the adsorption dynamic of
methane according to the unipore model and the modified unipore model, respectively.
Dasani et al. [8] pointed out the adsorption dynamic of methane mixed with ethane in
gas shale samples. Yang et al. [26] published a dynamic adsorption–diffusion equation
after dynamic adsorption measurements under the certain condition of a constant pressure
and then compared with the instantaneous adsorption–diffusion equation and diffusion
equations. However, the adsorption dynamic of methane on Longmaxi gas shale is not still
well characterized, and the temperature influence on the methane adsorption dynamic is
also not clear.

In this study, for better understanding the temperature effect on methane adsorption
dynamic, we conducted the experimental measurements of adsorption dynamic by using
the volumetric method at different temperatures, as well as characterizing the adsorption
dynamic for methane on gas shale powders and fitting the experimental data by using the
Bangham model and the Freundlich model. Finally, we explored the temperature effect
on the adsorption dynamic equation, isotherm equation and adsorption thermodynam-
ics. These results are profoundly meaningful for advancing the mechanism of shale gas
adsorption dynamic in shale reservoirs.

2. Experimental Design
2.1. Shale Samples

The shale samples from the lower of Silurian Longmaxi formation in northeast
of Chongqing were crushed and then went through sieves with diameters of 0.25 and
0.125 mm in sequence. The shale powders between 0.25 and 0.125 mm in diameter were
dried in an oven at a constant temperature of 60 ◦C, but some water may still have been
trapped in the pores of shale samples. An amount of 130 g of gas shale powders was pre-
pared for methane adsorption dynamic test. The density of shale samples was 2.56 g/cm3.
Based on the experimental results of low-pressure nitrogen adsorption/desorption, the
specific surface area was 26.58 m2/g, and the pore sizes of the shale sample were mainly
distributed in the broad mesoporous region. According to X-ray diffraction, the shale sam-
ples mainly contained quartz, clay mineral, dolomite and plagioclase, and their contents
were 46.2%, 32.3%, 9.9% and 5.1%, respectively.

2.2. Experimental Apparatus

An experimental apparatus is shown in Figure 1 to test the pressure response during
the dynamic process of methane adsorption on shale powders, which was designed using
the volumetric method and consisted of many parts, such as methane tank, nitrogen tank,
gas compressor, vacuum pump, pressure transducers, reference cell, sample cell, water
bath, computer and other valves. The potentiometric pressure transducers were used in
this work, and their maximum pressure was 40 MPa, and the precision was 0.25% of the
full-scale value. The water bath could work from an indoor temperature to 100 ◦C, and
the control precision was achieved to 0.2 ◦C. Methane in the methane tank was used for
the adsorption dynamic test on the shale powders, and nitrogen contained in the nitrogen
tank was applied to check the leak of the experimental setup and obtain the void volume
of shale powders loaded in the sample cell. To make the experimental temperature stable, a
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water bath with a temperature controller was added. To read the pressure response during
the experimental procedure, pressure transducers were used, and the data were recorded
using a computer.
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2.3. Procedures

To characterize the adsorption dynamic of methane on gas shale, the procedures were
shown as follows:

1. Preparation. An amount of 130.00 g of shale powders, whose diameter was between
0.125 and 0.25 mm, was loaded into the sample cell and then heated and maintained
at 30, 40 or 50 ◦C, respectively.

2. Leak check of experimental apparatus. To check the leak of the apparatus at a cer-
tain pressure and temperature, nitrogen was used until the pressure reached and
maintained stability for two hours, and the temperature remained stable.

3. Free volume determination. Free volume is defined as the space between the shale
powders and within the powders and was calculated according to Boyle’s law by
using the different equilibrium pressures.

4. Apparatus vacuum. The apparatus was vacuumed down to 10−5 Pa for 24 h to
completely remove the gas molecules from the shale powders.

5. Adsorption dynamic determination. After the pressure of the reference cell full of
pure methane remained stable, the reference cell and sample cell were connected by
opening the valve between them. Then, the two stable pressures before and after the
methane expansion were read and recorded. This procedure should be repeated until
an equilibrium pressure of about 30 MPa is reached. The pressure response during
the dynamic process of methane adsorption was read and recorded.

3. Mathematical Model
3.1. Dynamic Model

The Bangham model is widely used for modeling methane adsorption dynamic, and
it is expressed as the following equation [24,27–29]:

qt = qe

(
1− e−ktz

)
(1)

where z is a constant, and k is the adsorption rate of the Bangham equation.
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Equation (1) can be shown as the following formula:

− ln
qe − qt

qe
= ktz (2)

The linear formula of the Bangham equation can be shown as follows:

ln(− ln
qe − qt

qe
) = ln(k) + zln(t) (3)

From Equation (3), the relationship between ln (− ln qe−qt
qe

) and ln(t) should be fitted
into linear equation, and k and z can be obtained according to the y-intercept of ln(k) and
the slope of z.

3.2. Isotherm Model

The Freundlich model is a classical isothermal adsorption model and regarded as an
extension of the Henry model [30]. The equation can be expressed as follows:

V = KPn (4)

where V is the adsorption capacity per unit mass samples (cc/g), K is the Freundlich
constant related to a measure of adsorption capacity (cc/g/MPa), and P is the equilibrium
pressure (MPa). n is a constant, the strength of the adsorption. Some articles [31,32] used
the following linear equation, which is rearranged from Equation (4):

lg(V) = n·lg(P) + lg(K) (5)

Additionally, the log-log plot of V versus P should be a straight line with the slope of
n and the y-intercept of lg(K).

3.3. Absolute Adsorption Amount

The adsorption amount through a measurement test can be defined as excess ad-
sorption amount, and the absolute adsorption amount can be converted as the following
equation [33]:

nabs =
nexcess

1− ρgas/ρads
(6)

where nabs is the absolute amount of methane adsorption, cc/g; nexcess is the excess amount
of methane adsorption, cc/g; ρgas is the density of free phase gas, g/cc; and ρads is the
density of adsorbed phase gas in g/cc, which is determined as the value of 0.527 g/cc [34]
and used in this study.

4. Results and Discussion
4.1. Dynamic Characteristics of Methane Adsorption

Figures 2–4 show the plots of pressure response and adsorption versus time under
different pressure step at 30, 40 or 50 ◦C, respectively. Obviously, it is shown that the
pressure drops fast at first, then slowly in the middle and reaches and maintains stability
at last. Meanwhile, the absolute amount of methane adsorption increases quickly initially,
then slowly in the middle and reaches a constant at last. These two curves, which describe
the adsorption dynamic of methane, have similar characteristics to the other studies [8,24],
indicating that the methane molecules are mainly adsorbed in the initial stage.
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Figure 2. Methane adsorption dynamic on shale sample at seven pressure steps and 30 ◦C.
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Figure 3. Methane adsorption dynamic on shale sample at six pressure steps and 40 ◦C.

To be more specific, at the beginning, most of the active surface sites are vacant and
favorable for methane molecules adsorption on shale powders because the adsorption rate
is positively correlated with the available vacancies [25]. Furthermore, at first, the high
concentration driving force between the methane molecules spurs the mass free phase gas
to the adsorbed phase gas. Additionally, in the middle, the repulsion of methane molecules
gradually becomes the major force to determine the adsorption dynamic of methane
molecules [35]. Therefore, the tendency of the adsorption dynamic curves demonstrates
the synthetic influence of the high concentration driving force and repulsion of methane
molecules on the adsorption dynamic of methane molecules.
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Figure 4. Methane adsorption dynamic on shale sample at six pressure steps and 50 ◦C.

4.2. Dynamic Model Fitting

Figure 5 shows the continuous change of ln (− ln
(

qe−qt
qe

)
) versus ln(t) under seven

pressure steps using Equation (3) based on the Bangham model at 30 ◦C. It is clearly shown
that ln (− ln

(
qe−qt

qe

)
) increases linearly with the increasing ln(t) because the correlation

coefficients (R2), respectively, are 0.9253, 0.9418, 0.9435, 0.9745, 0.9706, 0.9655 and 0.8585, as
listed in Table 1, with the average of 0.9400. Therefore, qt can be well fitted with t by using
the Bangham model at each pressure step.
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Table 1. The results of fitting methane adsorption dynamic using Bangham model at 30 ◦C.

NO P (MPa) Fitting Equation R2 Model k z

1 3.86 y = 0.1475x + 0.8168 0.9253 qt = 1.3694(1 − e−2.2632tˆ0.1457) 2.2632 0.1457
2 7.76 y = 0.1295x + 1.0038 0.9418 qt = 2.4034(1 − e−2.7286tˆ0.1295) 2.7286 0.1295
3 11.10 y = 0.1259x + 1.0906 0.9435 qt = 3.1632(1 − e−2.9761tˆ0.1259) 2.9761 0.1259
4 15.51 y = 0.1076x + 1.1385 0.9745 qt = 4.2530(1 − e−3.1221tˆ0.1076) 3.1221 0.1076
5 19.83 y = 0.1145x + 1.2193 0.9706 qt = 5.1712(1 − e−3.3848tˆ0.1145) 3.3848 0.1145
6 24.72 y = 0.1244x + 1.2742 0.9655 qt = 6.2041(1 − e−3.5758tˆ0.1244) 3.5758 0.1244
7 30.52 y = 0.1379x + 1.3087 0.8585 qt = 7.1357(1 − e−3.7014tˆ0.1379) 3.7014 0.1379

The fitting equations, the Bangham model, the adsorption rate constant and the
constant z are listed in Table 1. At different pressure steps, the adsorption rate constants
are 2.2632, 2.7286, 2.9761, 3.1221, 3.3848, 3.5758 and 3.7014, respectively, indicating that the
adsorption rate constant increases with the equilibrium pressure increasing. The constant z,
respectively, is 0.1457, 0.1295, 0.1259, 0.1076, 0.1145, 0.1244 and 0.1379, revealing that z (a
constant of the Bangham model) first decreases and then increases with the equilibrium
pressure increasing.

Figure 6 shows the relationship between ln (− ln
(

qe−qt
qe

)
) and ln(t) under six pressure

steps by using Equation (3) at 40 ◦C. It can be seen that ln (− ln
(

qe−qt
qe

)
) increases linearly

with ln(t) increasing because the correlation coefficients at each pressure step, respectively,
are 0.9938, 0.9430, 0.9411, 0.9600, 0.9512 and 0.9355, as listed in Table 2, with the average of
0.9541. Therefore, the Bangham model can be well fitted in the relationship between qt and
t for different pressure steps.

Table 2. The results of fitting methane adsorption dynamic using Bangham model at 40 ◦C.

NO P (MPa) Fitting Equation R2 Model K z

1 3.03 y = 0.1993x + 0.5350 0.9938 qt = 0.9809(1 − e−1.7074tˆ0.1993) 1.7074 0.1993
2 6.99 y = 0.1795x + 0.9028 0.9430 qt = 1.7522(1 − e−2.4665tˆ0.1795) 2.4665 0.1795
3 11.34 y = 0.1469x + 1.0387 0.9411 qt = 2.6797(1 − e−2.8255tˆ0.1469) 2.8255 0.1469
4 18.37 y = 0.1240x + 1.1319 0.9600 qt = 4.3562(1 − e−3.1015tˆ0.1240) 3.1015 0.1240
5 26.39 y = 0.1544x + 1.2356 0.9512 qt = 5.9546(1 − e−3.4404tˆ0.1544) 3.4404 0.1544
6 29.83 y = 0.2012x + 1.2358 0.9355 qt = 6.5604(1 − e−3.4411tˆ0.2012) 3.4411 0.2012
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The fitting results, including the fitting equations, the Bangham model, the adsorption
rate constant and the constant z are listed in Table 2. At six pressure steps, the adsorption
rate constants are 1.7074, 2.4665, 2.8255, 3.1015, 3.4404 and 3.4411, respectively, indicating
that k (adsorption rate constant) increases with the equilibrium pressure increasing. The
constant z, respectively, is 0.1993, 0.1795, 0.1469, 0.1240, 0.1544 and 0.2012, revealing that z
(a constant of the Bangham model) first decreases and then increases with the equilibrium
pressure increasing.

Figure 7 shows the plots of ln (− ln
(

qe−qt
qe

)
) and ln(t) under six pressure steps using

Equation (3) at 50 ◦C. It is clearly shown that ln (− ln
(

qe−qt
qe

)
) increases linearly with ln(t)

increasing because the correlation coefficients at each pressure step, respectively, are 0.9170,
0.9743, 0.9864, 0.9610, 0.9411 and 0.9964, as listed in Table 3, with the average of 0.9627.
Thus, qt can be well fitted with t by using the Bangham model for six pressure steps.
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Table 3. The results of fitting methane adsorption dynamic using Bangham model at 50 ◦C.

NO P(MPa) Fitting Equation R2 Model k z

1 3.24 y = 0.2086x + 0.3231 0.9170 qt = 0.8787(1 − e−1.3814tˆ0.2086) 1.3814 0.2086
2 8.12 y = 0.1791x + 0.6864 0.9743 qt = 1.7123(1 − e−1.9866tˆ0.1791) 1.9866 0.1791
3 14.15 y = 0.1508x + 0.9378 0.9864 qt = 3.035(1 − e−2.5544tˆ0.1508) 2.5544 0.1508
4 19.76 y = 0.1415x + 1.0473 0.9610 qt = 4.4132(1 − e−2.8499tˆ0.1415) 2.8499 0.1415
5 26.20 y = 0.1514x + 1.1314 0.9411 qt = 5.206(1 − e−3.1000tˆ0.1314) 3.1000 0.1514
6 30.16 y = 0.1932x + 1.1660 0.9964 qt = 5.9513(1 − e−3.2091tˆ0.1932) 3.2091 0.1932
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Table 3 lists the fitting results, including the fitting equations, the Bangham model, the
adsorption rate constant and the constant z. K (adsorption rate constant) at six pressure
steps, respectively, is 1.3814, 1.9866, 2.5544, 2.8499, 3.1000 and 3.2091, indicating that k
increases with the equilibrium pressure increasing. The constant z (a constant of the
Bangham model), respectively, is 0.2086, 0.1791, 0.1508, 0.1415, 0.1514 and 0.1932, revealing
that z first decreases and then increases with the equilibrium pressure increasing.

4.3. Effect of Temperature on Constant z

To investigate the temperature influence on the adsorption dynamic of methane on
shale powders, the constant z of the Bangham model at 30, 40 and 50 ◦C is plotted versus
the equilibrium pressure, as shown in Figure 8. Obviously, it is shown that the curves of the
constant z at different temperature conditions have a similar tendency to decrease first and
then increase with the equilibrium pressure increasing. Furthermore, at the same pressure
point, the higher the temperature, the smaller the constant z, indicating that temperature
can obviously reduce the constant z. Therefore, the constant z first decreases and then
increases with the equilibrium pressure increasing at each temperature, and it decreases
with the temperature increasing at the same pressure.
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4.4. Effect of Temperature on Adsorption Rate Constant

The plot of the adsorption rate constant versus equilibrium pressure at 30, 40 and
50 ◦C is shown in Figure 9 to illustrate the temperature effect on the adsorption dynamic
of methane molecules on shale powders. Obviously, it is shown that the adsorption
rate constants all slowly drop with the equilibrium pressure increasing under different
temperature conditions, revealing that it is much easier for methane molecules to adsorb
on gas shale powders at a higher pressure. This is mainly because at a higher pressure
condition, the high concentration driving force is the main controlling force that can
promote the adsorption rate of methane molecules. Moreover, at the same pressure point, a
smaller Bangham adsorption rate constant is attained due to a higher temperature, which
indicates low temperatures are favorable for methane adsorption on shale powders. This is
mainly because the methane adsorption dynamic on shale powders is exothermic.

Furthermore, to quantitatively analyze the relationship between the adsorption rate
constant and the equilibrium pressure, the linear correlation relationships between k (ad-
sorption rate constant) and ln(P) at 30, 40 and 50 ◦C are plotted in a semi-logarithmic
coordinate system, as shown in Figure 10. The fitted results are, respectively, expressed
as follows:

30 ◦C k = 0.6973ln(P) + 1.2983 R2 = 0.9932 (7)

40 ◦C k = 0.7583ln(P) + 0.9269 R2 = 0.9924 (8)
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50 ◦C k = 0.8395ln(P) + 0.3343 R2 = 0.9937 (9)
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The correlation coefficients at 30, 40 and 50 ◦C, respectively, are 0.9932, 0.9924 and
0.9937, indicating that the adsorption rate constant is linearly positively correlated with the
natural log of the equilibrium pressure.

4.5. Effect of Temperature on Adsorption Isotherm

To compare the difference in the adsorption amount at different temperatures, the
adsorption amounts under different equilibrium pressures at 30, 40 and 50 ◦C are plotted
versus the equilibrium pressure in Figure 11. It is clearly shown that the adsorption amount
under the different equilibrium pressure at 30 ◦C is the biggest, followed by that of 40 ◦C
and 50 ◦C, which indicates low temperatures are favorable for methane adsorption on shale
powders. Figure 12 shows the plot of adsorption amount versus equilibrium pressure in
a logarithmic coordinate system at each stable temperature. Obviously, it is shown that
the adsorption amount is linearly positively correlated with the equilibrium pressure. The
fitted results, including the fitted equation, the correlation coefficient (R2), the Freundlich
model, the Freundlich constant K and the constant n, are listed in Table 4. The correlation
coefficients at 30, 40 or 50 ◦C, respectively, are 0.9945, 0.9987 and 0.9925, indicating that
the relationship between the adsorption amount and the equilibrium pressure can be well
fitted by the Freundlich model. K (Freundlich constant) at 30, 40 and 50 ◦C, respectively, is
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5.1487, 2.1062 and 1.7857, indicating that K decreases with the temperature increasing. The
constant n, respectively, is 0.2182, 0.2120 and 0.1967, revealing that the constant n decreases
with the temperature increasing. Therefore, low temperatures are favorable for methane
adsorption on shale powders, and high temperatures can obviously reduce constant K and
n of the Freundlich model.

Energies 2022, 15, x FOR PEER REVIEW 12 of 17 
 

 

30 °C      k = 0.6973ln(P) + 1.2983     R2 = 0.9932 (7)

40 °C      k = 0.7583ln(P) + 0.9269     R2 = 0.9924 (8)

50 °C      k = 0.8395ln(P) + 0.3343     R2 = 0.9937 (9)

The correlation coefficients at 30, 40 and 50 °C, respectively, are 0.9932, 0.9924 and 
0.9937, indicating that the adsorption rate constant is linearly positively correlated with 
the natural log of the equilibrium pressure.  

 
Figure 10. The relationship between adsorption rate constant and equilibrium pressure. 

4.5. Effect of Temperature on Adsorption Isotherm 
To compare the difference in the adsorption amount at different temperatures, the 

adsorption amounts under different equilibrium pressures at 30, 40 and 50 °C are plotted 
versus the equilibrium pressure in Figure 11. It is clearly shown that the adsorption 
amount under the different equilibrium pressure at 30 °C is the biggest, followed by that 
of 40 °C and 50 °C, which indicates low temperatures are favorable for methane adsorp-
tion on shale powders.  

 
Figure 11. Adsorption amount versus equilibrium pressure at different temperature. 

0.0

1.0

2.0

3.0

4.0

1 10 100A
ds

or
pt

io
n 

ra
te

 c
on

st
an

t (
m

in
-z ) 

 

Equilibrium pressure (MPa)

30℃
40℃
50℃

0.0

2.0

4.0

6.0

8.0

0 10 20 30 40

A
ds

or
pt

io
n 

am
ou

nt
 (c

c/
g)

  

Equilibrium pressure (MPa)

30℃
40℃
50℃

Figure 11. Adsorption amount versus equilibrium pressure at different temperature.

Energies 2022, 15, x FOR PEER REVIEW 13 of 17 
 

 

Figure 12 shows the plot of adsorption amount versus equilibrium pressure in a log-
arithmic coordinate system at each stable temperature. Obviously, it is shown that the 
adsorption amount is linearly positively correlated with the equilibrium pressure. The 
fitted results, including the fitted equation, the correlation coefficient (R2), the Freundlich 
model, the Freundlich constant K and the constant n, are listed in Table 4. The correlation 
coefficients at 30, 40 or 50 °C, respectively, are 0.9945, 0.9987 and 0.9925, indicating that 
the relationship between the adsorption amount and the equilibrium pressure can be well 
fitted by the Freundlich model. K (Freundlich constant) at 30, 40 and 50 °C, respectively, 
is 5.1487, 2.1062 and 1.7857, indicating that K decreases with the temperature increasing. 
The constant n, respectively, is 0.2182, 0.2120 and 0.1967, revealing that the constant n 
decreases with the temperature increasing. Therefore, low temperatures are favorable for 
methane adsorption on shale powders, and high temperatures can obviously reduce con-
stant K and n of the Freundlich model. 

 
Figure 12. The relationship between adsorption rate constant and equilibrium pressure. 

Table 4. The results of fitting methane adsorption isotherm at different temperatures. 

NO T (℃) Fitting Equation R2 Freundlich Model K n 
1 30 y = 0.2182x + 0.7117 0.9945 V = 5.1484P0.2182 5.1487 0.2182 
2 40 y = 0.2120x + 0.3235 0.9987 V = 2.1062P0.2120 2.1062 0.2120 
3 50 y = 0.1967x + 0.2518 0.9925 V = 1.7857P0.1967 1.7857 0.1967 

4.6. Effect of Temperature on Isostatic Enthalpy 
The isostatic enthalpy of methane adsorption is derived from the Van’t Hoff equa-

tion, and it is expressed as follows [16]: ൬𝜕ln𝑃𝜕𝑇 ൰ = △ 𝐻R𝑇ଶ  (10)

where P is the pressure in kPa, T is the temperature in K, n is the absolute adsorption 
amount, R is the ideal gas constant in kJ/mol, and △ 𝐻 is the enthalpy of adsorption in 
kJ/mol.  

Equation (10) can be integrated and rearranged, and the linear form of this model can 
be expressed as ln𝑃 = 𝑎 ଵ் +b (11)

where 𝑎 = − ∆ுୖ, b = ∆ுୖ ଵబ + lnP. The plot of lnP versus 1/T should be fitted as a linear 
equation, and then, ∆𝐻 can be calculated according to the slope of a.  

0.1

1.0

10.0

1 10 100

A
ds

or
pt

io
n 

am
ou

nt
 (c

c/
g)

  

Equilibrium pressure (MPa)

30℃
40℃
50℃

Figure 12. The relationship between adsorption amount and equilibrium pressure.

Table 4. The results of fitting methane adsorption isotherm at different temperatures.

NO T (◦C) Fitting Equation R2 Freundlich Model K n

1 30 y = 0.2182x + 0.7117 0.9945 V = 5.1484P0.2182 5.1487 0.2182
2 40 y = 0.2120x + 0.3235 0.9987 V = 2.1062P0.2120 2.1062 0.2120
3 50 y = 0.1967x + 0.2518 0.9925 V = 1.7857P0.1967 1.7857 0.1967

4.6. Effect of Temperature on Isostatic Enthalpy

The isostatic enthalpy of methane adsorption is derived from the Van’t Hoff equation,
and it is expressed as follows [16]: (

∂ ln P
∂T

)
n
=
4H
RT2 (10)
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where P is the pressure in kPa, T is the temperature in K, n is the absolute adsorption
amount, R is the ideal gas constant in kJ/mol, and 4H is the enthalpy of adsorption in
kJ/mol.

Equation (10) can be integrated and rearranged, and the linear form of this model can
be expressed as

ln P = a
1
T
+ b (11)

where a = −∆H
R , b = ∆H

R
1

T0
+ lnP0. The plot of lnP versus 1/T should be fitted as a linear

equation, and then, ∆H can be calculated according to the slope of a.
Figure 13 shows the plot of lnP versus n (adsorption amount) at 30, 40 or 50 ◦C. The

fitted results, including the temperature, the fitting equation, the correlation coefficient
(R2) and the parameters of the fitted equation, are listed in Table 5. It is clearly shown that
there exists a well-linear relationship between lnP and n because the correlation coefficients,
respectively, are 0.9471, 0.9142 and 0.9205, with the average of 0.9273. The slopes of the
fitted equation increase with the temperature increasing. Moreover, by using the fitted
equation listed in Table 5, the values of lnP at different temperatures are calculated and
shown in Table 6.
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Table 5. Fitting results of lnP and n at different temperatures.

T (◦C) Fitting Equation R2 Slop y-Intercept

30 y = 7.5569x + 8.0708 0.9471 7.5569 8.0708
40 y = 8.2189x + 8.0551 0.9142 8.2189 8.0551
50 y = 8.7860x + 8.0984 0.9205 8.7860 8.0984

Table 6. Calculation results of lnP at different temperatures.

n (mmol/g)
lnP

30 ◦C 40 ◦C 50 ◦C

0.05 8.45 8.47 8.54
0.10 8.83 8.88 8.98
0.15 9.20 9.29 9.42
0.20 9.58 9.70 9.86
0.25 9.96 10.11 10.29
0.30 10.34 10.52 10.73
0.35 10.72 10.93 11.17
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The relationship of lnP and 1/T under different given adsorption amounts is shown in
Figure 14, and the fitted results, including the adsorption amount, the fitted equation, the
correlation coefficient (R2) and the parameters of the fitted equation, are listed in Table 7.
It can be seen that lnP is linearly positively correlated with 1/T because R2 is distributed
between 0.8781 and 0.9974, with the average of 0.9705. Furthermore, isostatic enthalpy
can be obtained, and the plot of isostatic enthalpy versus adsorption amount is shown
in Figure 15. Obviously, it is shown that there exists a good linear relationship between
isostatic enthalpy and the adsorption amount, indicating that isostatic enthalpy is linearly
positively correlated with the adsorption amount.
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5. Conclusions

The curves of the pressure response at different pressure steps and temperatures all
have the same tendency to drop fast at first, then slowly in the middle and remain stable at
last, and the adsorption amount increases quickly at first, then slowly in the middle and
remains constant at last, revealing that the methane molecules are mainly adsorbed in the
initial stage.

The adsorption amount (qt) can be well fitted with time (t) by using the Bangham
model at each pressure step. The constant z first decreases and then increases with the
equilibrium pressure increasing at each temperature, and it decreases with the temperature
increasing at the same pressure. The adsorption rate constant is linearly positively corre-
lated with the natural log of the equilibrium pressure, and it decreases with the temperature
increasing at the same pressure.

The Freundlich model can well fit the relationship between the adsorption amount and
the equilibrium pressure. The constant K and n of the Freundlich model all decrease with
the temperature increasing, indicating that the low temperature is favorable for methane
adsorption on shale powders, and the high temperature can obviously reduce the constant
K and n of the Freundlich model.

There exists a well-linear relationship between lnP and n at different temperatures.
lnP is linearly positively correlated with 1/T under different given adsorption amounts.
Isostatic enthalpy is linearly positively correlated with the adsorption amount.
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