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Abstract: Oil saturation is a kind of spatiotemporal sequence that changes dynamically with time,
and it is affected not only by the reservoir properties, but also by the injection–production parameters.
When predicting oil saturation during water and gas injection, the influence of time, space and
injection–production parameters should be considered. Aiming at this issue, a prediction method
based on a controllable convolutional long short-term memory network (Ctrl-CLSTM) is proposed
in this paper. The Ctrl-CLSTM is an unsupervised learning model whose input is the previous
spatiotemporal sequence together with the controllable factors of corresponding moments, and
the output is the sequence to be predicted. In this way, future oil saturation can be generated
from the historical context. Concretely, the convolution operation is embedded into each unit to
describe the interaction between temporal features and spatial structures of oil saturation, thus
the Ctrl-CLSTM realizes the unified modeling of the spatiotemporal features of oil saturation. In
addition, a novel control gate structure is introduced in each Ctrl-CLSTM unit to take the injection–
production parameters as controllable influencing factors and establish the nonlinear relationship
between oil saturation and injection–production parameters according to the coordinates of each
well location. Therefore, different oil saturation prediction results can be obtained by changing the
injection–production parameters. Finally, experiments on real oilfields show that the Ctrl-CLSTM
comprehensively considers the influence of artificial controllable factors such as injection–production
parameters, accomplishes accurate prediction of oil saturation with a structure similarity of more
than 98% and is more time efficient than reservoir numerical simulation.

Keywords: oil saturation; spatiotemporal sequence; oil recovery; controllable convolutional LSTM

1. Introduction

The oil recovery efficiency of an oilfield depends on the geological environment of
reservoir and the current level of oil extraction technology. Typically, the oil recovery
efficiency is only 30% to 50% in most areas of China, and the remaining 50% to 70% of
the oil remains in reservoirs [1]. Therefore, appropriate measures must be implemented
to enhance the oil recovery efficiency, including the water and gas injection, which are
widely implemented as the secondary oil recovery technology. To improve oil recovery,
oilfield experts continuously simulate different production processes by changing injection–
production parameters such as water or gas injection rate and water or gas injection
timing [2]; sometimes, they also change the well pattern structure, such as adding a water
injection well or shutting down a gas injection well. Oil saturation provides a degree of
assistance to oilfield experts in their decision-making, which directly represents the oil
content in different positions of the reservoir. Clarifying the oil saturation means finding
the direction of oilfield development strategy adjustment [3], which has important guiding
significance for timely adjustment of the injection–production parameters in the oilfield
production site.
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Since the mid-20th century, researchers from all over the world have paid extensive
attention to the issues related to oil saturation prediction [4]. After continuous research
studies, various methods for predicting oil saturation have been proposed, such as seismic
analysis, reservoir engineering, well testing and reservoir numerical simulation [5–8]; these
traditional methods have made a significant contribution to enhanced reservoir recovery.
However, in order to predict oil saturation more quickly and accurately, up-to-date methods
should be introduced in the oilfield.

In recent years, with the rapid development of artificial intelligence and big data,
the oil and gas resources informatization development has been continuously carried out
in the field of petroleum engineering [9]. Those previous conventional studies and the
large quantity of accumulated data provide strong supports for deep learning methods to
predict oil saturation. Gu et al. used the fully connected long short-term memory [8] (FC-
LSTM) network to predict oil saturation, and the influence of different injection–production
working systems on oil saturation was considered in the training stage. FC-LSTM handles
the temporality of the data naturally, but cannot model the spatial structure of the reservoir
sufficiently. However, both temporality and spatiality should be taken into account when
building neural networks [10]. Zhang et al. used a convolutional neural-network-based
model to predict oil saturation maps [11], which considered various reservoir properties
including permeability and active grid. They transformed each of these reservoir properties
into a two-dimensional array and made these arrays into a stacked multilayer array, then
they used this stacked multilayer array to generate oil saturation maps. Nevertheless,
convolutional neural networks could not learn the temporal features effectively, so the
whole training process did not model the temporal features of oilfield production processes.

In fact, the treatment of spatiotemporal features is a general problem, which has
already been researched by existing studies. ConvLSTM [12], a convolution long short-term
memory network, embeds a convolution operation into the LSTM network and replaces
the full connection layer with convolution; it obtained good results in many kinds of
spatiotemporal sequence prediction tasks [13]. In ConvLSTM, the memory state is only
transmitted in the temporal direction, so the spatial modeling capability can still be further
improved [14,15]. Based on the prediction method of the spatiotemporal long short-term
memory network ST-LSTM [16], a longitudinal spatial memory state transition path was
introduced into the network, which effectively reduced the gradient disappearance between
neurons in longitudinal layers, so that the final prediction results could widely consider
the hierarchical spatiotemporal features.

Oil saturation data consist of special spatiotemporal sequence data, which need to
consider simultaneously the effect of geological properties and injection–production param-
eters [17]. On this basis, this paper proposes a prediction method based on a Ctrl-CLSTM,
which adopts a dual-memory state transition mechanism to achieve the unified modeling of
the temporal and spatial characteristics of oil saturation. Moreover, we primarily consider
the effect of artificial and operable conditions on the oil saturation. By adding a new
control gate structure to the network, the model learns more about the influence of the
injection–production parameters on oil saturation, which improves the prediction accuracy
and makes the prediction process more in line with physical laws. Compared with the tradi-
tional numerical simulation, the Ctrl-CLSTM adjusts the injection–production parameters
more quickly and maintains an equivalent prediction accuracy. Analyzing the oil saturation
generated from different combinations of injection–production parameters, a theoretical
reference can be provided to oilfield experts when designing injection–production working
systems.

2. Spatiotemporal Sequence Prediction

A spatiotemporal sequence describes the multidimensional grid information, which is
applied to various spatiotemporal sequence prediction tasks, such as short-term precip-
itation prediction, traffic flow prediction, marine pollution trajectory prediction, etc. In
addition to changing with time, a spatiotemporal sequence is also interdependent between
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adjacent spatial grids [18]. The oil saturation is also a multidimensional grid sequence that
changes dynamically with time, and the distribution states of adjacent spatial locations
affect each other, so it can be defined as a spatiotemporal sequence, and its temporal and
spatial characteristics must be learned simultaneously.

Our purpose is to capture the complex dynamic physical laws from the spatiotemporal
system of oil saturation continuously observed, and approximately estimate the future trend
of oil saturation. A generalized approach for predicting oil saturation using deep learning
can be summarized below: the first is to create a training sample set through the reservoir
numerical simulation software tool and obtain a large number of grid data of size m× n with
spatial correlation. For a multilayer reservoir, each training sample contains r oil saturation
maps; then, the oil saturation at time t can be recorded as Xt ∈ Rm×n×r(r = 1, 2, 3, . . . ).
Let Xα:β be the oil saturation sequence of time period α ∼ β, in Equation (1), the sequence
Xα:β is the input of the neural network, and the sequence X̂β:γ is the most approximate
estimation of the future oil saturation sequence Xβ:γ.

X̂β:γ = argmax
Xβ:γ∈Rm×n×r

p(Xβ:γ|Xα:β) (1)

Of note, the inherent characteristics of a reservoir, such as permeability distribution,
formation thickness, boundary dip angle and other factors, have a great impact on the
distribution of oil saturation. Moreover, in order to improve oil recovery, oilfield experts
usually design a variety of well locations, as well as injection–production working systems,
including different parameters such as displacement agents, injection amounts and injection
timing. Changing the value of the injection–production parameters will also affect the
state of the crude oil in the reservoir; for example, increasing the bottom pressure will
make the crude oil have a stronger flow capacity in the reservoir pores [19]. In summary,
oil saturation data are special spatiotemporal sequence data, which are affected by both
reservoir environment and artificial controllable injection–production working systems in
the development process. It is generally believed that the physical property parameters of
a reservoir cannot be controlled by humans; in view of this, the change of oil saturation
caused by injection–production working systems was considered mainly. The composition
of the injection–production working system P is shown in Equation (2). Although the effect
of reservoir parameters was not considered much, the Ctrl-CLSTM is an unsupervised
learning model and its input contains historical oil saturation, from which reliable potential
reservoir properties information can be learned.

P = [T1, . . . , Tn; G1, . . . , Gn; W1, . . . , Wx; Q1, . . . , Qy] (2)

where n, x and y represent the number of gas injection wells, water injection wells and
production wells, respectively, Ti and Gi represent the gas injection timing and gas injection
speed, respectively, Wi indicates the water injection rate and Qi indicates the bottom hole
pressure of the production wells (i = 1, 2, 3, . . . ).

In order to ensure the value of each injection–production parameter evenly covered the
entire value range, the Latin hypercube sampling [20] was used to generate the experimental
data. Some examples of injection–production parameters of the Tarim oilfield in China are
shown in Table 1, where each row represents an injection–production working system that
lasts for ten years, and the results files are generated by numerical simulation software
semiannually.

For instance, in the first row, T1 = 3.5 means that the gas injection well G1 is opened in
the 3.5th year, and its gas injection rate is 93,459 m3/d, W1 = 124 indicates that the water
injection volume of water injection well W1 is 124 m3/d, and Q1 = 54 indicates that the
bottom hole flow pressure of production well Q1 is set to 54 MPa.
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Table 1. Partial injection–production parameters.

T1 G1 . . . T4 G4 W1 . . . W12 Q1 . . . Q21

3.5 93,459 . . . 9 2491 124 . . . 120 54 . . . 37
0 113,668 . . . 8 3679 143 . . . 78 101 . . . 70
2 44,748 . . . 3 6815 21 . . . 68 123 . . . 117

6.5 1045 . . . 0.5 101,057 27 . . . 76 85 . . . 33
8 62,062 . . . 9.5 76,505 67 . . . 40 74 . . . 85

1.5 58,784 . . . 7.5 29,220 52 . . . 31 70 . . . 30
0 25,807 . . . 7.5 116,092 126 . . . 122 54 . . . 28

4.5 33,229 . . . 5 114,720 132 . . . 144 78 . . . 80

3. Controllable Convolutional Long Short-Term Memory Network

The Ctrl-CLSTM constructed in this paper takes the historical spatiotemporal sequence
and the corresponding controllable factors as the inputs and predicts the future spatiotem-
poral sequence. We innovatively introduced controllable factors in the spatiotemporal
sequence prediction task to specifically deal with a special sequence such as oil satura-
tion. The core part of the Ctrl-CLSTM is the dual-memory state transmit mechanism,
which realizes the unified modeling of the spatiotemporal features. In addition, the con-
trol gate structure is embedded in all nodes of the neural network, which enhances the
modeling ability of the network for controllable factors such as well location distribu-
tion, injection–production parameters, etc., controlling the change of the spatiotemporal
sequence effectively.

3.1. Architecture of Ctrl-CLSTM

For spatiotemporal sequence prediction tasks, different types of features are encoded
into different networks architectures. LSTM is a variant of the recurrent neural network,
which is suitable for sequence data prediction with strong temporal dynamics. Its trans-
mission from input state to the hidden state uses the matrix multiplication of the fully
connected layer, and the feature state is transferred in the time dimension. A convolutional
neural network performs better in dealing with grid data with spatial correlation [21].
ConvLSTM [12] replaces the full connection layer in LSTM units with a convolution layer,
which solves the problem that traditional LSTM cannot describe spatial structure to a
certain extent. However, the memory state of ConvLSTM is only transmitted along the
temporal direction, and the neurons between the vertical layers are independent of each
other. The spatial features of ConvLSTM become abstract with the depth of the convo-
lution operation, and the ability to maintain the detailed features is not enough. On this
basis, ST-LSTM [16] adds a spatial memory state transmitted between longitudinal layers,
which effectively reduces the gradient disappearance of spatial features and alleviates its
abstraction. Finally, ST-LSTM deeply fuses the temporal memory state and spatial memory
state to learn hierarchical spatiotemporal features widely. The Ctrl-CLSTM adopts this
dual-memory state-transfer mechanism like ST-LSTM, and innovatively embeds the control
gate structure in each neural unit, making the controllable factors as an additional input.

The network structure of the Ctrl-CLSTM is shown in Figure 1, where l represents
the number of layers, t represents the time, the bottom layer is the input unit and the top
layer is the output unit. The horizontal transfer path encodes the temporal state Cl

t, with
arrows pointing to the next moment, and the vertical transfer path encodes the spatial state
Ml

t, with arrows pointing to a deeper level of feature abstraction. The spatial state of the
vertical transfer path is transmitted to the bottom unit of the next moment after reaching
the top unit, which effectively reduces the gradient vanishing phenomenon. Apart from
that, we can learn the memory sates Cl

t and Ml
t from memory networks, in which they can

be seen as additional computational steps [22].
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Figure 1. Architecture of Ctrl-CLSTM.

3.2. Units of Ctrl-CLSTM

The role of controllable factors is to intervene in the evolution of a spatiotemporal
sequence and affect its development direction; different controllable factors contribute
to different degrees of prediction results. As mentioned in Section 1, oil saturation is
affected by many factors, especially in reservoirs with strong heterogeneity. Due to uneven
distribution of oil layers and large differences in reservoir permeability, the influence of
the injection–production parameters is particularly prominent [23,24]. Therefore, we select
the injection–production parameters as the primary controllable factor. By introducing
the control gate structure, the Ctrl-CLSTM learns the dynamic mechanism of injection–
production parameters to a certain extent, integrates injection–production parameters and
oil saturation and extracts their characteristics to capture the influence of the injection–
production parameters on oil saturation changes.

As shown in Figure 2, the state transition path of a Ctrl-CLSTM unit is divided into
two parts, including the temporal memory state Cl

t (Blue) and the spatial memory state
Ml

t (Orange). In the stage of data preprocessing, the injection–production parameters
should be combined with the well location map, and the geographical spatial position
of the working wells is crucial to the production. Therefore, the control gate structure k

′
t

(yellow) is embedded in the spatial memory state transition path. This control gate structure
increases the number of nonlinear neurons involved in the state transition calculation in
each unit node, which is equivalent to expanding the memory state transition path in
the spatial dimension, and conducive to improving the correlation of memory states at
different spatial layers. At the same time, it enhances the modeling ability of the model for
injection–production parameters and well location map, so that the network can learn the
control effect of the injection–production parameters on oil saturation. To date, there are
four gate structures on the Ml

t path, that is, the input gate i
′
t, which selectively retains the

input passed in from the previous neuron, focusing on recording the important information;
the renew gate g

′
t, which determines the content to be written; the forget gate f

′
t , which

selectively forgets the input passed in from the previous neuron, forgetting the unimportant
information; and the novel control gate k

′
t. In this way, it can be distinguished from the

control signal of the temporal memory state Cl
t . The specific state transition method of the

Ctrl-CLSTM is as follows.
Temporal memory state transition path:

gt = tanh(Wg ∗ (St ⊕ Pt) + Whg ∗ Hl
t−1)

it = σ(Wi ∗ (St ⊕ Pt) + Whi ∗ Hl
t−1)

ft = σ(W f ∗ (St ⊕ Pt) + Wh f ∗ Hl
t−1)

Cl
t = ft � Cl

t−1 + it � gt

(3)
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Figure 2. Units of Ctrl-CLSTM.

Spatial memory state transition path:

g
′
t = tanh(W

′
g ∗ (St ⊕ Pt) + Wmg ∗Ml−1

t )

i
′
t = σ(W

′
i ∗ (St ⊕ Pt) + Wmi ∗Ml−1

t )

f
′
t = σ(W

′
f ∗ (St ⊕ Pt) + Wm f ∗Ml−1

t )

k
′
t = tanh(W

′
k ∗ (St ⊕ Pt) + Wmk ∗Ml−1

t )

Ml
t = f

′
t �Ml−1

t + i
′
t � g

′
t + i

′
t � k

′
t

(4)

The output gate ot further seamlessly fuses the control signals from both directions:

ot = σ(Wo ∗ (St ⊕ Pt) + Who ∗ Hl
t−1 + Wco ∗ Cl

t + Wmo ∗Ml
t) (5)

Equations (3)–(5) are the state transition path of the Ctrl-CLSTM, where St is the
oil saturation at time t, Pt is the injection–production parameters corresponding to time
t and ⊕ links St and Pt in parallel. They establish a matrix with the same size as the
oil saturation, then mark the water injection wells, gas injection wells and production
wells on the matrix according to the well position coordinates; afterwards, they record the
production parameters of the corresponding wells, and finally get a dual-channel matrix
in parallel with the oil saturation. (St ⊕ Pt) is the input of the Ctrl-CLSTM, including the
oil saturation, well location information and injection–production parameters. ∗ means
the convolution operation, � is the Hadamard product [25], which is the multiplication
of the corresponding elements of two matrices of the same order. σ represents a sigmoid
activation function, tanh is a nonlinear hyperbolic activation function, both of which are
applied between neurons in two adjacent layers, making the neural network have nonlinear
mapping capability. W(.) is the connection weight corresponding to each Ctrl-CLSTM gate.

Hl
t = ot � tanh(W(1×1) ∗ [Cl

t , Ml
t]) (6)

Hidden state Hl
t is the output of a Ctrl-CLSTM unit at time t and depends on the

nonlinear combination of Cl
t and Ml

t. Equation (6) reduces the dimension of the hidden state
through a 1 × 1 convolution layer and a tanh activation function, resulting in Hl

t having
the same dimension as Cl

t and Ml
t. In particular, the bottom unit receives the memory state

of the top unit at the previous time: Ml=0
t = Ml=3

t−1.
As shown in Figure 1, the temporal memory state Cl

t is transmitted horizontally, the
spatial memory state Ml

t is transmitted longitudinally and the whole is transmitted in
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a zigzag manner. In order to make the temporal memory state and the spatial memory
state update their nonlinear functions independently at any time, the two should remain
orthogonal during training. Therefore, in Equation (7), a decoupling loss function Ldecouple
is defined through the cosine similarity function, so that the two transmit their own
characteristic parameters in their respective latent spaces independently without interfering
with each other, where Wdecouple represents the convolution kernel of 1× 1, 〈, 〉c is the matrix
point multiplication, and ‖.‖c represents the L2 regularization operation after flattening the
features, which is calculated according to the channel c.

∆Cl
t = Wdecouple ∗ (it � gt)

∆Ml
t = Wdecouple ∗ (i

′
t � g

′
t + i

′
t � k

′
t)

Ldecouple = ∑
t

∑
l

∑
c

|〈∆Cl
t , ∆Ml

t〉c|
‖∆Cl

t‖c · ‖∆Ml
t‖c

(7)

4. Experiments and Results

In this paper, an actual reservoir officially developed in the Tarim oilfield since 1999
was selected as the research object. The data such as water content, gas-oil ratio and static
pressure have a good history matching. The reservoir model consists of 471 × 421 × 7 grids,
and each grid is 10 m × 10 m × 10 m in size. There are 21 production wells and 16 injection
wells in this reservoir, 12 of which are water injection wells and the other 4 are gas injection
wells. Figure 3 shows the locations of the wells on the permeability distribution map, where
4 triangles mark the locations of gas injection wells, 12 pentagrams mark the locations of
water injection wells, and 21 dots indicate the locations of production wells. We simulated
15 well pattern structures, each with 300 injection–production working systems, for a total
of 4500 injection–production working systems. As for the value of injection–production
parameters, we used the Latin hypercube sampling method to sample uniformly within
a certain range. The bottom hole pressure of a production well was at least 28 MPa, the
injection volume of a water injection well was in the range of 0–150 m3/d and the injection
volume of a gas injection well was in the range of 0–120,000 m3/d. Finally, all injection–
production working systems were fitted by the numerical simulation technology as samples.
The number of samples was sufficient, which was suitable for neural network training
and learning.

Figure 3. Permeability distribution and well location.
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4.1. Constructing the Dataset

Making the data suitable for our model required the following steps:

(1) Latin hypercube sampling (LHS): Sampling is often present in experiments, and
a good sampling strategy can make our model’s sample point distribution more
reasonable. We adopted LHS to generate uniformly distributed injection–production
parameters. LHS is a stratified random sampling that allows efficient sampling from
the distribution interval of the variables, ensuring a comprehensive coverage of the
value range of each injection–production parameter. A LHS Xn in [0, 1) is defined by
the following equation:

xn,j =
πj(n− 1) + Un,j

N
(8)

Among Equation (8), xn,j is the jth component of sample point Xn, πj is a permutation
of [0, N − 1], uniformly chosen at random, N is the total number of Xn and Un,j is
uniformly distributed in [0, 1).

(2) We adjusted the oil saturation data generated by the numerical simulation to a matrix
of size 471 × 421. Then, Equation (9) normalized the injection–production parameters
to reduce the dimensional gap between different well data and help to reduce the
loss function value, where x is the parameter to be normalized, xmax and xmin are
the maximum and minimum parameters of this working system and x

′
is the result

after normalization.
x
′
=

x− xmin
xmax − xmin

(9)

(3) In order to utilize the well location information comprehensively, we marked and
distinguish the gas injection wells, water injection wells and production wells on
the well location map according to the well location coordinates, corresponding
to the positions of the triangles, pentagrams and dots in Figure 3. The injection–
production parameters were written at the corresponding coordinates, then we linked
well location map and oil saturation in parallel to form a dual-channel matrix. In
order to balance the training duration and the prediction accuracy, we discarded the
area around the oilfield where the oil content was always zero, and only the effective
values in the matrix were retained during the training process. Finally, the size of the
dual-channel matrix was adjusted to 256 × 256 × 2, which reduced the occupation
rate of the training display RAM and sped up the convergence.

(4) According to the method proposed by Wang [15,16], we regarded the 10 parallel
dual-channel matrices as an entire spatiotemporal sequence, including five historical
observations (input of the model) and five future prediction results (output of the
model), to avoid data interference between different working systems.

(5) Dataset division: we selected 200 groups of injection–production working systems
from every well pattern structure as the training set, 50 groups as the validation set,
and 50 groups as the test set, which evenly covered all types of well pattern structures.

4.2. Implementation Details

We observed that the number of layers of the Ctrl-CLSTM had a great influence on
the final performance. After repeated trials, we finally set three stacked layers in the
Ctrl-CLSTM, with 128 channels for every memory state, to maintain a balance between the
training efficiency and prediction quality. Unless otherwise specified, we used the ADAM
optimizer [26] to train the model, which is one of the most common optimization algorithms
and has been validated in a large number of deep neural networks. The initial learning
rate was set to 0.001 and the convolution kernel size was set to 5 × 5. Equation (10) is the
loss function used, which is the sum of the reconstruction loss function and the decoupling
loss function; the deviation of the generated image from the real image is defined by the
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reconstruction loss function, where X̂t and Xt are the predicted oil saturation and the actual
image, respectively, in each time step t, ‖.‖2

2 is the square operation and λ is a constant.

Loss =
t=γ

∑
t=β

‖X̂t − Xt‖2
2 + λLdecouple (10)

We also noted that the selection of batch size had a great impact on the convergence
speed of the loss function; therefore, we selected a minibatch of four, that is, each train-
ing iteration trained four sequences randomly at once, and the training was stopped
after 50,000 training iterations. All intelligent models were set with similar hyperparam-
eters and the experimental code was written in PyTorch, which ran on a GeForce RTX™
3090 graphics card.

4.3. Evaluation Metrics

We selected the evaluation metrics widely adopted in the tasks of spatiotemporal
sequence prediction to evaluate the trained models: the structural similarity index measure
(SSIM) [27], evaluating the similarity between the predicted results and the real pictures
(the value range is (0, 1) and higher is better).

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(11)

Among Equation (11), µx and µy are the mean intensity of the real picture x and the
predicted result y, σxy is the covariance of x and y, σx and σy are their standard deviations
and C1 and C2 are the constant to avoid a zero denominator.

The second metric was the mean squared error (MSE), estimating the absolute pixel
level error of two images (lower is better); in Equation (12), m and n are the dimensions
of the images and xij and yij are the pixel values of the real image and the predicted
image, respectively.

MSE =
1

mn

m

∑
i=1

n

∑
j=1

(xij − yij)
2 (12)

The third metric was the peak signal-to-noise ratio (PSNR) [28], evaluating the pixel-
wise similarity between the predicted image and the real image (higher is better). Generally
speaking, a PSNR over 40 dB means that the picture has a low level of distortion.

PSNR = 10 log10 (2552/MSE(x, y)) (13)

PSNR is one of the most widely used objective evaluation index of images, but it does
not consider the visual recognition and perception characteristics of the human eyes, and
the evaluation results are often different from the subjective perception of human beings.
So we introduced the learned perceptual image patch similarity (LPIPS) [29], which aligns
better with human perceptions (lower is better).

LPIPS = ∑
l

1
HlWl

∑
h,w
‖wl � (xl

hw − yl
hw)‖

2
2 (14)

In Equation (14), Zhang et al. [29] extracted feature stacks xl
hw and yl

hw from L layers
and unit-normalized them in the channel dimension. The vector wl was used to scale the
activations channel-wise and H, W are the size of the feature stack.

4.4. Comparative Analysis of Oil Saturation Prediction Results of Different Networks

In this section, we compare and analyze the oil saturation predicted by different net-
works. The input of each model consisted of the previous oil saturation sequence (the
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sequence in Figure 4a), the injection–production parameters and the well location distribu-
tion of a corresponding period. Figure 4b shows the numerical simulation results, which
is regarded as the ground truth X̂t for comparison with other advanced spatiotemporal
sequence prediction models, including the traditional long short-term memory network
FC-LSTM [8], the TrajGRU [14], which adopts an encoding–predicting network structure
able to learn subnetwork parameters and improve the overall network state, and the ST-
LSTM [16], which introduces spatial memory flow. Some experimental results of each
model on the test set are presented in Figure 5. Each row of Figure 5a shows the predicted
oil saturation sequence Xt of the Ctrl-CLSTM, ST-LSTM, TrajGRU and FC-LSTM, for a
total of five oil saturation distributions at 360, 720, 1080, 1440 and 1800 days. Figure 5b
is also from day 360 to day 1800, and it shows the error (X̂t − Xt) between the numerical
simulation result and the prediction of each model.

(a) Input sequence

360 days 720 days 1080 days 1440 days 1800 days

(b) Numerical simulation results

Figure 4. Input sequence and numerical simulation sequence.
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(a) Predicted oil saturation at different times

360 days 720 days 1080 days 1440 days 1800 days 360 days 720 days 1080 days 1440 days 1800 days

(b) Error (X̂t − Xt) at different times

Figure 5. Prediction examples on different models.

It is evident in Figure 5 that the oil saturation predicted by the Ctrl-CLSTM has the
highest clarity, and the absolute value of the error is less than 0.04. As the time step of the
forecast grows, the performance of other models becomes progressively worse, especially
in the boundary where the oil content varies significantly. All of them indicate that, by
embedding the control gate structure in each unit, the Ctrl-CLSTM has better learning
capability and simulates the changing process of oil saturation realistically.

The average quantitative results on each evaluation metric of different models were
calculated and are displayed in Table 2, from which we can draw some conclusions: the
Ctrl-CLSTM has the best performance in each metric, with the SSIM exceeding 98% and the
MSE decreasing from 36.61 to 21.37. LPIPS is closer to human perceptual judgment, and the
Ctrl-CLSTM has minimal LPIPS indicating it has excellent power to generate high-fidelity
images. With the proposed control gate structure, there is a more accurate grasp of the effect
of injection–production parameters on oil saturation. Figure 6 provides the comparison
results of corresponding times; as the prediction time step increases, although all models
tend to deteriorate, the Ctrl-CLSTM deteriorates more slowly, and the final prediction
remains highly accurate and outperforms other models.
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Table 2. Quantitative results on each evaluation metric.

Model SSIM(%) MSE LPIPS PSNR(dB)

FC-LSTM 83.16 36.61 11.29 32.06
TrajGRU 89.10 33.78 10.04 36.41
ST-LSTM 93.56 27.19 4.29 41.73

Ctrl-CLSTM 98.23 21.37 2.41 46.23

(a) Trend of SSIM over time. (b) Trend of MSE over time.

(c) Trend of PSNR over time. (d) Trend of LPIPS over time.

Figure 6. Prediction effects over time.

When the Ctrl-CLSTM is applied to predict oil saturation sequence, an appropriate
number of model parameters should be chosen. To obtain satisfactory experimental results,
the neural network was set to two, three, and four layers separately, and the training results
are shown in Table 3. It can be seen that the model performs best when three layers of
Ctrl-CLSTM units are designed. When the model uses two stacked layers, the prediction
effect is the worst, because only two layers of neurons can not remember the long-term
variation of oil saturation. When the model uses a four-layer stack structure, the effect is
also reduced, because there are too many neural network parameters at this time, which is
prone to overfitting, resulting in a better effect on the training set, but a worse effect on the
test set.

Table 3. Quantitative results with different layers.

Model Layers SSIM (%) MSE LPIPS PSNR (dB)

Two layers 90.13 27.82 6.24 42.08
Three layers 98.23 21.37 2.41 46.23
Four layers 92.07 25.61 8.93 39.75
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4.5. Results on Different Injection–Production Parameters

In the case of oil–gas–water three-phase seepage, it is more complicated to formulate a
reasonable injection–production working system. Through the control gate, the dynamic
physical laws between injection–production parameters and oil saturation can be captured.
To verify this point of view, we took the same oil saturation as input sequence, only adjust-
ing the injection–production parameters, then we predicted and observed the variations of
oil saturation in the future. The sequence in Figure 7a and the injection–production working
system of the corresponding period were the input of the Ctrl-CLSTM, Figure 7b shows
the predicted results when the original injection–production working system was applied,
and Figure 7c shows the predicted results when a different injection–production working
system was applied. The first row is the numerical simulation result (X̂t), the second row
is the Ctrl-CLSTM prediction result (Xt), the third row is the absolute value of the error
(X̂t − Xt) between the two images and the prediction time is 360, 720, 1080, 1440, 1800
and 2160 days from left to right according to columns. When using the original injection–
production working system, the maximum error is 0.14, and the error in most areas is less
than 0.07. After changing the injection–production working system, the maximum error is
0.2, and the error in most areas is less than 0.1. It can be seen that with the control gate, the
final state of oil saturation is changed with a high prediction accuracy when changing the
injection–production parameters. Therefore, the Ctrl-CLSTM can obtain different prediction
results through the control gate when changing the injection–production parameters, and
the injection–production parameters can be adjusted reasonably based on this reference,
which can improve the production potential of oil wells.

(a) Input sequence

X̂
t
−

X
t

X
t

X̂
t

360 days 720 days 1080 days 1440 days 1800 days 2160 days

(b) Predicted results

X̂
t
−

X
t

X
t

X̂
t

360 days 720 days 1080 days 1440 days 1800 days 2160 days

(c) Predicted results with changed working system

Figure 7. Prediction examples on different injection–production working systems.
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5. Performance on Another Reservoir Dataset

To demonstrate the universality of the Ctrl-CLSTM, we performed experiments on
another reservoir dataset generated by a numerical simulation. In this reservoir model,
there were 3000 oil saturation sequences, and each sequence contained 10 images of size
50 × 50. We took the first four images as input sequence and the last six images as
prediction result. In addition, these sequences had their respective injection–production
parameters. In Figure 8, (a) is the input sequence of (c), (b) is the input sequence of (d);
similarly, the injection–production working system in the corresponding period was also
one of the inputs to the network. The rows represent the numerical simulation result (X̂t),
the prediction result (Xt) of the Ctrl-CLSTM, and the error (X̂t − Xt), while the columns
indicate the number of days to predict oil saturation from 360 days to 2160 days.

(a) Input sequence (b) Input sequence

X̂
t
−

X
t

X
t

X̂
t

(c) Prediction results with the input sequence (a)

360 days 720 days 1080 days 1440 days 1800 days 2160 days 360 days 720 days 1080 days 1440 days 1800 days 2160 days

(d) Prediction results with the input sequence (b)

Figure 8. Prediction examples.

After consecutive experiments, it can be seen that the errors between both sequences
are less than 0.1 in most regions, indicating that the Ctrl-CLSTM is capable of accurately
modeling these different reservoirs. From Table 4, we can conclude that the value of SSIM
is over 96% and the MSE is around 21. These data are very close to those derived from
our experiments done on the real Tarim dataset above, proving the compatibility of the
Ctrl-CLSTM with different reservoirs.

Table 4. Quantitative results on two sequences.

Input Sequence SSIM (%) MSE LPIPS PSNR (dB)

(a) 96.59 20.32 2.76 44.91
(b) 97.27 21.07 2.59 45.26

6. Conclusions

As an important application of deep learning, generating future sequence from histori-
cal continuous sequence has become a hot topic of interest. In this paper, we proposed a
novel unsupervised network named Ctrl-CLSTM for spatiotemporal predictive learning
tasks, which realized the unified modeling of the spatiotemporal deformations simultane-
ously. The core part of the Ctrl-CLSTM was the dual-memory state transmit mechanism
that made temporal features propagate horizontally over time and spatial features span
stacked network layers vertically. Furthermore, we innovatively introduced a control
gate structure in the spatiotemporal sequence prediction network to cope with a special
sequence such as oil saturation. The Ctrl-CLSTM took the existing oil saturation sequence,
well location maps and injection–production parameters as input to predict the future
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oil saturation. When changing the injection–production parameters, the Ctrl-CLSTM can
obtain different prediction results, which can save the oilfield prediction time and help to
enhance the oil recovery.

In order to capture the trend of oil saturation more accurately, the Ctrl-CLSTM requires
the historical data to be used in the prediction; therefore, it is mainly used in the secondary
oil recovery stage to adjust the injection–production parameters continuously, but it cannot
be applicable to new reservoirs that are completely undeveloped. Furthermore, when using
the Ctrl-CLSTM to generate oil saturation, we did not consider sufficient factors that affect
the variation of oil saturation, and in the future, we will consider more influencing factors
and adapt it to more application scenarios.
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