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Abstract: The supply of electric vehicles (EVs), charging infrastructure, and the demand for chargers
are rapidly increasing owing to global low-carbon and eco-friendly policies. As the maintenance
of charging infrastructure varies depending on the manufacturer, fault detection and maintenance
cannot be conducted promptly. Consequently, user inconvenience increases and becomes an obstacle
to EV distribution. Recognizing charger failure after occurrence is a management method that is not
economically effective in terms of follow-up. In this study, a data collection system was developed
to diagnose EV fast-charger failure remotely in advance. The power module failure-prediction
and management system consists of an AC sensor, DC sensor, temperature and humidity sensor,
communication board, and data processing device. Furthermore, it was installed inside the fast
charger. Four AC inputs, four DC outputs, and temperature and humidity data were collected
for 12 months. Using the collected data, the power conversion efficiency was calculated and the
power module status was diagnosed. In addition, a multilayer perceptron neural network was used
as an algorithm for training the classification model. Charging patterns according to normal and
failure were trained and verified. Based on results, the pre-failure diagnosis system demonstrated an
accuracy of 97.2%.

Keywords: fast charger; power module; power conversion efficiency; maintenance; diagnostic method;
current sensor

1. Introduction

The supply of electric vehicles (EVs) is expanding owing to the implementation of
global eco-friendly and low-carbon policies [1–4]. Accordingly, fast charging and mobile
charging infrastructure are rapidly expanding, and improved technology is promptly being
developed [5–7]. However, it is difficult to maintain chargers because of several installation
points and different maintenance methods owing to the influence of the surrounding
environment [8].

For example, economic and time losses are major problems in the fault-detection and
maintenance method because it is time consuming to diagnose the fault of the EV charger,
prepare the necessary parts, and replace parts. Additionally, it is challenging to generalize
and quantify failure types because of the different EV charger manufacturers [9,10]. Con-
sequently, it is difficult to provide charging services to users owing to decreases in the
acceptability of EV users and quality of charging services [11,12].

To generalize the main causes of failure in fast chargers, fast charger after-sales service
(A/S) history in the Jeju area has been investigated. In particular, causes of failures,
such as communication failure, cable failure/damage, display failure, server error, and
power module aging, have been investigated. The most frequent A/S maintenance history
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indicates a decrease in the amount of charge owing to aging of the power module of the
fast charger. The power module, as one of the main parts of a fast charger, is expensive
and has a short lifespan; therefore, proper management and a pre-failure diagnosis system
are required. A fast charger is a combination of four to five submodules with a capacity
of 10 to 12.5 kW, and the commonly used charger is a 50 kW-class fast charger [13–15]. If
one of these submodules fail, the overall operation is not affected; however, the output is
reduced from 50 kW to 40 kW or less, and the charging speed is decreased, resulting in
user inconvenience and economic loss. In existing research, equipment and systems for
post-inspection of power conversion module failure have been developed; however, in
post-inspection, operation efficiency is still a problem, which is caused by not having an
appropriate A/S.

To solve this maintenance problem, in this study, a data collection system was estab-
lished to diagnose the failure of the EV fast charger in advance. In addition, based on the
collected data, a system that can remotely diagnose the failure of the power module of
a fast charger was developed. Consequently, a system was established that can provide
an environment in which the EV charger can be operated economically and efficiently by
minimizing the downtime of the charger.

2. Materials and Methods
2.1. Development of Electric Vehicle Fast-Charger Power Module Failure-Prediction and
Management System

For the fast charger, the power module failure-prediction and management system
was implemented and verified using the JC-9933-TM2KD-3 3 ch 50 kW model of JoongAng
Inc. installed in the Wash Zone, Yeonbuk-ro, Jeju Special Self-Governing Province, Korea.
The detailed specifications of the fast charger are summarized in Table 1.

Table 1. Detailed specification of fast charger.

EV Fast Charger Specifications

Energies 2022, 15, 5056 2 of 12 
 

 

tory indicates a decrease in the amount of charge owing to aging of the power module of 

the fast charger. The power module, as one of the main parts of a fast charger, is expen-

sive and has a short lifespan; therefore, proper management and a pre-failure diagnosis 

system are required. A fast charger is a combination of four to five submodules with a 

capacity of 10 to 12.5 kW, and the commonly used charger is a 50 kW-class fast charger 

[13–15]. If one of these submodules fail, the overall operation is not affected; however, the 

output is reduced from 50 kW to 40 kW or less, and the charging speed is decreased, re-

sulting in user inconvenience and economic loss. In existing research, equipment and 

systems for post-inspection of power conversion module failure have been developed; 

however, in post-inspection, operation efficiency is still a problem, which is caused by 

not having an appropriate A/S. 

To solve this maintenance problem, in this study, a data collection system was es-

tablished to diagnose the failure of the EV fast charger in advance. In addition, based on 

the collected data, a system that can remotely diagnose the failure of the power module 

of a fast charger was developed. Consequently, a system was established that can pro-

vide an environment in which the EV charger can be operated economically and effi-

ciently by minimizing the downtime of the charger. 

2. Materials and Methods 

2.1. Development of Electric Vehicle Fast-Charger Power Module Failure-Prediction and 

Management System 

For the fast charger, the power module failure-prediction and management system 

was implemented and verified using the JC-9933-TM2KD-3 3 ch 50 kW model of 

JoongAng Inc. installed in the Wash Zone, Yeonbuk-ro, Jeju Special Self-Governing 

Province, Korea. The detailed specifications of the fast charger are summarized in Table 

1. 

Table 1. Detailed specification of fast charger. 

EV Fast Charger Specifications 

 

Charging method - AC (3-phase)/CHAdeMO/CCS TYPE 1 

Input 
- Three-phase, four-wire AC380V, 60 Hz, 

50 kVA 

Output 
- AC: AC380V, 63 A, 40 kW 

- DC: 150 ~ 1000 VDC, Max 125 A, 50 kW 

Efficiency/ 

Power Factor 
- 95%/0.95 

Environmental  

conditions 

- IP54, Temperature: −25~50 °C 

- Humidity: 20~95% (no dew formation) 

Product  

Certification 
- KC Certification, Type Certification 

Safety functions 

- Overvoltage, overcurrent, undervolt-

age, leakage current, fusion protection, 

ground connection 

The power module failure-prediction and management system consists of a current 

sensor (FS9L8, FDS20L1, Fine-trans, Korea), temperature and humidity sensor 

(CM2305-WP, C-linktech, Korea), communication board (Arduino Due, Arduino, Italia), 

and data-processing device (Raspberry Pi, Raspberry-Pi, UK). Furthermore, it was in-

stalled inside the fast charger, as shown in Figure 1. 

Charging method - AC (3-phase)/CHAdeMO/CCS TYPE 1

Input - Three-phase, four-wire AC380V, 60 Hz,
50 kVA

Output - AC: AC380V, 63 A, 40 kW
- DC: 150~1000 VDC, Max 125 A, 50 kW

Efficiency/Power
Factor

- 95%/0.95

Environmental
conditions

- IP54, Temperature: −25~50 ◦C
- Humidity: 20~95% (no dew formation)

Product
Certification - KC Certification, Type Certification

Safety functions
- Overvoltage, overcurrent, undervoltage,

leakage current, fusion protection,
ground connection

The power module failure-prediction and management system consists of a current
sensor (FS9L8, FDS20L1, Fine-trans, Korea), temperature and humidity sensor (CM2305-
WP, C-linktech, Korea), communication board (Arduino Due, Arduino, Italia), and data-
processing device (Raspberry Pi, Raspberry-Pi, UK). Furthermore, it was installed inside
the fast charger, as shown in Figure 1.
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Figure 1. EV fast-charger power module failure-prediction and management system: (a) overview;
(b) overall installation; (c) current sensor; (d) data-processing board.

By developing a communication protocol for collecting the environmental information
of the charger, we developed a system that can provide real-time information such as
charging station location, charger type, usage status, power module input/output current,
temperature, and humidity. For application to chargers of various manufacturers, we
designed and implemented a system for sending and sharing abnormal information data of
chargers to the server through a linkable application programming interface (API) format.
Table 2 lists the sensor types and main specifications used to develop a fast-charger power
module failure-prediction and management system.

Table 2. Detailed specification of fast-charger power module failure-prediction and management system.

Classification Data Collection
Type

Model Name
(Manufacturer) Main Specifications

AC current
sensor Input current (A)

FS9L8
(Fine-trans,

Korea)

- Measuring current range:
1~80 A

- Measurement accuracy: ±0.1%

DC current
sensor

Output current
(A)

FDS20L1
(Fine-trans,

Korea)

- Measuring current range:
1~70 A

- Measurement accuracy: ±0.2%

Temperature/
humidity

sensor

Temperature,
humidity

CM2305-WP
(C-linktech,

Korea)

- Measuring temperature range:
−40~80 ◦C

- Measurement humidity range:
0–99.9% RH

- Measurement temperature
accuracy: ±0.3 ◦C

- Measurement humidity
accuracy: ±2% RH

Communication
board - Arduino Due

(Arduino, Italia)
- Rated Voltage: 3.3~5.5 V
- Processor: ARM Cortex-M3

Data
processing

device
-

Raspberry Pi
(Raspberry-Pi,

UK)

- Memory: 8 GB
- Storage: 32 GB
- Operating voltage: 5 V, 3 A

To prevent the server load from transmitting data, a process was established for the
fault-diagnosis system to transmit data to the server during charging. When the input
current was 1 A or more, the system assessed the operation of the charger, measured the
current at the input and output terminals, communicated with the data-processing device,
and then transmitted the measured current value. The current, temperature, and humidity
data sampling cycle was 1 Hz. In the case of the communication cycle, data recorded for
10 s were transmitted to the server through the communication board.
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2.2. Development of Remote Data-Based Fast-Charger Fault-Diagnosis Technology

Fault-diagnosis technology was developed using a fast-charger power module failure-
prediction and management system by analyzing the data of 1175 charging times from
17 December 2020 to 10 December 2021. When analyzing the charging pattern, the feature
data were selected using the most critical constant current (CC) charging section of the
DC output (the section charging 80% of the battery). In addition, the normal and failure
data were trained and verified through the test data. By analyzing the charging data, we
classified them as follows: a normal charging pattern, charging pattern according to the
aging of the power module, and charging pattern according to cable contact failure. A
multilayer perceptron (MLP) neural network was used as an algorithm to train the clas-
sification model. MLP is an algorithm that enables learning even for data separated into
nonlinear regions by placing one or more hidden layers between the input and output
layers [16–18]. It learns the data received through the input layer using a number of hidden
layers constituting the intermediate stage through several stages, and then derives the pre-
dicted value through the output layer [19]. The neural network structure that derives these
predicted values is shown in Figure 2 and can be expressed as f(x) = h(3)(h(2)(h(1)(x))).
The classification results’ accuracy was determined according to the charging pattern type
through the softmax activation function.
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To analyze the aging of the power module of the fast charger, the power conversion
efficiency (PCE) was defined. The PCE is the rate at which the DC output (A) emerges as
the AC input (A) enters during rapid charging. The PCE was calculated using Equation (1),

PCE = input current per fast charging/output current per fast charging, (1)

and after judging the aging of the power module according to the numerical value, it was
verified through internal analysis.
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3. Results and Discussion

For the 50 kW fast charger, the charging pattern of the power module was classified us-
ing a pre-failure diagnosis system. The normal charging pattern was measured 1175 times,
and Figure 3a shows a representative normal charging pattern. For the output current,
it was rapidly charged through CC up to 80% of the battery capacity, and after 1750 s, it
was confirmed that the battery was charged up to 100% of the battery capacity through
multistage constant current–constant voltage (MCC-CV) for the safety of the battery [21].
The input current was measured with an AC three-phase current and the measurement
period was 1 s. Furthermore, the power module aging pattern was measured 13 times,
and Figure 3b shows a representative charging pattern due to aging of the power module.
Compared to the normal charging pattern, we confirmed that the efficiency of the PCE
decreased during charging, resulting in a slope of the output current between the four
power modules. Compared with the normal charging pattern, the input current increased
with noise and was unstable. Figure 3c shows the charging pattern due to poor contact
with the cable of the fast charger. Bad contact charging patterns were observed four times.
We confirmed that the output current deviated at the 200 s and 1700 s points owing to poor
cable contact.

The PCE of each power module for 300 fast charging cycles through the pre-failure-
diagnosis system is shown in Figure 4a–d, which is a linear graph fitting PCE for each power
module. The difference in PCE values was caused by the charging profiles of different EVs.
However, since there was no significant difference in the PCE values of the four power
modules according to one-time charging, an overall trend could be observed. It can be
observed that the PCE slope exhibits a downward trend according to the aging of the power
module. Figure 4e shows a fitted PCE line graph for each power module. Consequently,
we confirmed that the aging of the second power module was more advanced than that of
the other power modules.

As the PCE of the No. 2 power module decreases rapidly, the aging progresses. To
verify deterioration, as shown in Figure 5, after disassembling No. 2 power module, the
interior was observed. Figure 5a shows the front side of the power module, Figure 5b rear
side, Figure 5c front heat sink, and Figure 5d rear heat sink. Internal analysis revealed
that the heat sink surrounding the switching transistor blackened. We determined that
the switching transistor deteriorated because the energy lost during the conversion to DC
was released as heat. Accordingly, we confirmed that the PCE of power module of No. 2
decreased. In addition, by checking the output of the fast charger, we confirmed that the
output decreased from 50 to 40–42 kW.

The aging of the No. 2 Power Module was confirmed through PCE, and the cause of
aging was analyzed and verified through internal analysis. The No. 2 power module was
replaced with a new product, and the PCE results are shown in Figure 6. It can be observed
that the PCE of No. 1, 3, and 4 power modules decreases after 297 charging cycles, but the
PCE of the No. 2 power module increases. This can facilitate the operation of the charger by
preventing malfunctions in advance when maintenance is performed by diagnosing the failure
and aging of the fast charger through the PCE. This contributes to an increase in the sales of
charging station operators by reducing user inconvenience and minimizing downtime.

Classification of Fast-Charger Charging Patterns Using Deep-Learning-Based MLP Algorithm

In the case of a straight line fitted through the PCE, it is accurate to predict the
failure and deterioration of the power module of the fast charger in advance and perform
maintenance. However, because it is necessary to obtain a graph of a straight line by fitting
points of at least 20 to 50, it is difficult to diagnose the failure of the power module of
the fast charger with one charge. Accordingly, as shown in Figure 7, after extracting the
most critical fast-charging section from the fast charger, four features’ data were calculated
through data preprocessing, as shown in Table 3.
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Table 3. Feature data calculation method using analysis section data.

Classification Feature Data Calculation

Feature 1 Slope MAX–MIN of four power Modules
Feature 2 Average value of slope of four power modules
Feature 3 Slope standard deviation values of four power modules
Feature 4 Number of abnormal signal data

Through feature data, the failure of the fast charger was diagnosed using a deep-
learning-based MLP algorithm classification model. A total of 150 training datasets were
normalized using 143 normal charging patterns, three power-module-aging charging
patterns, and four charging patterns with poor cable contact, and then trained on an MLP-
based classification model. The independent variable was designated as four features’ data,
and the dependent variable was classified into three charging patterns: normal, aging,
and poor cable contact. There was a total of six test datasets. Table 4 shows the results
of applying the classification model previously using two normal charging patterns, two
aging charging patterns for power modules, and two poor cable contacts. From the table,
clear characteristics of the feature data are found in the case of normal and poor contact,
and the detection results show high accuracies of 98.2% and 97.9%, respectively. In the
case of the aging data, the number of training data is relatively small, and a classification
accuracy of 95.4% can be obtained because it is not clearly distinguished from the normal
data. The power module aging data were previously confirmed as the data of the second
power module, and were classified as a normal charging pattern after replacement with
a new power module. The learning model developed in this study classifies charging
patterns with high accuracy using only one charging. Therefore, if a pre-failure diagnosis
system is installed in the manufacturing process of a rapid charger, it will be possible to
effectively save time while maintaining the charger by minimizing its idle time.

Table 4. Classification accuracy by type of fast-charging pattern.

Charging Pattern Number of
Training Data

Number of
Validation Data

Classification Accuracy
Charging Pattern (%)

Normal charging pattern 143 2 98.2
Power-module-aging

charging pattern 3 2 95.4

Poor-cable-contact
charging pattern 4 2 97.9

Average 97.2

4. Conclusions

In this study, a preliminary fault-diagnosis system for fast chargers was developed
and then applied to a quick charger at the Wash Zone branch in Jeju Special Self-Governing
Province. Using the collected data, the PCE was calculated and the status of the power
module was diagnosed. According to the PCE data analysis for a total of nine months, the
fitted linear PCE of the No. 2 power module significantly decreased compared to other
power modules. Accordingly, the No. 2 power module was disassembled and an internal
analysis was performed. We confirmed that the PCE of the No. 2 power module after
297 charging cycles was reduced owing to the aging of the switching transistor. According
to the PCE analysis for the remaining three months after replacing the No. 2 power module
with a new one, the PCE showed a tendency to increase compared to the other power
modules. In addition, we confirmed that the PCE in the No. 2 power module has a higher
value than those of the existing No. 3 and 4 power modules, which verified the aging of the
No. 2 power module. To diagnose the failure of the fast charger with only one fast charge,
the critical section was extracted during fast charging, corresponding feature data were
calculated, and failure of the fast charger was diagnosed using a deep-learning-based MLP
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algorithm classification model. The classification accuracy according to the aging of the
power module was 95.4%, normal charging pattern classification was 98.2%, and charging
pattern classification was 97.9% owing to poor cable contact. In this study, a prototype
system was developed for pre-failure diagnosis of fast chargers. If the proposed fast-
charger pre-failure-diagnosis system is added to the fast-charger manufacturing process
after increasing its accuracy and reliability through weight reduction and deep AI learning,
it can help systematize maintenance, increase sales of the charger operating office, and
increase the sales to users of electric vehicle. In addition, it will contribute to the expansion
of EV distribution by improving convenience.
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