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Abstract: Lignocellulosic biomass is included in the group of renewable energy sources. Its calorific
value is high, owing to which it can be successfully used in the production of second-generation
fuels, e.g., biogas. However, its complex structure makes it necessary to apply a pretreatment in
order to increase the biogas output. This study presents the usability of a pulsed electric field in grass
silage pretreatment in methane fermentation and compares it with microwave-induced disintegration.
The experiment shows that substrate disintegration with a pulsed electric field (PEF) results in an
increase in methane output. The productivity of methane from PEF pretreatment silage increased
by 20.1% compared to the untreated control. The application of microwave disintegration, with the
assumption that the same energy is used for the pretreatment, resulted in a methane output increase
of 6% compared to the control. The highest biogas production output in PEF-pretreated samples was
535.57 NL/kg VS, while the highest biogas output from substrates pretreated with microwaves was
487.18 NL/kg VS.

Keywords: methane fermentation; PEF; pretreatment of lignocellulosic biomass; grass silage

1. Introduction

The EU climate-and-energy-related policy and vision of climate neutrality to be
achieved by 2050 have a crucial impact on the energy strategy of Poland and other EU
member states. It is a collective goal of all the EU states to reduce greenhouse gas emissions
by at least 55% by 2030 compared to the 1990 level. Another approved goal is to achieve a
32% share of renewable sources in gross final energy consumption [1].

In 2020, the whole world was affected by the COVID-19 pandemic; the war in Ukraine
broke out in February 2022, and together these events had an impact on each of the world’s
economies. This extraordinary situation exposed the crucial role of the energy sector,
including energy security, in the economies of European countries. The energy sector
is facing multiple challenges, which have to be responded to in order to carry out an
effective energy transformation. The heavy reliance of many EU member states on natural
gas supply from one direction requires diversifying actions. One such action is to use
biomass in biofuel production. Due to the current geopolitical situation, it is necessary to
maximise biomass consumption, especially for biogas production, to stimulate gas market
development and expand the gas transport and distribution network.

The effects of the fuel crisis can be alleviated, the greenhouse gas emissions can
be reduced, and the requirements of the EU energy policy can be met by, among other
measures, the production of second-generation biofuels from lignocellulosic feedstock [2,3].

Lignocellulosic biomass consists of three interconnected polymers: cellulose, hemicel-
lulose, and lignin [4–7]. The latter affects the hardness of the whole complex and connects
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the other sugars to make a compact and durable compound, highly resistant to most en-
zymes and other substances. The properties of lignocellulosic biomass, such as the content
of the main complex components, oxygen, hydrogen, nitrogen, sulphur, the dry matter
and dry residue content, and the calorific value, play an important role in the processes
of biomass conversion to energy [8,9]. Lignocellulose is successfully converted to bio-
fuels, such as biogas, ethanol, and hydrogen. However, due to the factors that restrict
lignocellulosic material biodegradation, it requires pretreatment. Lignocellulosic biomass
disintegration destroys compact structures and releases the organic matter to the dissolved
phase, resulting in an increase in the concentration of dissolved, easily decomposed organic
substances [10,11]. Commonly applied pretreatment methods can be classified into physical,
chemical, biological, and physicochemical [6,8,11–13]. Researchers apply various methods
for biomass disintegration to find highly effective, productive, and profitable methods for
biomass pretreatment before the conversion process. Such methods include pulsed electric
field (PEF) and microwave radiation, which are presented in this paper. Compared with
electromagnetic microwave radiation, the use of PEF is a novel method—the beneficial
impact of which on biogas output has not been given much attention in the literature. The
available reports deal with structural changes in the cell wall and membrane in plants,
which directly increase the cell membrane permeability and, in consequence, accelerate
and intensify the sugar hydrolysis process [14–17].

The application of microwave radiation, which is successfully applied in the pretreat-
ment of lignocellulosic material, delignifies and partly removes hemicellulose and enhances
the sugar hydrolysis [18,19]. Compared to conventional heating, microwave radiation is
not based on surface heat exchange. Instead, heat is generated by an object interaction in
an electromagnetic field. Microwave radiation destroys cellulose by molecular collisions
caused by dielectric polarisation. The advantages of both methods include: a short pro-
cess duration, a high selectivity, and a smaller amount of energy supplied compared to
conventional heating [4,18,20–23].

Liquid fuel production from a feedstock containing polysaccharide complexes requires
the choice of appropriate process conditions: pretreatment, hydrolysis, and fermentation.
This paper shows the possibility of applying a novel, non-thermal method, i.e., the use
of PEF for plant biomass destabilisation before methane fermentation, and also compares
it with a different, commonly applied pretreatment technique, using electromagnetic
microwave radiation.

2. Materials and Methods
2.1. Substrate

Grass silage was used as the substrate in this experiment. The raw substrate was cut
up and subsequently hydrated to 95%. The substrate contained 47.53% dry matter (TS),
whereas the content of the dry organic matter (VS) was 89.62% TS (Table 1).

Table 1. Parameters of grass silage.

Parameters Value

Hydration [%] 52.47 ± 1.06
Dry weight [%] 47.53 ± 1.06

Dry organic weight [% TS] 89.62 ± 1.05
Total carbon (TC) [mg C/g TS] 478.99 ± 18.99

Total organic carbon (TOC) [mg C/g TS] 390.54 ± 11.67
Total nitrogen (TN) [mg N/g TS] 20.94 ± 3.89

C/N 22.87

2.2. Equipment

The PEF disintegration installation contained a biomass shredder used for cutting
up the substrate and a tank for increasing its hydration. The tank was fitted out with a
paddle stirrer, which was used to make the substrate homogeneous in its whole volume.
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With a hopper mounted in the installation, the disintegrator was able to work in static
conditions, whereas the use of the pump system allowed for operation under the flow-
through conditions. The disintegrator was fitted out with a coaxial disintegration chamber
with a capacity of 0.5 L, in which the electrodes made of stainless steel were 2 cm apart.
Microwave processing was carried out using the MARS-Solvent Extraction System (CEM,
Matthews, NC, USA).

2.3. Pretreatment

Due to the design of the disintegrator, and in particular the pumping system that
feeds it with substrate, the substrate was cut up before disintegration and subsequently
hydrated with distilled water to 95% in order to prevent the breakdown of the pumping
system and to enable operation under flow conditions. The prepared material was put
into the disintegration chamber through the charging hopper. The disintegration process
was effected by electric impulses at an amplitude of 40 kV. The electric impulses were
rectangular. Impulses with a width of 50 µs and a frequency of 5 kHz were applied.
The disintegration was conducted in a coaxial chamber and, in consequence, the electric
field was distributed unevenly. The maximum electric field strength in the chamber was
38.66 kV/cm, and the minimum was 11.66 kV/cm. The microwave treatment process
was carried out with an output power of 400 W. The magnetron frequency was 2.45 GHz.
The samples were placed in Easy Prep Teflon vessels with a capacity of 115 cm3. The
most significant difference between the use of microwave irradiation and PEF for substrate
pretreatment was that, in the case of PEF, no significant temperature increase was observed.
The essence of the application of electric waves with a high voltage amplitude for substrate
pretreatment is the electric field induces plasmolysis (electroplasmolysis), which leads to
changes in the cell membrane’s thickness and consequently to its disruption. Microwave
irradiation, on the other hand, heats the substrate due to electromagnetic radiation which,
according to kinetic theories, accelerates chemical reactions. The research methodology was
designed to treat the substrate with the same energy dose in both methods. The experiment
was divided into nine series, whose classification criterion was the energy consumed in
the disintegration process: M0, P0-0 Wh/kg TS—control sample; M1, P1-50 Wh/kg TS;
M2, P2-100 Wh/kg TS; M3, P3-150 Wh/kg TS; M4, P4-200 Wh/kg TS; M5, P5-260 Wh/kg
TS; M6, P6-320 Wh/kg TS; M7, P7-370 Wh/kg TS; M8, P8-420 Wh/kg TS (M—microwave
pretreatment, P—PEF pretreatment).

2.4. Biochemical Methane Potential

The methane fermentation of the samples was conducted in an AMPTS II analyser
(BPC Instruments AB, Lund, Sweden) in order to determine the methane potential of the
substrates. Anaerobic fermentation was conducted under mesophilic conditions (37 ◦C) for
24 days. The biogas trials were conducted in 0.5 L glass reactors, fitted out with a stirring
system (stirring every 10 min for 30 s at a speed of 100 rpm). The reactors contained 0.2 L
of anaerobic inoculum (i) with the tested substrate (S). The ratio of the substrate sludge
(I) organic matter in the prepared bed was I/S = 5. The reactors were flushed with pure
nitrogen before the fermentation to remove oxygen. The dry weight of the inoculum was
5.35 ± 0.71 g/g, and that of the dry organic matter was 3.93 ± 0.68 g/g. A negative control
sample was tested, with the substrate not subjected to disintegration. The experiment was
performed in triplicate.

2.5. Analytical Methods

In order to determine the total organic carbon (TOC) content and the chemical oxy-
gen demand (COD), samples before and after disintegration were centrifuged, and these
compounds were determined in the supernatant. Chemical fractionation with a neutral
and acidic detergent was also performed in the supernatant to determine the contents of
cellulose, hemicellulose, and lignin. This was performed following the procedure devel-
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oped by van Soest et al. [24] based on a measurement of the neutral detergent fibre (NDF),
acidic-detergent fibre (ADF), and acidic-detergent lignin (ADL) content.

Determination of the cellulose content:

Cellulose = ADF − ADL (1)

Determination of hemicellulose content:

Hemicellulose = NDF − ADF (2)

Determination of lignin content:

Lignin = ADL (3)

Moreover, samples before and after disintegration were examined under a scanning
electron microscope (JSM-5310LV, JEOL, Tokyo, Japan) at 15 kV. To this end, the samples
were fixed in a 2.5% solution of glutaraldehyde and subsequently washed for 20 min
with phosphate buffer. The fixed samples were dehydrated in ethanol at a sequence of
concentrations: 30%, 50%, 70%, 80%, and 96% for 10 min and twice at a concentration of
99.8% for 30 min. Subsequently, the samples were dried at the critical point of CO2 and
coated with gold in an argon atmosphere with an ion coater (Fine Coater, JCF-1200, JEOL,
Tokyo, Japan).

The composition of the produced biogas was determined with a gas chromatography
unit with a TCD detector (Agilent 7890 A, Santa Clara, CA, USA). The TS and VS content
were determined by the gravimetric method and the carbon and nitrogen content in the
substrate—with a Flash 2000 analyser (Thermo Fisher Scientific, Waltham, MA, USA). The
TOC content was determined with a TOC-L analyser (Shimadzu, Kioto, Japan). Detergent
chemical fractionation was performed with an ANKOM220 device (ANKOM Technology,
Macedon, NJ, USA).

2.6. Statistical Analyses

The variance homogeneity for the results was determined with the Levene test. The
significance of differences between the variants was determined with the Tukey test (HSD).
The correlations between the groups were determined with the Pearson correlation (R). The
level of significance was α = 0.05. The statistical analyses were performed with Statistica 13
(TIBCO, Palo Alto, CA, USA).

3. Results and Discussion
3.1. Pretreatment Efficiency

The TOC in the liquid phase of the feedstock for methane fermentation was analysed
to determine the effect of pulsed electric field and electromagnetic field on lignocellulosic
material. The samples were analysed with a Shimadzu TOC analyser before and after
the disintegration process. The initial TOC content in the grass silage was found to be
3126 ± 46 mg/L. The analyses of the charge after disintegration with PEF with the assumed
hold times showed an increased TOC content in all the samples. The largest increase for
the charge with grass silage was observed in series P7, where the mean TOC content was
3560 ± 52 mg/L. The highest TOC of 3367 ± 40 mg/L of all the samples after microwave
disintegration was noted in M8 (Figure 1a,b). The initial COD level in the raw substrate was
9135 ± 101 mg O2/L. The highest COD for samples after PEF pretreatment was achieved
in P6 (10,554 ± 174 mg O2/L). The highest COD of all the samples after microwave
pretreatment was achieved in M8 (9505 ± 54 mg O2/L) (Figure 1c,d). Kuşçu et al. [25]
investigated the effect of PEF treatment on the content of dissolved COD in the liquid
fraction of activated sludge. The use of PEF treatment increased the content of dissolved
COD by 65%. The effect on waste activated sludge was also investigated by Deng et al. [26].
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In their experiment, the use of PEF treatment increased the content of dissolved COD by
almost 29%.
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Figure 1. TOC (a,b) and COD (c,d) in the substrate liquid fraction. Superscript letters (a,b,c,d,e,f)
denote significant differences (Tukey’s RiR test, p < 0.05).

The depolymerisation effectiveness was also determined by analysing the cellulose,
hemicellulose, and lignin contents. The results showed the cellulose content in the untreated
grass silage substrate was 34.15 ± 0.90% TS, the hemicellulose content was 24.27 ± 0.97% TS,
and lignin was 2.78% TS (Figure 2a–c). The lowest cellulose content after PEF disintegration
was achieved in series P7 (32.22 ± 1.61% TS) (Figure 2a). The hemicellulose content was
20.29 ± 1.14% TS, and lignin was 2.49 ± 0.32% TS (Figure 2b,c). The lowest cellulose,
hemicellulose, and lignin contents in samples following microwave disintegration were
found in series M9 (32.98 ± 0.66, 23.56 ± 0.66, 2.71 ± 0.32% TS) (Figure 2a–c). Work
performed by el Achkar et al. [27] described the detergent fractionation of fibres in PEF-
treated grape marc to analyse the cellulose, hemicellulose, and lignin contents. The tests
did not show any changes in the content of the above compounds under the influence of
PEF treatment. Similar conclusions were presented by Zieliński et al. [28] studying the
influence of hydrodynamic disintegration on silage of Virginia mallow.
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Figure 2. (a–c) The cellulose, hemicellulose, and lignin contents in the tested substrates. Superscript
letters (a,b,c) denote significant differences (Tukey’s RiR test, p < 0.05).

SEM imaging of the control sample and the samples following disintegration was
performed, for which the best technological effect was achieved in methane production.
The photographs clearly show the visible structures of monocotyledon leaf skin cells. Dis-
tinct deformation of the cell walls (marked with an arrow) was observed in sample P7
subjected to pretreatment with PEF. No such clear changes were observed in sample M8
after microwave treatment (Figure 3). Liu et al. [29] observed changes in tea leaf micro-
morphology following PEF disintegration. The analyses showed that PEF use results in
the formation of unevenly distributed pores on the surface. The pretreatment also resulted
in the formation of folded bulges on the material surface. Wang et al. [30] performed the
observation of substrate micromorphology after microwave disintegration using SEM. They
used corn straw as a substrate. They observed that the use of microwave disintegration
caused the cell walls to appear somewhat damaged and the surface roughness to increase.
Kovačić et al. [31] observed that the use of electroporation to pretreat the lignocellulosic
substrate led to changes in the cell structure in the form of pore formation and damage to
the cell membrane.
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3.2. Biogas and Methane Production

The analysis of grass silage biogas potential showed that the mean biogas production
rate was 448.94 ± 16.54 NL/kg VS in a non-pretreated sample. The methane production
rate for the control sample was 303.96 ± 11.17 NL/kg VS. The highest biogas production
output in PEF-pretreated samples was obtained in series P7 (535.57 ± 18.91 NL/kg VS),
whereas the methane productivity in this series was 364.95 ± 17.76 NL/kg VS. The highest
biogas output from substrates pretreated with microwaves was obtained in series M9
(487.18 ± 13.55 NL/kg VS). The methane output obtained was 334.47 ± 7.11 NL/kg VS
(Figure 4a,b). Wang et al. [32] examined the impact of PEF on biogas production from a
Pennisetum hybrid. The experiments showed that the largest increase in biogas production
was achieved under the following process conditions: 15 kV/120 Hz/60 min—26.95%. Ko-
vačić et al. [31] examined the impact of PEF on biogas and methane productivity from maize
stalks and soy straw. The use of PEF for the disintegration of maize stalks resulted in an 18%
increase in biogas production and a 16% increase in methane production. Biogas production
from soy straw also increased by 18%, whereas methane production increased by 17%.
Reports from el Achkar [27] describe the application of PEF in the pretreatment of grape po-
mace, achieving a methane production increase of 4%. Budiyono et al. [33] investigated the
effect of the microwave processing of fresh water hyacinth on biogas productivity. In their
research, using microwave pretreatment, they achieved an increase in biogas production of
almost 12%, with an energy consumption of 1025 Wh/g TS. Szwarc et al. [16,34] conducted
research on the impact of PEF on the production of methane from maize silage and rapeseed
straw. The pretreatment of maize silage with a pulsed electric field increased the production
of methane by approximately 16%. The use of PEF treatment of rapeseed straw increased
methane production by 14% compared to the control sample. Kuşçu et al. [25] applied PEF
pretreatment in the methane fermentation of waste activated sludge. The obtained results
showed that the biogas production increased by 70%. The application of PEF resulted
in a 73% increase in methane production. Zou et al. [35] applied PEF treatment in the
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methane fermentation of food residues and obtained an increase in methane production of
approximately 35%.
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4. Conclusions

The use of lignocellulosic biomass in the production of second-generation biofuels is
economically viable and environmentally justified. This biomass is easily available, which
is the main issue in energy production from renewable sources, e.g., biogas. Unfortunately,
the complex structure of lignocellulosic biomass makes it necessary to apply biomass pre-
treatment before methane fermentation in order to increase biogas production. Therefore,
pretreatment methods are still being sought, which will allow for biomass disintegration
cost minimisation and production maximisation of the energy carrier-biogas. SEM im-
ages of the samples after disintegration by both methods showed that PEF causes distinct
deformations of cell walls. No such changes were observed after microwave pretreat-
ment. The application of PEF disintegration in series P6 resulted in a COD increase from
9135 ± 101 mg O2/L to 10,554 ± 174 mg O2/L. The application of microwave disintegration
resulted in a smaller COD increase. The largest COD was noted in series M8 (9505 ± 54 mg
O2/L). The highest methane productivity from PEF-pretreated samples was noted in series
P7—364.95 ± 17.76 NL/kg VS, which was a 20.1% increase compared to the control sample.
The largest methane output from samples pretreated with microwaves was observed in
series M8 (334.47 ± 7.11 NL/kg VS), which was a 10% increase compared to the control
sample. According to the experimental results, PEF pretreatment can be applied in methane
fermentation to increase biogas production. These findings show that PEF disintegration is
more effective than that performed with microwaves, assuming that the same energy is
used for pretreatment.
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