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Abstract: A significant portion of the Indian population lives in villages, some of which are located
in grid-disconnected remote areas. The supply of electricity to these villages is not feasible or cost-
effective, but an autonomous integrated hybrid renewable energy system (IHRES) could be a viable
alternative. Hence, this study proposed using available renewable energy resources in the study area
to provide electricity and freshwater access for five un-electrified grid-disconnected villages in the
Odisha state of India. This study concentrated on three different kinds of battery technologies such as
lithium-ion (Li-Ion), nickel-iron (Ni-Fe), and lead-acid (LA) along with a diesel generator to maintain
an uninterrupted power supply. Six different configurations with two dispatch strategies such as load
following (LF) and cycle charging (CC) were modelled using nine metaheuristic algorithms to achieve
an optimally configured IHRES in the MATLAB© environment. Initially, these six configurations
with LF and CC strategies were evaluated with the load demands of a low-efficiency appliance
usage-based scenario, i.e., without demand-side management (DSM). Later, the optimal configuration
obtained from the low-efficiency appliance usage-based scenario was further evaluated with LF
and CC strategies using the load demands of medium and high-efficiency appliance usage-based
scenarios, i.e., with DSM. The results showed that the Ni-Fe battery-based IHRES with LF strategy
using the high-efficiency appliance usage-based scenario had a lower life cycle cost of USD 522,945
as compared to other battery-based IHRESs with LF and CC strategies, as well as other efficiency-
based scenarios. As compared to the other algorithms used in the study, the suggested Salp Swarm
Algorithm demonstrated its fast convergence and robustness effectiveness in determining the global
best optimum values. Finally, the sensitivity analysis was performed for the proposed configuration
using variable input parameters such as biomass collection rate, interest rate, and diesel prices. The
interest rate fluctuations were found to have a substantial impact on the system’s performance.

Keywords: off-grid; integrated renewable energy; demand-side management; optimization techniques;
different batteries

1. Introduction
1.1. Need for Energy Management Systems

Energy and freshwater are essential to humankind, but the planet is suffering greatly
from future and current energy demands as well as freshwater requirements due to the
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rapid climate change and population growth [1]. To resolve this power shortage, a backup
power system is needed. Diesel generators (DGs) have been employed as a backup mecha-
nism for a range of off-grid applications, but they face a number of key issues, including
fuel price volatility and high operating and maintenance costs. However, the optimum
combination of RE resources and DGs results in a cost-effective, efficient, and clean energy
system that reduces the uncertainties, energy prices, and CO2 emissions. At the same time,
an off-grid RE-based power system comprised of one or two RE resources in conjunction
with the battery storage system and DG is an ideal combination for electrifying the off-grid
rural areas. In the context of microgrid sizing, microgrids are typically either undersized or
oversized to meet the energy demands. An undersized microgrid would result in a loss of
power supply while an oversized microgrid would result in high system costs and excess
electricity production. Hence, to resolve these issues and reap the benefits of the RE-based
microgrid, a strong energy management strategy (EMS) is required [2].

1.2. The Importance of a Reverse Osmosis Desalination Plant for Remote Villagers

In India, safe drinking water is exceedingly limited, particularly in remote rural vil-
lages. Although some villages continue to receive government water supply, almost 73% of
Indian villages still rely on groundwater supply. Unfortunately, none of these resources are
unsuitable for providing a safe drinking water supply. The usage of fertilizers in such areas,
as well as other activities such as mining, has polluted the groundwater supply. Streams
surrounding human areas, such as villages, are also heavily polluted. Numerous Indian
soils have brackish groundwater with total dissolved solid (TDS) concentrations of more
than 500 mg/L. It is greater than the Bureau of Indian Drinking Water Standards’ recom-
mendation. Children of all ages are affected by this contaminated drinking water. Children
under the age of five are especially vulnerable since it frequently kills them and creates se-
rious health-related problems. As a result, the usage of reverse osmosis Desalination (ROD)
plants is essential for the health and well-being of rural village dwellers. Membranes and
chemicals are now widely available in the market as replacement components of the ROD
units, and nowadays, ROD units can be powered by locally available RE resources such as
solar, wind, and biomass. As a result, deploying ROD units in isolated rural communities
has become both simple and cost-effective, as well as necessary.

1.3. Overview of the Optimization Techniques

Several studies on microgrid size issues have been reported in the literature. The
preceding approaches can be divided into three categories: (i) software tools such as
RETScreen, HOMER, IHOGA, HOGA [3], etc., (ii) deterministic approaches such as graphi-
cal construction, probabilistic, iterative, linear programming, and analytical and numerical
methods [4], and (iii) metaheuristic algorithms such as grasshopper optimization algorithm
(GOA) [5], grey wolf optimization (GWO) [6], particle swarm optimization (PSO) [7], ge-
netic algorithm (GA) [8], etc. Although the software tools are simple to use, users cannot
select the necessary components in it and have no access or control over the algorithms
and calculations contained within them. Using software tools, several assumptions and
sequences can limit the microgrid size issues. Additionally, the deterministic approaches
outperform the software tools [9]. However, because of the complexities of microgrid sizing,
at the local optima, the optimal solution is extremely entrapped. In these circumstances,
they are unable to converge to the global best optimum solution. As a result, the algorithm
must be repeated numerous times with the initial condition chosen at random to avoid this
local optima entanglement. Hence, the solution is unlikely to be the global best optimal
solution, and the algorithm has to try several times to discover it. Therefore, metaheuristic
algorithms have become one of the most promising and extensively used methods [4].

Since the last decade, a number of metaheuristic algorithms have been developed and
paved the way for concerns such as microgrid sizing. Interestingly, few of these methods,
such as particle swarm optimization (PSO) and genetic algorithm (GA), are well-known
not only among the computer scientists but also among a large number of scientists from
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other fields. They are adaptive approaches that outperform deterministic methods because
their solutions are not substantially entangled at local optima. All of these algorithms have
various benefits, including the ability to handle any type of optimization problem [9]. In
contrast, the no-free-lunch theorem states that a particular metaheuristic algorithm can
achieve the global best optimal solution for a specific objective function but it may produce
ineffective outcomes for other objective functions [10]. This has prompted microgrid size
researchers to look at the maiden metaheuristic algorithms [4].

1.4. Literature Review on Optimization Techniques and Different Battery Technologies

Rechargeable batteries, soil physics, and chemical engineering are just a few of the
many fields that make use of electrolyte diffusion in electrolyte solutions [11,12]. For the
standalone un-electrified villages in the Chikmagalur district of Karnataka, Ramesh and
Saini [13] used the HOMER Pro to conduct a feasibility analysis for the PV/diesel generator
(DG)/micro hydro power (MHP)/WT/BAT configuration with LA and Li-Ion battery
technologies and three dispatch strategies such as cycle charging (CC), combined dispatch
(CD), and load following (LF) and it was revealed that the Li-Ion battery-based IHRES
with CD strategy had the lowest net present cost (NPC) and cost of energies (COEs) when
compared to CC and LF strategies.

Alpesh and Sunil [14] used a PV/biogas generator (BGG)/biomass generator (BMG)/WT/
LA battery configuration to power a simple off-grid village of 123 hamlets near the Gujarat-
Rajasthan state border in India and conducted an assessment using the technique of optimum
component selection with widely available types of equipment using a multi-variable linear
regression algorithm (MVLRA) and PSO to obtain the optimal results with the MVLRA.

Rajanna and Saini [15] employed a genetic algorithm to electrify five independent
un-electrified hamlets in India’s Chamarajanagar district of Karnataka state using a con-
figuration of PV/BMG/BGG/WT/MHP/LA battery technology. Ankit et al. [16] used
the HOMER Pro® software tool to electrify five independent un-electrified hamlets in
the Almora district of Uttarakhand state in India using a PV/BGG/DG/MHP/BMG/LA
battery configuration to minimize the system’s NPC.

Upadhyay and Sharma [17] used CC and LF strategies with GA, biogeography-based
optimization (BBO), and PSO algorithms to power seven standalone villages in the Indian
state of Uttarakhand with a configuration of PV/BMG/DG/BGG/MHP/LA battery tech-
nology. From the results, it was observed that the BBO algorithm produced the optimal
results. Chong Li et al. [18] used the HOMER pro® software tool to conduct a study for
280 single-family homes in Gansu Province, China, employing a WT/DG/BAT configura-
tion with Li-Ion, LA, and zinc-bromine (ZB) battery technologies. According to the findings,
the ZB battery technology produced the optimal results.

Bart et al. [19] used a Simapro software tool to conduct a life cycle assessment of PV
lighting products in a solitary rural area in South-East Asia and found that solar PV lighting
has a lower environmental effect than traditional lighting options. Shezan et al. [20] used
the HOMER Pro® software tool to conduct a study in a solitary rural region of KLIA Sepang
Station in the Malaysian state of Selangor, employing a configuration of PV/DG/WT/LA
battery technology to lower the system’s NPC. Carlos et al. [21] used GA-based algorithms
to analyze how to power an Indonesian island with PV/DG/Li-Ion battery technologies.

Chhunheng and Supachart [22] used the HOMER Pro® software tool to analyze how
to electrify a solitary rural region in Cambodia utilizing PV/DG/LA battery technology to
lower the system’s NPC. Sompol et al. [23] used the LABVIEW software tool to conduct a
study for off-grid applications in Thailand with a BMG/PV/Li-Ion battery configuration.
Haein and Tae [24] used the HOMER Pro® software tool to conduct an analysis to power a
freestanding region in Myanmar utilizing a PV/DG/BAT configuration with LA and Li-Ion
battery technologies to lower the system’s NPC, and from the results, it was identified that
the LA battery technology provided the optimal results.

Lorafe et al. [25] used the HOMER Pro® software tool to analyze how PV/LA battery
technology could be used to power South-East Asian islands: Philippines, Gilutongan,
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Cebu, and Cordova with minimum NPC. Sarah et al. [26] conducted an analysis in Dodoma
and Tanzania utilizing the PV/DG/WT/BAT configuration with LA and Li-Ion battery
technologies and found that the Li-Ion battery-based configuration with GA had the
lowest COE.

Kaabeche and Bakelli [27] conducted an assessment using a WT/PV/BAT configura-
tion with Li-Ion, LA, and nickel-cadmium battery technologies. The ALO, GWO, JAYA, and
Krill Herd algorithms were used to examine the system’s unit electricity cost and it was
discovered that the JAYA algorithm provided a viable solution with an LA battery-based
system, followed by Li-Ion and Ni-cd batteries.

1.5. Demand-Side Management

In general, uncoordinated peak and valley load demands increase energy costs by
expanding the generation and distribution networks, as well as forcing generators to run
out of their rated capacity during peak load periods [11]. Hence, it would be advantageous
to lower some of these demands in order to avoid the need for costly extra installations [12].
Furthermore, the energy demand curves must be as smooth as possible for several reasons,
including minimizing the strain on power generation equipment and other protective
components of the microgrid, as well as lowering energy costs and deferring or avoiding
future equipment investment. In this context, several demand-side management (DSM)
strategies in the power system industry have been applied using a variety of methods
such as “peak clipping, valley filling, load shifting, energy conservation, load building and
flexible load shape” [13], which are illustrated in Figure 1 and described as follows [28]:

(a) Peak clipping: peak clipping is a technique for reducing load demand during peak
hours. It is frequently accomplished by either limiting the use of appliances during peak
hours or motivating customers to modify their demand behavior by offering attractive
price signals.

(b) Valley filling: the purpose of valley filling is to stimulate energy use during off-
peak hours in order to increase average energy utilization. It can be done by encouraging
customers to do things such as loading and charging during off-peak hours when utilities
prefer to use less energy to meet the load demand.

(c) Load shifting: this is intended to shift the loads from on-peak to off-peak hours
without altering the energy use pattern. For example, during off-peak hours, customers
can store thermal heat and use it to keep the room warm all day. Similarly, other household
activities such as washing clothes and washing dishes can be done at night to prevent
peak loading.

(d) Energy conservation: the goal of energy conservation is to reduce the energy
demand by using energy-efficient devices. Changing to efficient devices can reduce the
load demand as well as change the load shape.

(e) Load building: load building and flexible loads are connected to the network
supported under the principle of smart grids. Load building improves load sharing as well
as energy storage systems to improve grid responsiveness.

(f) Flexible load shape: flexible loads can be handled in return for the benefits. This
implies that the load shape is responsible for the reliability conditions which means that
the loads can be modified according to the reliability of the system.
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Figure 1. All types of demand-side management.

1.6. Literature Review of Demand-Side Management

The concept of DSM has inspired the attention of researchers working on autonomous
IHRESs. Rajanna and Saini [29] used GA and PSO algorithms to analyze the performance of
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four un-electrified village zones in India with a DSM strategy using three investment-based
scenarios, such as low investment with high rating appliances, medium investment with
moderate rating appliances, and high investment with low rating appliances and found
that the systems with DSM strategy had the lowest costs using PSO.

Upadhyay and Sharma [17] proposed three energy management schemes based on the
HOMER pro® software tool and GA and PSO algorithms, claiming that peak shaving with
the CC strategy utilizing the PSO method would be more cost-effective than other methods.
Chauhan and Saini [30] investigated the techno-economic aspects of an IHRES using an
energy management approach by considering a load-shifting strategy based on DSM to
meet the energy demands of the population of Uttarakhand state villages in India, finding
that the DSM strategy was a more cost-effective solution than the NON-DSM strategy.

Zheng et al. [31] used linear economic programming to design a tariff-based load-
shifting algorithm to lower the operational costs of a biomass-based microgrid with com-
bined heat and power. Wang et al. [32] combined the receding horizon optimization
technique with DSM to lower the maximum operating and environmental expenses of a
standalone PV/WT network-based single-family dwelling. To obtain the best performance
in standalone systems, Marzband et al. [33] presented a stochastic optimization technique
that takes into account fluctuations in the design of load utilization.

Matallanas et al. [34] suggested a DSM control technique for enhancing business
planning in PV systems using neural networks with the goal of increasing energy efficiency.
Gudi et al. [35] used a binary particle swarm optimization to apply the DSM strategy
in the home sector for cost savings of the suggested system. Kyriakarakos et al. [36]
proposed a smart DSM solution based on the grey prediction algorithm to meet system
architectural principles and ensure the effectiveness of a freestanding multi-generated
microgrid operating in remote places. Randa Kallel et al. [37] investigated the benefits of
the proposed integrated system strategic plan under various scenarios and conducted a
comparison between the DSM and NON-DSM energy management strategies.

1.7. Motivation for the Article to Consider Energy Conservation-Based DSM

An energy conservation-based electrification is highly recommended in India. On 5
January 2015, the Government of India launched Unnat Jeevan by Affordable LEDs and
Appliances for All (UJALA) scheme, which will provide people with cost-effective energy-
efficient LED bulbs compared to market prices through Energy Efficiency Services Ltd.
(EESL) in a joint venture managed by the Indian Ministry of Power providing widespread
distribution of LED bulbs and energy-efficient electrical appliances. It has been distributed
more than 21.7 crores of energy-efficient LED bulbs with its network spread over 24 states
in India, resulting in energy and electrical bill savings as well as the reduction in both
the CO2 emissions and peak load demands. The National Energy Efficient Fan Program
(NEEFP) was also introduced by the EESL to promote energy conservation through in-
creased residential use of energy-efficient fans and EESL also developed a service model
such as the Street Lighting National Program (SLNP) scheme that allows municipalities
to replace conventional lights with LEDs without any upfront costs, where the balance
of costs is recovered by monetizing the energy savings through local municipalities [38].
These are all schemes of the Government of India that inspired us to write this article about
energy conservation-based DSM.

1.8. Novelty and Overview of the Article

It was identified that there has been no research on the supply of freshwater to the
isolated regions in the Indian scenario using a configuration of PV/BMG/DG/BAT with
Ni-Fe, LA, and Li-Ion battery technologies using LF and CC strategies. Furthermore, several
researchers conducted a techno-economic feasibility study to provide an uninterruptable
power supply using only one or two types of battery technologies, such as Li-Ion and
LA. Moreover, various researchers have conducted studies on different types of DSM
approaches. However, no studies have been attempted to consider the efficiency-based
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scenarios (energy conservation-based DSM) such as high power rated appliances of low cost
(HPRALC), medium power rated appliances of moderate cost (MPRAMC), and low power
rated appliances of high cost (LPRAHC) with different dispatch strategies using different
battery technologies for off-grid rural areas, which was identified as a significant gap in the
existing literature. Finally, several researchers have compared the proposed algorithm’s
convergence and robustness efficiency to those of only one or two other algorithms.

For a realistic analysis of an off-grid IHRES, the aforementioned gaps and limitations
must be resolved. To keep in this view, five un-electrified off-grid villages in the Odisha
state of Rayagada district were identified as a study area in order to provide power and
freshwater availability using accessible RE resources in the study area, such as biomass
and solar. Owing to the intermittent nature of these RE resources, the power supply is not
continuous. To ensure a continuous power supply, the study conducted feasibility studies
with three different types of battery technologies such as lithium-ion (Li-Ion), nickel-iron
(Ni-Fe), and lead-acid (LA), as well as a diesel generator (DG), by taking into account LF
and CC strategies. In general, the rural people’s load usage pattern is almost the same
throughout the day. Regularly, the peak loads occur in the evening due to the priority loads
such as lamps, fans, and TVs; these loads cannot be altered by their habitual pattern of
use. Therefore, peak clipping and load shifting are not possible for off-grid rural villagers,
especially in the evening time. However, with proper energy conservation management,
these peak loads can be reduced without peak clipping and load shifting. It is one of
the most successful and favored demand response programs for off-grid rural villagers
due to its easy-to-adopt benefits, no maintenance, and no need of shifting priority loads.
Hence, the study considered energy conservation-based DSM using consumers’ loads
usage patterns such as high power rated appliances of low cost (HPRALC), medium power
rated appliances of moderate cost (MPRAMC), and low power rated appliances of high
cost (LPRAHC) with different dispatch strategies using different battery technologies.

Six different configurations were modelled in order to determine the optimum configu-
ration for electrifying the study area using available RE resources and the proposed battery
technologies with their different depth of discharges (DODs) such as PV/BMG/DG/LA at
70% DOD, PV/BMG/DG/LA at 80% DOD, PV/BMG/DG/Li-Ion at 50% DOD, PV/BMG/
DG/Li-Ion at 70% DOD, PV/BMG/DG/Li-Ion at 80% DOD, and PV/BMG/DG/Ni-Fe at
80% DOD, which were tested with two different dispatch strategies such as LF and CC
using consumers load usage patterns such as HPRALC, MPRAMC, and LPRAHC-based
scenarios. To obtain an optimum configuration from these six configurations, a maiden
algorithm called a Salp Swarm Algorithm from the metaheuristic family was proposed in
the study [10]. To demonstrate its convergence and robustness efficiency in identifying the
global best optimal values, it was compared with eight other proven and well-known algo-
rithms, namely: particle swarm optimization (PSO) [7], differential evolutionary algorithm
(DE) [39], genetic algorithm (GA) [8], ant lion optimization (ALO) [40], grasshopper opti-
mization algorithm (GOA) [5], grey wolf optimization (GWO) [6], moth flame optimization
(MFO) [41], and dragonfly algorithm (DA) [42]. Finally, the optimal configuration’s sensi-
tivity analysis was investigated using various input parameters such as biomass foliage
collection rate, interest rate, and diesel prices.

2. Development of the IRES

A systematic process is essential for the implementation of an IHRES for isolated rural
communities, which is outlined in the following steps:

2.1. Step 1—Study Area Identification

In the Rayagada district of Odisha state in India, a group of five un-electrified villages
of Muniguda block were considered as a study area. Figure 2 shows its geographic location
on the map. It is located at 19◦37′16.6944′ ′ N latitude and 83◦29′50.6688′ ′ E longitude, at a
height of 206 m from the above mean sea level. In this area, a total of 1213 people live in
266 households, none of which have access to electricity or a safe drinking water supply.
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Because of its remote location, it has yet to be electrified, so people still rely on solar lamps,
kerosene lanterns, and candles for lighting.

Figure 2. The location of the study area on the map.

2.2. Step 2—Estimation of Electrical Energy Demand and Hourly Freshwater Requirements

This study contains three different types of energy-efficiency scenarios based on the
household electrical appliance usage patterns such as high power rated appliances of
low cost (HPRALC), medium power rated appliances of moderate cost (MPRAMC), and
low power rated appliances of high cost (LPRAHC). Each scenario was classified into
community, domestic, commercial, agricultural, or small-scale industrial sectors. HPRALC
appliances are incandescent bulbs, LCD TVs, incandescent street light lamps, and low-
efficiency ceiling fans. MPRAMC appliances are CFL lights, LCD TVs, CFL street lights,
and medium-efficiency ceiling fans. LPRAHC appliances are LED TVs, LED lights, LED
street lights, and high-efficiency ceiling fans. The corresponding hourly load demands for
both the summer and winter seasons and their related details are given in Tables 1–3 and
the associated load curves are shown in Figure 3.
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Table 1. HPRALC-based scenario load demand for both winter and summer seasons.
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1:00–2:00 19.95/0 0.3 0.38/0 0.2 1.08 2.98 24.89/4.56

2:00–3:00 19.95/0 0.3 0.38/0 0.2 1.08 2.98 24.89/4.56

3:00–4:00 19.95/0 0.3 0.38/0 0.2 1.08 2.98 24.89/4.56

4:00–5:00 31.92 19.95/0 0.3 0.38/0 0.2 1.08 2.98 56.81/36.48

5:00–6:00 31.92 19.95/0 9.98 0.3 0.38/0 0.2 1.08 2.98 66.79/46.46

6:00–7:00 19.95/0 9.98 1.33 0.38/0 0.2 9 2.98 43.82/23.49

7:00–8:00 19.95/0 9.98 1.33 0.38/0 0.2 9 2.98 43.82/23.49

8:00–9:00 19.95/0 9.98 0.67 0.38/0 0.2 9 2.98 43.16/22.83

9:00–10:00 9.98/0 9.98 0.72 0.9/0 3 0.38/0 0.2 3.73 0.3 0.38/0 8.95 1.8 40.32/28.68

10:00–11:00 9.98/0 9.98 0.72 0.9/0 3 0.38/0 0.2 3.73 0.3 0.38/0 8.95 1.8 40.32/28.68

11:00–12:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 3.73 0.3 0.38/0 8.95 1.8 70.65/58.78

12:00–13:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 3.73 0.3 0.38/0 8.95 1.8 70.65/58.78

13:00–14:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 3.73 0.3 0.38/0 2.98 3.73 66.61/54.74

14:00–15:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 0.3 0.38/0 2.98 3.73 62.88/51.01

15:00–16:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 0.3 0.38/0 2.98 3.73 62.88/51.01

16:00–17:00 9.98/0 39.9 0.72 0.9/0 3 0.38/0 0.2 0.18 0.23/0 0.3 0.38/0 2.98 3.73 62.88/51.01

17:00–18:00 9.98/0 39.9 0.38/0 0.2 0.18 0.23/0 0.3 0.38/0 2.98 3.73 58.26/47.29

18:00–19:00 31.92 19.95/0 19.95 1.33 0.3 0.38/0 0.2 0.18 0.23/0 1.08 0.3 0.38/0 2.98 79.18/58.24
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Table 1. Cont.
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Quantity
→ 2 1 1 1 12 12 12 5 5 1 3 3 27 6 1 5 5 3 1 1

19:00–20:00 31.92 19.95/0 19.95 1.33 0.3 0.38/0 0.2 0.18 0.23/0 1.08 0.3 0.38/0 2.98 79.18/58.24

20:00–21:00 31.92 19.95/0 19.95 0.67 0.3 0.38/0 0.2 1.08 2.98 77.43/57.1

21:00–22:00 31.92 19.95/0 19.95 0.67 0.3 0.38/0 0.2 1.08 2.98 77.43/57.1

22:00–23:00 15.96 19.95/0 9.98 0.67 0.3 0.38/0 0.2 1.08 2.98 51.5/31.17

23:00–24:00 19.95/0 0.3 0.38/0 0.2 1.08 2.98 24.89/4.56

SIL = Small Industrial Load; PW = Pumping Water; S/W = Summer/Winter; SL = Street Lighting; MC = Mobile Charger; MDP = Mini Diary Plant; MCTM = Multi-Crop Threshing Machine.
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Table 2. MPRAMC-based scenario load demand for both winter and summer seasons.

Load Sector
→ Domestic Load

Community Load Agricultural
Load Commercial Load SIL

Hourly
Energy

Demand
(kWh)

School Hospital Community
Hall SL PW MCTM Shops MDP Flour
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Quantity
→ 2 1 1 1 12 12 12 5 5 1 3 3 27 6 1 5 5 3 1 1

Time (h) ↓ S/W S/W S/W S/W S/W S/W

0:00–1:00 16.49/0 0.09 0.31/0 0.2 0.59 2.98 20.66/3.86

1:00–2:00 16.49/0 0.09 0.31/0 0.2 0.59 2.98 20.66/3.86

2:00–3:00 16.49/0 0.09 0.31/0 0.2 0.59 2.98 20.66/3.86

3:00–4:00 16.49/0 0.09 0.31/0 0.2 0.59 2.98 20.66/3.86

4:00–5:00 9.58 16.49/0 0.09 0.31/0 0.2 0.59 2.98 30.24/13.44

5:00–6:00 9.58 16.49/0 6.65 0.09 0.31/0 0.2 0.59 2.98 36.89/20.09

6:00–7:00 16.49/0 6.65 1.33 0.31/0 0.2 9 2.98 36.96/20.16

7:00–8:00 16.49/0 6.65 1.33 0.31/0 0.2 9 2.98 36.96/20.16

8:00–9:00 16.49/0 6.65 0.67 0.31/0 0.2 9 2.98 36.3/19.5

9:00–10:00 8.25/0 6.65 0.22 0.74/0 3 0.31/0 0.2 3.73 0.09 0.31/0 8.95 1.8 34.25/24.64

10:00–11:00 8.25/0 6.65 0.22 0.74/0 3 0.31/0 0.2 3.73 0.09 0.31/0 8.95 1.8 34.25/24.64

11:00–12:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 3.73 0.09 0.31/0 8.95 1.8 54.44/44.64

12:00–13:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 3.73 0.09 0.31/0 8.95 1.8 54.44/44.64

13:00–14:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 3.73 0.09 0.31/0 2.98 3.73 50.4/40.6

14:00–15:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 0.09 0.31/0 2.98 3.73 46.67/36.87

15:00–16:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 0.09 0.31/0 2.98 3.73 46.67/36.87

16:00–17:00 8.25/0 26.6 0.22 0.74/0 3 0.31/0 0.2 0.05 0.19/0 0.09 0.31/0 2.98 3.73 46.67/36.87

17:00–18:00 8.25/0 26.6 0.31/0 0.2 0.05 0.19/0 0.09 0.31/0 2.98 3.73 42.71/33.65

18:00–19:00 9.58 16.49/0 13.3 1.33 0.09 0.31/0 0.2 0.05 0.19/0 0.59 0.09 0.31/0 2.98 45.51/28.21
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Table 2. Cont.
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Quantity
→ 2 1 1 1 12 12 12 5 5 1 3 3 27 6 1 5 5 3 1 1

19:00–20:00 9.58 16.49/0 13.3 1.33 0.09 0.31/0 0.2 0.05 0.19/0 0.59 0.09 0.31/0 2.98 45.51/28.21

20:00–21:00 9.58 16.49/0 13.3 0.67 0.09 0.31/0 0.2 0.59 2.98 44.21/27.41

21:00–22:00 9.58 16.49/0 13.3 0.67 0.09 0.31/0 0.2 0.59 2.98 44.21/27.41

22:00–23:00 4.79 16.49/0 6.65 0.67 0.09 0.31/0 0.2 0.59 2.98 32.77/15.97

23:00–24:00 16.49/0 0.09 0.31/0 0.2 0.59 2.98 20.66/3.86

SIL = Small Industrial Load; PW = Pumping Water; S/W = Summer/Winter; SL = Street Lighting; MC = Mobile Charger; MDP = Mini Diary Plant; MCTM = Multi-Crop Threshing Machine.
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Table 3. LPRAHC-based scenario load demand for both winter and summer seasons.

Load Sector
→ Domestic Load

Community Load Agricultural
Load Commercial Load SIL
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Energy
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(kWh)
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Quantity
→ 2 1 1 1 12 12 12 5 5 1 3 3 27 6 1 5 5 3 1 1

Time (h) ↓ S/W S/W S/W S/W S/W S/W

0:00–1:00 12.77/0 0.04 0.24/0 0.2 0.35 2.98 16.58/3.57

1:00–2:00 12.77/0 0.04 0.24/0 0.2 0.35 2.98 16.58/3.57

2:00–3:00 12.77/0 0.04 0.24/0 0.2 0.35 2.98 16.58/3.57

3:00–4:00 12.77/0 0.04 0.24/0 0.2 0.35 2.98 16.58/3.57

4:00–5:00 4.26 12.77/0 0.04 0.24/0 0.2 0.35 2.98 20.84/7.83

5:00–6:00 4.26 12.77/0 6.65 0.04 0.24/0 0.2 0.35 2.98 27.49/14.48

6:00–7:00 12.77/0 6.65 1.33 0.24/0 0.2 9 2.98 33.17/20.16

7:00–8:00 12.77/0 6.65 1.33 0.24/0 0.2 9 2.98 33.17/20.16

8:00–9:00 12.77/0 6.65 0.67 0.24/0 0.2 9 2.98 32.51/19.5

9:00–10:00 6.38/0 6.65 0.1 0.58/0 3 0.24/0 0.2 3.73 0.04 0.24/0 8.95 1.8 31.91/24.47

10:00–11:00 6.38/0 6.65 0.1 0.58/0 3 0.24/0 0.2 3.73 0.04 0.24/0 8.95 1.8 31.91/24.47

11:00–12:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 3.73 0.04 0.24/0 8.95 1.8 52.02/44.44

12:00–13:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 3.73 0.04 0.24/0 8.95 1.8 52.02/44.44

13:00–14:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 3.73 0.04 0.24/0 2.98 3.73 47.98/40.4

14:00–15:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 0.04 0.24/0 2.98 3.73 44.25/36.67

15:00–16:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 0.04 0.24/0 2.98 3.73 44.25/36.67

16:00–17:00 6.38/0 26.6 0.1 0.58/0 3 0.24/0 0.2 0.02 0.14/0 0.04 0.24/0 2.98 3.73 44.25/36.67

17:00–18:00 6.38/0 26.6 0.24/0 0.2 0.02 0.14/0 0.04 0.24/0 2.98 3.73 40.57/33.57
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Table 3. Cont.

Load Sector
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Quantity
→ 2 1 1 1 12 12 12 5 5 1 3 3 27 6 1 5 5 3 1 1

18:00–19:00 4.26 12.77/0 13.3 1.33 0.04 0.24/0 0.2 0.02 0.14/0 0.35 0.04 0.24/0 2.98 35.91/22.52

19:00–20:00 4.26 12.77/0 13.3 1.33 0.04 0.24/0 0.2 0.02 0.14/0 0.35 0.04 0.24/0 2.98 35.91/22.52

20:00–21:00 4.26 12.77/0 13.3 0.67 0.04 0.24/0 0.2 0.35 2.98 34.81/21.8

21:00–22:00 4.26 12.77/0 13.3 0.67 0.04 0.24/0 0.2 0.35 2.98 34.81/21.8

22:00–23:00 2.13 12.77/0 6.65 0.67 0.04 0.24/0 0.2 0.35 2.98 26.03/13.02

23:00–24:00 12.77/0 0.04 0.24/0 0.2 0.35 2.98 16.58/3.57

SIL = Small Industrial Load; PW = Pumping Water; S/W = Summer/Winter; SL = Street Lighting; MC = Mobile Charger; MDP = Mini Diary Plant; MCTM = Multi-Crop Threshing Machine.
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Figure 3. Hourly energy demands for all the efficient appliance usage-based scenarios in winter and
summer seasons.

Taking into account the significance of the freshwater requirements, the daily require-
ment of the freshwater for both drinking and cooking purposes was projected as 4500 and
5000 L per day for the winter and summer seasons, respectively. Figure 4 illustrates the
hourly volumetric demand of freshwater in both the winter and summer seasons.

Figure 4. The volumetric hourly freshwater demand for both the winter and summer seasons.

2.3. Step 3—Resource Assessment

RE resources such as solar and biomass are abundant in the study area. It has an annual
average of solar energy of 5.18 kWh/m2/day. The annual average ambient temperature
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is 26 ◦C. The study area is surrounded by a high dense forest covering about 87 hectares,
with a collection rate of 60% of forest foliage such as leaves, pine needles, and firewood.
The biomass supply is projected to be 9 tons/year. The study considered in the simulation
an average of 10 years (2005–2015) of hourly solar radiation and ambient temperatures,
which were taken from the National Renewable Energy Laboratory (NREL) and are shown
in Figures 5 and 6.

Figure 5. Annual global solar radiation of the study area.

Figure 6. The annual ambient temperature of the study area.

3. The IHRES Component Mathematical Modelling

Before optimal sizing of the IHRES, proper mathematical modelling of the components
is needed. The study proposed an IHRES model that incorporates biomass and solar energy
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resources as well as a battery bank and diesel generator as a backup power supply. Its
schematic diagram is depicted in Figure 7 and the corresponding mathematical models are
described as follows.

Figure 7. The schematic diagram of the IRES.

3.1. Solar Energy System

Various models for measuring PV output power have been proposed in the literature.
In this analysis, a simplified model was used to calculate the output power of a PV panel
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(PPV(t)) by using Equation (1) based on the hourly ambient temperature (Tamb(t)) and
hourly solar irradiation (G(t)) in the study area [9].

PPV(t) = PVrated × (G(t)/Gre f )×
[
1 + KT ×

(
TC − Tre f

)]
(1)

where, Gre f is a reference condition solar radiation, its value is 1000 W/m2, KT is the
maximum power temperature coefficient, its value is 3.7 × 10 − 3 (1/◦C), Tre f is at the
standard test condition PV cell temperature, its value is 25 ◦C, and PVrated is the PV panel
rated power.

The cell temperature (TC) is calculated as:

TC = Tamb(t) + (0.0256× G(t)). (2)

where, Tamb(t) is the hourly ambient temperature (◦C).
The PV panel energy generation (EPV) is calculated as follows:

EPV(t) = NPV × PPV(t)× ∆t (3)

where, ∆t is the time span and is considered as one hour.

3.2. Biomass Generator (BMG)

The biomass generator is made up of four major components such as “producer gas-
based engine cum generator set, gas cleaning system, gas cooling system and biomass
gasifier. For the biomass gasifier, the study used a downdraft gasifier design; in this gasifier,
mainly seven parts are there such as drying zone, hopper lid, combustion zone, reduction
zone, pyrolysis zone, ash removal tank and smoke valve. The cleaning system consists
of pan filter, a cyclone, cotton filter and sawdust filter and the cooling system consists of
a chiller plant” [43,44]. The front and rear views of the biomass generator are shown in
Figures 8 and 9, respectively.

Figure 8. Front view of the biomass generator [44].
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Figure 9. Rear view of the biomass generator [44].

The power generated by the biomass generator (PBMG) is calculated as [14]:

PBMG(t) =
QBM × ηBMG × CVBM × 1000

DOHBMG × 365× 860
(4)

where, ηBMG is the efficiency of the BMG, CVBM is the calorific value of the biomass, its
value is 4015 kcal/kg, DOHBMG is the daily operative hours of the BMG, the 860 value
used in the formula is a converting factor from kcal to kWh, and QBM is the availability of
the quantity of biomass (tons/year).

The energy generated by the BMG (EBMG) is calculated as follows:

EBMG(t) = PBMG(t)× ∆t (5)

where, ∆t is the time period and is considered to be one hour.

3.3. Battery Bank

When RE resources are unavailable or the system is experiencing peak load demand,
the battery bank usually supplies the power. Whenever excess energy is generated by the
RE resources, it is stored in the battery bank. The energy stored in the battery bank at any
hour ‘t’ is expressed as follows [9]:

EBat(t) = (1− σ)× EBat(t− 1) + (EG(t)− EL(t)/ηConv)× ηCC × ηrbat (6)

where, σ is the battery hourly self-discharge rate, EG is the electrical energy generated, EL
is the electrical energy demand, ηConv is the bi-directional converter efficiency, ηCC is
the charge controller efficiency, ηrbat is the battery round trip efficiency, and EBat(t) and
EBat(t− 1) are battery bank energy levels at time ‘t′ and ‘t− 1′, respectively.

The electrical energy generated (EG) by the RE resources are calculated as follows:

EG(t) = [EDC(t) + EAC(t)]× ηConv (7)

where the DC energy generated (EDC) by the RE resources are calculated as follows:

EDC(t) = EPV(t) (8)
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The AC energy generated (EAC) by the RE resources are calculated as follows:

EAC(t) = EBMG(t) (9)

The electrical power generated by the RE resources during the discharge process is
less than the load demand. Therefore, the battery bank can provide the necessary deficit
load, which can be expressed as follows:

EBat(t) = (1− σ)× EBat(t− 1)− (EL(t)/ηConv − EG(t))/ηrbat (10)

3.4. Diesel Generator (DG)

Diesel generators are beneficial in off-grid areas because they provide power when
batteries fail to fulfill the load demand or when renewable energy supplies are disrupted
by prolonged cloudy weather or rainy seasons. The main reason for including DG in the
study is that many households, primary health care centers, and businesses are left in
the dark during the blackouts caused by super storms and other unexpected occurrences.
Furthermore, in the last ten years, blackout cases have doubled. Thus, incorporating a DG
set into integrated RE systems improves the efficiency of a microgrid by providing a reliable
power source in emergency situations and sharing peak load demands when batteries fail
to meet the peak load demands [45,46]. The DG hourly fuel consumption (FDG) can be
calculated using a linear law based on the required load demand as follows [9]:

FDG(t) =
(
aDG × PDG,gen(t) + bDG × PDG,rat

)
l/h (11)

where, aDG and bDG are the DG fuel consumption curve coefficients and their values are
aDG = 0.246 (l/kWh) and bDG = 0.08145 (l/kWh). PDG,gen(t) and PDG,rat are the hourly
generated power and rated power of the DG, respectively.

The DG annual fuel consumption (AFC) is calculated as follows:

AFC =
8760

∑
t=1

FDG(t) (12)

CO2 Emissions

The hourly CO2 emissions of DG estimated with respect to the hourly fuel consump-
tion are as follows [47]:

CO2(t) = SECO2( kg/l)× FDG(t)( l/h) (13)

where, SECO2 is the specific CO2 emissions per L of diesel and its value is 2.7 kg/L.
The DG annual CO2 emissions are estimated as follows:

ACO2 emission =
8760

∑
t=1

CO2(t) (14)

3.5. Bi-Directional Converter with a Charge Controller (BDC-CC)

In general, the BDC-CC converts electrical energy into rectifier and inverter modes of
operation. In the inverter mode, it converts the direct current (DC) into an alternate current
(AC) and in the rectifier mode, it converts AC into DC. The charge controller is useful for
ensuring that the battery bank is not overcharged or over-discharged. The BDC-CC power
rating (PBDC-CC) is calculated as follows [14]:

PBDC-CC = ET,max × 1.1 (15)

where, the multiplication factor 1.1 represents the converter’s 10% overloading capability
and ET,max is the maximum amount of energy transferred through the converter.
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3.6. Reverse Osmosis Desalination (ROD) Plant

In relation to the specific energy consumption (SEC), the power (PDEM) required by the
ROD unit to generate an hourly freshwater demand (HVDW) for the desalination process is
expressed as follows [1]:

PDEM(t) = HVDM(t)× SEC (16)

In this study, the ROD unit was expected to consume 2 kWh/m3 (SEC) of specific
energy. The ROD unit consists of pumps, a desalination unit, membranes, and energy
recovery devices. The ROD unit’s daily volumetric demand of freshwater (DVDW) is
calculated as follows:

DVDW = 24×
(

PDEM
SEC

)
(17)

To analyze the characteristic curves of RO membranes, the ROD system was designed
to operate in between the installed power (PI) and minimum load requirement (PMLD), i.e.,

PMLD ≤ PDEM ≤ PI (18)

where, the ROD unit’s minimum load demand (PMLD) is used to resolve the osmotic pressure
produced by the ROD unit, which was estimated to be 25% of the installed power (PI).

The ROD unit autonomy assumes a two-day storage period of a freshwater tank
to calculate the volumetric capacity of a freshwater tank (VCWT), which is calculated
as follows:

VCWT = 2× DVDW (19)

4. Economic Analysis of the IRES

Several approaches have been used to investigate the economic feasibility of the IHRES
such as net present cost, annual levelized cost, life cycle cost (LCC), and payback period.
In these scenarios, the LCC methodology for economic analysis is extensively employed
since it provides an accurate overview of project expenses over the project’s lifespan. In
this study, the LCC of the IHRES was calculated using Equation (20) [46] by summing
the erection costs, initial capital costs, O&M costs, fuel costs, and replacement costs of all
system components. The analysis comprised the following assumptions.

The erection costs of the PV, BMG, DG, BAT, BDC-CC, and ROD unit were taken as
20% [14], 5% [14], 5%, 3% [14], 3% [14], and 3% [46] of their capital costs, respectively.

The replacement cost of the BMG, DG, BAT, BDC-CC, MEM, and CHEM were consid-
ered as 70% [14], 100% [46], 100% [14], 100% [14], 100% [14], and 100% [14] of their capital
costs, respectively.

LCC = ICC + PV,O&M + PV,REP + PV,FUEL (20)

The initial capital cost (ICC) of the IRES components are calculated as follows [14]:

ICC =

[ (
CBMG,cap

)
+
(

NPV × CPV,cap
)
+
(

NBAT × CBAT,cap
)
+(

CROD,cap
)
+
(
CBDC-CC,cap

)
+
(
CMEM,cap

)
+
(
CWTA,cap

)
+
(
CCHE,cap

)] (21)

where, CBMG,cap, CPV,cap, CBAT,cap, CROD,cap, CBDC-CC,cap, CMEM,cap, CWTA,cap, and CCHE,cap
are the initial capital costs of the BMG, PV, BAT, ROD unit, BDC-CC, MEM, WTA, and
CHE, respectively.

The erection costs (EREC) of the IRES components are calculated as follows [14]:

EREC =


(NPV × CPV,erect) + (CROD,erect)+(

(NBAT × CBAT,erect)×
Nr
∑

b=1

(1+x)bNc−1

(1+y)bNc

)
+(

CBDC-CC,erect ×
Nr
∑

d=1

(1+x)dNc−1

(1+y)dNc

)
+

(
CBMG,erect ×

Nr
∑

g=1

(1+x)gNc−1

(1+y)gNc

)
 (22)
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where, CPV,erect, CROD,erect, CBAT,erect, CBDC-CC,erect, and CBMG,erect are erection costs of PV,
ROD unit, BAT, BDC-CC, and BMG, respectively.

The present value of annual O&M (PV,O&M) costs of the IRES components are calcu-
lated as follows [14]:

PV,O&M =

[
(NPV × CPV,o&m) + (CBMG,o&m)

(NBAT × CBAT,o&m) + (CBDC-CC,o&m) + (CROD,o&m)

]
×

N

∑
i=1

(1 + x)i−1

(1 + y)i (23)

where, CPV,o&m, CBMG,o&m, CBAT,o&m, CBDC-CC,o&m, and CROD,o&m are O&M costs of the PV,
BMG, BAT, BDC-CC, and ROD unit, respectively, and y is defined as follows [14]:

y =
Inom − x

1 + x
(24)

where, Inom, y, N, and x are the nominal interest rate, discount rate, lifespan, and the
inflation rate of the project, respectively.

The components’ lifespan such as that of batteries, biomass generator, bi-directional
converter with a charge controller, membranes, chemicals, and DG are shorter than the
project lifetime. Therefore, they need to be replaced at some stage during the project’s
lifetime. The present value of annual replacement cost (PV,REP) of the IRES is calculated
as follows:

PV,REP =



(
NBAT × CBAT,rep ×

Nr
∑

b=1

(1+x)bNc−1

(1+y)bNc

)
+

(
CBMG,rep ×

Nr
∑

g=1

(1+x)gNc−1

(1+y)gNc

)
+(

CCHE,rep ×
Nr
∑

c=1

(1+x)cNc−1

(1+y)cNc

)
+

(
CBDC-CC,rep ×

Nr
∑

d=1

(1+x)dNc−1

(1+y)dNc

)
+(

NMEM × CMEM,rep ×
Nr
∑

i=1

(1+x)mNc−1

(1+y)mNc

)


(25)

where, CBAT,rep, CBMG,rep, CCHE,rep, CBDC-CC,rep, and CMEM,rep are the replacement costs of
the BAT, BMG, CHE, BDC-CC, and MEM, respectively, and the Nr is defined as follows [14]:

Nr = int
(

N − Nc

Nc

)
(26)

where, Nr and Nc are the number of replacements needed for the system components and
lifespan of each system component, respectively.

The present value of annual fuel cost (PV,FUEL) of the IRES is calculated as [14]:

PV,FUEL = [(CBM ×QBM) + (AFCDG)]×
N

∑
i=1

(1 + x)i−1

(1 + y)i (27)

where CBM and QBM are the cost and quantity of the biomass, respectively, and AFCDG is
the annual fuel consumption of the DG.

5. The Objective Function and Its Constraints

The system’s objective function, i.e., life cycle cost (LCC), and its constraints are
discussed as follows.



Energies 2022, 15, 5176 23 of 50

5.1. Life Cycle Cost

The objective function as expressed in Equation (28) was used to calculate the system’s
life cycle cost. The objective function is primarily dependent on two integer decision
variables such as the number of batteries (NBAT) and PV panels (NPV).

min LCC(NPV , NBAT) =
min

∑
C=PV,BMG,BAT,ROD,BDC−CC

(LCC)C (28)

5.2. Upper and Lower Bounds

In this study, it was presumed that the biomass generator operates as a fixed energy
resource with a rated power of 5 kW and works daily for five hours during the peak load
demands, i.e., from 6 P.M. to 10 P.M., to generate 4 kWh of energy per hour. Hence, it
was not bound by any constraints. Furthermore, the remaining solar energy resource was
subject to the following constraint.

0 ≤ NPV ≤ NPV−max (29)

where, NPV is the number of PV panels.
Furthermore, the battery bank was subjected to the following constraint.

0 ≤ NBAT ≤ NBAT−max (30)

where, NBAT is the number of batteries.

5.3. Battery Bank Energy Storage Limits

The amount of energy stored in the battery bank at any hour ‘t’ is determined by the
following constraint [45]:

EBat_min ≤ EBat(t) ≤ EBat_max (31)

The maximum and minimum energy storage levels of the battery bank is calculated
as follows:

EBat_max =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmax−bat (32)

EBat_min =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmin−bat (33)

where, VBAT and SBAT are the voltage and rated capacity (Ah) of the battery, respectively.
The minimum and maximum state of charges of the battery is calculated as follows:

SOCmin−bat = 1− DOD

SOCmax−bat = SOCmin−bat + DOD

where, DOD is the depth of discharge of the battery.

5.4. Diesel Generator Operating Limits

At higher loads, the diesel generator is much more efficient. As a result, the minimum
load required for the DG operation is set at 40% of its rated capacity. Accordingly, the DG
runs in the operating mode after adhering to the limitations mentioned below [48]:

EL(t)
ηconv

≥ 40% of Prdg × ∆t (34)

where EL(t) is the hourly energy demand, ηconv is the efficiency of the converter, Prdg is the
rated power of the diesel generator, and ∆t is the time period.
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5.5. Power Reliability Index

The power system’s reliability is described as its ability to supply power for a specified
period of time under specific conditions. In this study, The IHRES power reliability was
assessed using the loss of power supply probability (LPSP), which is calculated by summing
the hours of a power outage to the sum of hourly energy demands. The loss of power
supply (LPS) at any hour ‘t’ is calculated as follows [1]:

LPS(t) =
EL(t)
ηConv

− EG(t)− [(1− σ)× EBat(t− 1)− EBat_min]× ηrbat (35)

The LPSP is calculated as follows [1]:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 EL(t)

(36)

During the optimization process, the following constraint is useful for analyzing the
maximum permissible loss of power supply probability (LPSP*).

LPSP∗ ≥ LPSP (37)

6. Methodology
6.1. Load following Strategy

The main feature of the LF strategy is that the DG can satisfy the deficiency load
demand when the batteries and RE resources are unable to supply the electricity demand.
The key concern is that it just provides the deficit load demand only and does not charge the
batteries. The overall operation of the LF strategy is outlined in the following modes [24].

6.2. Cycle Charging Strategy

The CC strategy is distinguished by the fact that the DG turns on to satisfy the deficit
load demand while also storing energy in the battery bank through the charging process.
The overall operation of the CC strategy is outlined in the following modes [49]:

The complete EMS operation was conducted in the MATLAB© environment by sim-
ulating the input parameters such as techno-economic values of the components, load
demand, ambient temperature, and solar irradiation for 8760 h, i.e., for 1 year.

The system’s electrical energy demand at any hour ‘t’ is determined as follows:

EL(t) = (ELoad(t) + EROD(t))/ηConv (38)

The electricity provided by the RE resources (EG) is computed at any hour ‘t’ as follows:

EG(t) = [EDC(t) + EAC(t)]× ηConv (39)

where the generated AC energy (EAC) and DC energy (EDC) are calculated as follows:

EDC(t) = EPV(t) (40)

EAC(t) = EBMG(t) (41)

During the peak load time from 6 P.M. to 10 P.M., the biomass generator works daily.
The minimum and maximum battery bank energy storage limits are calculated as follows:

EBat_min =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmin−bat (42)

EBat_max =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmax−bat (43)
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where, SBAT and VBAT are the rated capacity (Ah) and voltage of the battery, respectively.
The minimum and maximum state of charge (SOC) of the battery bank are estimated

as follows:
SOCmax−bat = SOCmin−bat + DOD (44)

SOCmin−bat = 1− DOD (45)

where, DOD is the depth of discharge of the batteries.
At any hour ‘t’, the net energy of the system is estimated as the difference between the

hourly energy generated by the RE resources and the projected load demand:

Enet(t) = EG(t)− EL(t) (46)

Now, the ‘for’ loop begins for 8760 h of simulation.
For t = 1:8760

if Enet(t) = 0 (47)

Mode 1: in this operating mode, the total net energy provided by the system is equal
to 0, and the energy level of the battery bank at that time ‘t’ is equal to the energy level of
the previous hour. This mode of operation is described pictorially in Figure 10a, which
explains that the switches S1 and S3 are in the closed position and the switches S2, S4, and
S5 are in the open position. The expected load demand is met and there is no power outage,
which is mathematically expressed as follows:

EBat(t) = EBat(t− 1) (48)

LPS(t) = 0 (49)

ELoad_supplied(t) = EL(t) (50)

elseif Enet(t) > 0 (51)

Ech(t) = EG(t)− EL(t) (52)

if Ech(t) ≤ EBat_max − EBat(t− 1) (53)

Mode 2: in this operating mode, the RE resources first meet the load demand and then
store the produced surplus energy in the battery bank if the energy levels in the battery bank
are between the minimum and maximum range, i.e., if (EBat_min ≤ EBat(t) ≤ EBat_max).
This mode of operation is described pictorially in Figure 10b, which explains that the
switches S1, S2, and S3 are in the closed position and the switches S4 and S5 are in the
open position. The expected load demand is met and there is no power outage, which is
mathematically expressed as follows:

EBat(t) = (1− σ) ∗ EBat(t− 1) + Ech(t) ∗ ηCC ∗ ηrbat (54)

LPS(t) = 0 (55)

ELoad_supplied(t) = EL(t) (56)

else

Mode 3: in this operating mode, energy from the RE resources initially satisfies
the load demand, and if the energy level of the battery bank is at its maximum limit,
i.e., if (EBat(t) = EBat_max), then the surplus energy is used to operate the dump load. In
this mode of operation, as shown in Figure 10c, S1, S3, and S5 switches are in a closed
position and S2 and S4 switches are in an open position. The expected load demand is met
and there is no power outage, which is mathematically expressed as follows:

EBat(t) = EBat_max (57)
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LPSP∗ ≥ LPSP (58)

Edump(t) = Ech(t)−(EBat_max − EBat(t− 1)) (59)

LPS(t) = 0 (60)

ELoad_supplied(t) = EL(t) (61)

end

elseif Enet(t) < 0

Figure 10. Operating modes of the IRES using LF and CC strategies.

Mode 4: in this operating mode, the energy provided by the RE resources is less than the
load requirement, so the battery bank provides the deficit load demand; if (EBat(t) ≥ EBat_max).
In this mode of operation, as shown in Figure 10d, S1, S2, and S3 switches are in a closed position
and S4 and S5 switches are in an open position. The expected load demand is met and there is
no power outage, which is mathematically expressed as follows:

Edch(t) = EL(t)− EG(t) (62)

If (EBat(t− 1)− EBat_min) ≥ Edch(t) (63)

EBat(t) = (1− σ)× EBat(t− 1)− Edch(t)/ηrbat (64)

LPS(t) = 0 (65)

ELoad_supplied(t) = EL(t) (66)
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elseif
EL(t)
ηconv

≥ 40% of Prdg × ∆t (67)

If the system operates with the LF strategy.
Mode 5: if the energy provided by the RE resources and the battery bank is insufficient

to meet the load demand, then the DG is operational in order to satisfy the deficit load
demand if (EBat(t) ≤ EBat_min). The DG comes to a halt when the RE resources begin to
produce enough power to meet the full load requirements. In this mode of operation, as
shown in Figure 10e, S1, S3, and S4 switches are in a closed position and S2 and S5 switches
are in an open position. The expected load demand is met and there is no power outage,
which is mathematically expressed as follows:

EBat(t) = EBat_min (68)

LPS(t) = EL(t)− EG(t) (69)

ELoad_supplied(t) = EG(t) (70)

(or)

If the system operates with the CC strategy.
Mode 5: if the energy provided by the RE resources and the battery bank is insufficient

to meet the load demand, the DG operates at its rated capacity to meet the load demand
while also charging the battery bank, if (EBat(t) ≤ EBat_max). When the RE resources
provide enough power to fulfil the full load requirements, the DG comes to a halt. In
this mode of operation, as shown in Figure 10f, S1, S2, S3, and S4 switches are in a closed
position and the S5 switch is in an open position. The expected load demand is met and
there is no power outage, which is mathematically expressed as follows:

EDG(t) = PDG,rat ∗ ∆t (71)

FDG(t) =
(
aDG ∗ PDG,gen(t) + bDG ∗ PDG,rat

)
l/h (72)

LPS(t) = 0 (73)

EBat(t) = (1− σ) ∗ EBat(t− 1) + Ech(t) ∗ ηCC ∗ ηrbat (74)

ELoad_supplied(t) = EL(t) (75)

Else

Mode 6: in this operating mode, the energy provided by the RE resources is less than
the required load demand and the energy level of the battery bank is also less than the
prescribed minimum level, i.e., EBat(t) = EBat_min, so at that time ‘t’, there is a loss of power
supply, which is mathematically expressed as follows:

EBat(t) = EBat_min (76)

LPS(t) = EL(t)− EG(t) (77)

ELoad_supplied(t) = EG(t) (78)

end

end

end (end of for loop)

The system’s LPSP can now be determined by dividing the cumulative loss of power
supply hours by the annual load demand which is described as follows:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 EL(t)

(79)
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The operating modes of the IHRES using LF and CC strategies are pictorially shown
in Figure 10.

Figures 11–13 represent a flowchart of the aforementioned EMS operating modes as
well as the acquisition of LPSP.

Figure 11. Flowchart of the EMS operating modes and acquisition of LPSP using LF and CC strategies.
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Figure 12. Flowchart of the EMS operating modes and acquisition of LPSP using LF and CC strategies.
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Figure 13. Flowchart of the EMS operating modes and acquisition of LPSP using LF and CC strategies.

7. Proposed Algorithm

The proposed algorithm of the study is a Salp Swarm Algorithm (SSA), which was
identified in the literature from the metaheuristic family due to its proven ability to provide
the global best optimal solutions to other recent scientific problems. Seyedali et al. [10]
invented the SSA based on the salp swarm behavior. The salp is a small transparent
organism and looks like a jellyfish with a barrel-shaped body as shown in Figure 14a. Salps
also form a swarm like a chain in the deep ocean for searching and hunting for food, as
shown in Figure 14b.

Figure 14. (a) Salp, (b) salp swarm chain.
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Salp Swarm Algorithm (SSA)

The mathematical modelling of the salp chain population has been categorized into
two groups such as a leader and followers. The leader salp stands in front of the chain
and guides the remaining salps to follow behind it. Like other types of swarm-based
optimization techniques, the location of the salps is stated in an n-dimensional search space,
where n indicates the number of variables of the proposed objective. In this regard, the
location of the salps was kept in a two-dimensional matrix of ‘Z’, and it was presumed that
food source ‘f ’ is presented in the search space as the swarm’s goal.

To update the leader’s position, Equation (80) is proposed.

Z1
q =

{
fq + c1 ×

((
ulq − llq

)
× c2 + llq

)
, c3 ≥ 0

fq − c1 ×
((

ulq − llq
)
× c2 + llq

)
, c3 < 0

(80)

where Z1
q denotes the location of the leader salp in the qth dimension. llq and ulq are the

lower and upper limits of the qth dimension. c1, c2, and c3 are the random numbers.
Equation (80) states that the leader itself can update its location as per the location of

the food source. The most important parameter in balancing exploration and exploitation
in SSA is the coefficient c1, which is given in Equation (81).

c1 = 2e−(
4u
U )

2
(81)

where u and U are the current and maximum number of iterations, respectively.
The random numbers c2 and c3 are generated uniformly in the interval of [0, 1]. These

parameters direct the next location in the qth dimension and must be toward positive or
negative infinity along with the step size. As per Newton’s law of motion, the following
equations are useful to update the location of the followers:

Zi
q =

1
2

at2 + V0t (82)

where, i ≥ 2, Zi
q represents the location of the ith follower salp in qth dimension, V0 is

the starting speed, t is time, and a =
Vf inal

Vo
. The time ‘t’ is termed as an iteration and the

difference between the two iterations is considered as one, and assuming V0 = 0, then Zi
q is

calculated by using Equation (83).

Zi
q =

1
2
×
(

Zi
q + Zi−1

q

)
(83)

where, i ≥ 2, Zi
q is the location of the ith follower salp in the qth dimension.

By using Equations (80) and (83), the salp chains are simulated.
The SSA solves optimization problems with its fast convergence property and obtains

the global best optimal values quickly; furthermore, it has several advantages such as a
simple concept, easy implementation, and high efficiency. The procedure followed to obtain
the optimal sizing of the IHRES with SSA is explained clearly in the form of a flowchart
shown in Figure 15.
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Figure 15. Flowchart illustrating the procedure for evaluating the optimal IRES sizing with SSA.

8. Results and Discussion

In this study, an optimal IHRES configuration was used to supply freshwater and
electricity demands to five rural un-electrified villages in the Indian state of Odisha. These
villages are enriched with RE resources such as biomass and solar, which can be used to
electrify them. Because of the uncertainties associated with these RE sources, a reliable
battery storage system in conjunction with a diesel generator is required to provide a
continuous power supply. Therefore, the study focused on three different types of bat-
tery technologies, namely lithium-ion (Li-Ion), lead-acid (LA), and nickel-iron (Ni-Fe), to
provide a continuous power supply.

The purpose of examining various battery technologies is the LA battery technology
since it is less expensive in all regions of the world than all kinds of battery technologies.
As a result, developing countries such as Pakistan, India, Sri Lanka, Bangladesh, etc.,
are employing this battery technology to electrify the standalone remote regions without
taking into account significant drawbacks such as their durability and lifespan. This
battery technology has a shorter lifespan in comparison to other battery technologies and
its lifespan is dependent on the ambient temperature at which the batteries are installed.
Therefore, every three to five years, they must be replaced. Frequently, replacing batteries in
remote regions via difficult roads causes plenty of technical, physical, and economic issues.
Hence, before beginning a project, it is indeed essential to understand the technological and
economic features of a battery technology such as, technically: durability, high operating
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temperature capability, longevity, and round trip efficiency, and economically: operation
and maintenance costs, replacement frequency, and capital costs [43].

8.1. Robustness and History of the Ni-Fe Battery Technology

This study proposed a Ni-Fe battery technology to address the aforementioned issues.
Although the Ni-Fe batteries are still in the early stages of development, they are the
most powerful and reliable battery technology available today and are an excellent option
for off-grid RE and solar applications. Ni-Fe batteries have a track record of more than
100 years. Thomas Edison invented and manufactured Ni-Fe batteries in the early 1900s to
make them “much stronger than batteries using lead plates and acid”. In the early 1910s,
the first electric car was outfitted with Ni-Fe batteries. While they were never used for the
starting batteries for internal combustion engines at the period of the automobile invention,
their foothold was found in the twentieth century in many railroads, forklifts, and standby
power applications. Because of their long life, robustness, and durability, Ni-Fe batteries
have been reborn in the twenty-first century for use in RE applications.

In comparison to many other types of batteries, the depth of discharge (DOD) of the
Ni-Fe batteries has no impact on their life cycle. As a result, consumers can discharge them
up to 80% of their rated capacity and have a battery life of 30+ years. It is a well-known
fact that if an LA battery is over-discharged even once, its lifetime is significantly reduced.
This is true for the majority of battery technologies but not for the Ni-Fe batteries because
discharging them up to 80% or more does not shorten their lifetime. Furthermore, Ni-Fe
batteries can be overcharged without losing their life expectancy [50].

8.2. Technical Comparison of the Battery Technologies Used in the Study

The following are the technical characteristics of the three different types of battery
technologies: Li-Ion, Ni-Fe, and LA.

8.2.1. The Lifetime of the Batteries

The battery’s lifetime mainly depends on its depth of discharge (DOD); the DOD
simply describes the degree to which the battery has been discharged in relation to its
overall capacity. If the battery is fully discharged, then its DOD is 100%. According to the
manufacturers, the three batteries, Ni-Fe, Li-Ion, and LA used in the study, have different
lifespans depending on their use of the allowable DODs.

• The LA battery used in the study can be usable in two allowable DODs, such as 70%
and 80%; if it is used at 70% DOD, its lifespan is 3 years; if it is used at 80% DOD, then
its lifespan is 2.5 years.

• The Li-Ion battery used in the study can be usable in three allowable DODs, such as
50%, 70%, and 80%; if it is used at 50% DOD, its lifespan is 15 years; if it is used at 70%
DOD, its lifespan is 9 years; if it is used at 80% DOD, its lifespan is 7.5 years.

• The Ni-Fe battery used in the study can be usable in two allowable DODs, such as
50% and 80%; if it is used at 50% DOD, its lifespan is 30+ years; if it is used at 80%
DOD, its lifespan is also 30+ years. This is why it is the most robust battery technology
because the DOD does not affect its lifespan and it is more suitable for off-grid rural
electrification for people living in remote areas since it does not need to be replaced
during the lifespan of the project.

8.2.2. Round Trip Efficiency of the Batteries

In view of the round trip efficiency of the batteries, the Li-Ion battery has the highest
efficiency with 92%, the second best is the LA battery which has an efficiency of 85%, and
the third best is the Ni-Fe battery which has an efficiency of 80%.

8.2.3. The Self-Discharge Rate of the Batteries

The Li-Ion battery has a self-discharge rate of 0.3%/day, the LA battery technology
has a rate of 0.2%/day, and the Ni-Fe battery has a rate of 1%/day. However, in terms of
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self-discharge energy losses, the Ni-Fe battery may have negligible losses. For example,
if the Ni-Fe battery consumes 25 kWh of energy per day, the self-discharge energy loss is
only 0.25 kWh, allowing the remaining 24.75 kWh to be used without any issue. Hence, the
self-discharge losses with this battery technology are not that much higher.

8.2.4. Operating Temperature Capabilities of the Batteries

With the exception of the Ni-Fe battery technology, most batteries do not have high-
temperature capabilities. The Ni-Fe battery offers worry-free service in extreme cold and
hot conditions with working temperatures ranging from −30 ◦C to +60 ◦C. The second
best is the Li-Ion battery technology with operating temperatures ranging from −20 ◦C to
+50 ◦C. Finally, the third best is the LA battery technology with operating temperatures
ranging from −20 ◦C to +45 ◦C.

8.2.5. Replacement Frequency of the Batteries during the Lifespan of the Project

The current study assumed a project life of twenty-five years, and if the LA battery
was used in the study, it must be replaced 9 to 10 times at 70% and at 80% usage of DODs,
respectively. If the study considered Li-Ion batteries, they would need to be replaced 2, 3,
and 4 times, respectively, at 50%, at 70%, and at 80% usage of DODs. If the study considered
the Ni-Fe battery, no replacement would be required during the lifespan of the project,
either at 50% usage of DOD or at 80% usage of DOD, and it would operate for another five
more years outside of the lifespan of the project.

8.2.6. Cycle Life of the Batteries

The number of charging and discharging cycles a battery can complete before losing its
capacity is referred to as its cycle life. In this study, the LA battery technology has two-cycle
lives, such as 800 and 750 cycles at 70% and at 80% DODs, respectively. The Li-Ion battery
has three cycle lives, such as 5000, 3000, and 2500 cycles at 50%, at 70%, and at 80% DODs,
respectively. The Ni-Fe battery has two cycle lives, such as 11,000+ and 11,000+ cycles at
50% and at 80% DODs, respectively. Compared to other battery technologies, the cycle life
of the Ni-Fe battery technology is much higher.

8.3. Modelling of Different Configurations Using Battery Technologies and RE Resources

The Li-Ion battery can work at three different DODs, i.e., at 50%, at 70%, and at 80%; there-
fore, three configurations were modelled using the Li-Ion battery technology: PV/BMG/DG/Li-
Ion at 50% DOD, PV/BMG/DG/Li-Ion at 70% DOD, and PV/BMG/DG/Li-Ion at 80% DOD.
Similarly, the LA battery can work at two DODs such as at 70% and at 80%; therefore, two
configurations were modelled using the LA battery technology: PV/BMG/DG/LA at 70%
DOD and PV/BMG/DG/LA at 80% DOD. Similarly, the Ni-Fe battery can work at two dif-
ferent DODs, such as at 50% and at 80%; however, its primary strength is that it has a lifespan
of more than 30 years at both the DODs. Hence, for the current study, the techno-economic
analysis with Ni-Fe battery technology was accomplished with at 80% DOD only. As a result, a
PV/BMG/DG/Ni-Fe at 80% DOD configuration was modelled.

In order to electrify the study area with an optimum configuration, the six configura-
tions mentioned above were evaluated at an LPSP value of 0% with LF and CC strategies
using the HPRALC-based scenario, i.e., without DSM. To simplify the analysis, after de-
termining the optimal configuration from the HPRALC-based scenario, it was further
evaluated with LF and CC strategies using MPRAMC and LPRAHC-based scenarios, i.e.,
with DSM at an LPSP value of 0%.

8.4. Optimization Algorithms and Components Technical and Cost Values

The proposed SSA algorithm’s convergence efficiency and robustness were compared
to those of eight other well-known and proven algorithms, namely: PSO, GA, GWO, DE,
ALO, MFO, DA, and GOA in the MATLAB© environment with a population of 100 and
100 iterations. The nine algorithms’ control parameter values are given in Table 4. All
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components’ cost and technical values used in the study are given in Tables 5–7. The peak
load demand in the HPRALC-based scenario was 79.18 kW, hence the converter-rated
power was 87 kW (for safety reasons, the converter’s power rating should be 10% greater
than the peak load demand). The peak load demand in the MPRAMC-based scenario
was 54.44 kW. As a result, for the MPRAMC-based scenario, the converter-rated power
was considered to be 60 kW. The peak load demand for the LPRAHC-based scenario
was 52.02 kW. Hence, for MPRAMC-based scenarios, the converter-rated power was
taken as 57 kW. Similarly, in order to meet the peak load demand of the HPRALC-based
scenario, the DG-rated power was considered to be 80 kW, whereas in order to meet the
peak load demand of the MPRAMC and LPRAHC-based scenarios, the DG-rated power
was considered to be 60 kW because the commercially available rated power of the DG
for these two scenarios is only 60 kW. Tables 8 and 9 give the optimal results of the six
configurations described above with LF and CC strategies, respectively, using the nine
metaheuristic algorithms at an LPSP value of 0% using the HPRALC-based scenario. The
optimal configuration from the HPRALC-based scenario was further evaluated with LF
and CC strategies at an LPSP value of 0% with MPRAMC and LPRAHC-based scenarios
and their optimal results provided in Tables 10–13, respectively.

Table 4. Control parameters of the algorithms.

Algorithm Parameters

GA
Pop Itermax µ CR

100 100 0.1 0.9

PSO
Pop Itermax wmax wmin c1 c2

100 100 0.9 0.2 2 2

DE
Pop Itermax F CR

100 100 0.5 0.9

GWO
Pop Itermax a C1 C2 C3

100 100 0 to 2 2 × rand(0,1) 2 × rand(0,1) 2 × rand(0,1)

ALO
Pop Itermax I weights

100 100 1 (1,5,3,15,8,1)

DA
Pop Itermax w s a c f e

100 100 0.9 to 0.2 0.1 0.1 0.7 1 1

MFO
Pop Itermax a b

100 100 −1 to −2 1

GOA
Pop Itermax cmax cmin

100 100 1 0.00004

SSA
Pop Itermax c1 c2 c3

100 100 rand(0,1) rand(0,1) rand(0,1)
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Table 5. Batteries’ techno-economic parameters and their values.

Battery Type Lead-Acid
(PbSO4)

Lithium Iron Phosphate
(LiFePO4)

Nickel-Iron
(Ni-Fe)

Manufacturer Trojan [51] Victron [52] Iron Edison [50]

Model SSIG 06 490 LFP-12.8/200-a TN 1000

Nominal capacity (SBAT) 490 Ah 300 Ah 1000 Ah

Nominal voltage (VBAT) 6 V 12.8 V 1.2 V

Round trip efficiency (ηrbat) 85% 92% 80%

Lifespan in years

3 years at 70% DOD 15 years at 50% DOD 30 years+ at 50% DOD

2.5 years at 80% DOD
9 years at 70% DOD

30 years+ at 80% DOD
7.5 years at 80% DOD

Self-discharge rate (%/day)
(σ) 0.3% 0.2% 1%

Capital cost (CC) in USD USD 410 USD 3317 USD 1057

Annual O&M cost in USD 2.5% of CC No maintenance 2% of CC

Operating temperature −20◦C to +45 ◦C −20◦C to +50 ◦C −30 ◦C to +60 ◦C

Cycle life of the batteries

800 cycles at 70% DOD 5000 cycles at 50% DOD 11,000+ cycles at 50% DOD

750 cycles at 80% DOD
3000 cycles at 70% DOD

11,000+ Cycles at 80% DOD
2500 cycles at 80% DOD

Table 6. Technical and cost values of the biomass generator.

Manufacturer [44] Enersol Bio Power Water Tank Capacity [44] 300 L

Rated Power of BMG [44] 5 kW Frequency [44] 50 Hz

Fuel Mode [44] 100% Producer Gas Based Life time of BMG [14] 15,000 h

Plant Size (L * W * H) [44] 10 * 9 * 6 Feet BMG Capital cost [44] USD 4505

Number of Phases [44] Single Phase AO&M cost of BMG [14] USD 27

Rated Current [44] 26 Amperes Quantity of biomass 9 t/year

Alternator Make [44] Kirloskar Manufacturers Cost of biomass [14] 15 USD/t

Voltage [44] 230 V, AC Efficiency of BMG [14] 20%

Table 7. Technical and cost values of the IHRES.

Parameters Value Parameters Value

Project lifetime 25 years No. of MEM Repl./year [1] 2

Nominal interest rate [14] 13% MEM Replacement cost [1] 0.06 USD/m3

Inflation rate [53] 5% Repl. cost of chemicals [1] 0.06 USD/m3

Manufacturer of PV Panel [54] Vikram solar Rated power of converter for HPRALC scenario 87 kW

Model No. of PV Panel [54] Somera 385 Rated power of converter for MPRAMC scenario 60 kW

Rated power of PV Panel [54] 385 Wp Rated power of converter for LPRAHC scenario 57 kW

Lifetime of PV Panel [54] 25 years Lifetime of converter [14] 10 years

Capital cost of PV Panel [54] USD 128 C&R of converter per kW USD 108

AO&M cost of PV Panel [14] USD 3.2 AO&M cost of converter [14] USD 15

Mechanical structure cost of PV
Panel [55] USD 41 Efficiency of converter [14] 95%
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Table 7. Cont.

Parameters Value Parameters Value

Life time of mechanical structure of
PV panel [55] 25 years DG (Company: Cummins, Model No: C100D5) for

HPRALC scenario [56]
100 KVA
80 kW

ROD capital cost (1 m3/day) [1] USD 532 C&R of DG for HPRALC scenario [56] USD 9144

Capital cost of Water tank [1] 256 USD/m3 DG (Company: Kirloskar, Model No: KEC-T75-II)
for MPRAMC and LPRAHC scenarios [57]

75 KVA
60 kW

Capital cost of membrane [1] 0.06 USD/m3 C&R of DG for MPRAMC and LPRAHC scenarios
[57] USD 6858

Capital cost of chemicals [1] 0.06 USD/m3 Diesel Price USD 1.08

AO&M cost of ROD [1] 0.2 USD/m3 AO&M cost of DG [46] 3% of TAOHDG”

Table 8. Optimization results of the HPRALC-based IHRESs using LF strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 1282 1280 1281 1275 1280 1280 1280 1280 1275

BMG/ NBAT 917 917 879 893 917 917 917 917 893

DG/ AFC 1574 887 2192 1600 887 887 887 887 1600

Ni-Fe ACO2 4251 2395 5917 4320 2395 2395 2395 2395 4320

at DOD = 80% LCC (USD) 918,176 918,040 921,542 916,728 918,040 918,040 918,040 918,040 916,728

PV/ NPV 1243 1237 1237 1238 1237 1237 1237 1237 1237

BMG/ NBAT 342 340 340 340 340 340 340 340 340

DG/ AFC 7338 7499 7499 7498 7499 7499 7499 7499 7499

LA ACO2 19,813 20,247 20,247 20,246 20,247 20,247 20,247 20,247 20,247

at DOD = 70% LCC (USD) 1,516,213 1,511,891 1,511,891 1,512,129 1,511,891 1,511,891 1,511,891 1,511,891 1,511,891

PV/ NPV 1237 1237 1301 1237 1237 1237 1237 1237 1237

BMG/ NBAT 297 297 299 297 297 297 297 297 297

DG/ AFC 7590 7590 7123 7590 7590 7590 7590 7590 7590

LA ACO2 20,494 20,494 19,232 20,494 20,494 20,494 20,494 20,494 20,494

at DOD = 80% LCC (USD) 1,492,491 1,492,491 1,506,249 1,492,491 1,492,491 1,492,491 1,492,491 1,492,491 1,492,491

PV/ NPV 1136 1136 1183 1138 1136 1136 1136 1136 1136

BMG/ NBAT 339 339 338 339 339 339 339 339 339

DG/ AFC 7859 7859 7895 7858 7859 7859 7859 7859 7859

Li-Ion ACO2 21,220 21,220 21,315 21,216 21,220 21,220 21,220 21,220 21,220

at DOD = 50% LCC (USD) 2,397,086 2,397,086 2,403,931 2,397,563 2,397,086 2,397,086 2,397,086 2,397,086 2,397,086

PV/ NPV 1135 1135 1135 1135 1135 1150 1211 1135 1135

BMG/ NBAT 242 242 242 242 242 242 244 242 242

DG/ AFC 7891 7891 7891 7891 7891 7781 7172 7891 7891

Li-Ion ACO2 21,307 21,307 21,307 21,307 21,307 21,009 19,364 21,307 21,307

at DOD = 70% LCC (USD) 2,446,102 2,446,102 2,446,102 2,446,102 2,446,102 2,447,773 2,467,615 2,446,102 2,446,102

PV/ NPV 1135 1135 1135 1135 1203 1326 1135 1199 1135

BMG/ NBAT 212 212 212 212 211 210 212 213 212

DG/ AFC 7771 7771 7771 7771 7837 7723 7771 7337 7771

Li-Ion ACO2 20,981 20,981 20,981 20,981 21,161 20,853 20,981 19,810 20,981

at DOD = 80% LCC (USD) 2,605,751 2,605,751 2,605,751 2,605,751 2,611,090 2,624,535 2,605,751 2,621,122 2,605,751
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Table 9. Optimization results of the HPRALC-based IHRES using CC strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 1268 1265 1332 1268 1265 1265 1265 1265 1265

BMG/ NBAT 933 928 925 933 928 928 928 928 928

DG/ AFC 1045 871 821 1045 871 871 871 871 871

Ni-Fe ACO2 2822 2352 2217 2822 2352 2352 2352 2352 2352

at DOD = 80% LCC (USD) 927,077 926,800 934,345 927,077 926,800 926,800 926,800 926,800 926,800

PV/ NPV 1178 1202 1178 1178 1178 1178 1219 1178 1178

BMG/ NBAT 347 394 347 347 347 347 346 347 347

DG/ AFC 7839 5823 7839 7839 7839 7839 7864 7839 7839

LA ACO2 21,166 15,723 21,166 21,166 21,166 21,166 21,233 21,166 21,166

at DOD = 70% LCC (USD) 1,525,952 1,629,822 1,525,952 1,525,952 1,525,952 1,525,952 1,531,881 1,525,952 1,525,952

PV/ NPV 1174 1174 1226 1174 1174 1213 1174 1174 1174

BMG/ NBAT 305 305 306 305 305 304 305 305 305

DG/ AFC 7640 7640 7192 7640 7640 7615 7640 7640 7640

LA ACO2 20,628 20,628 19,419 20,628 20,628 20,561 20,628 20,628 20,628

at DOD = 80% LCC (USD) 1,503,917 1,503,917 1,511,744 1,503,917 1,503,917 1,509,935 1,503,917 1,503,917 1,503,917

PV/ NPV 1098 1098 1133 1098 1098 1082 1098 1098 1098

BMG/ NBAT 340 340 340 340 340 341 340 340 340

DG/ AFC 9083 9083 9009 9083 9083 9059 9083 9083 9083

Li-Ion ACO2 24,525 24,525 24,324 24,525 24,525 24,458 24,525 24,525 24,525

at DOD = 50% LCC (USD) 2,416,367 2,416,367 2,423,727 2,416,367 2,416,367 2,417,493 2,416,367 2,416,367 2,416,367

PV/ NPV 1084 1084 1084 1084 1195 1930 1195 1225 1084

BMG/ NBAT 243 243 243 243 241 235 241 241 243

DG/ AFC 9083 9083 9083 9083 9009 7366 9009 8735 9083

Li-Ion ACO2 24,525 24,525 24,525 24,525 24,324 19,889 24,324 23,585 24,525

at DOD = 70% LCC (USD) 2,463,960 2,463,960 2,463,960 2,463,960 2,474,258 2,579,041 2,474,258 2,476,585 2,463,960

PV/ NPV 1177 1116 1116 1176 1486 1516 1116 1176 1116

BMG/ NBAT 211 212 212 211 208 208 212 211 212

DG/ AFC 9083 9108 9108 9083 8138 7964 9108 9083 9108

Li-Ion ACO2 24,525 24,593 24,593 24,525 21,972 21,502 24,593 24,525 24,593

at DOD = 80% LCC (USD) 2,629,251 2,627,111 2,627,111 2,629,041 2,645,568 2,648,554 2,627,111 2,629,041 2,627,111

Table 10. Optimization results of the MPRAMC-based IHRES using LF strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 904 904 921 904 904 904 904 904 904

BMG/ NBAT 569 569 563 569 569 569 569 569 569

DG/ AFC 854 854 1010 854 854 854 854 854 854

Ni-Fe ACO2 2306 2306 2726 2306 2306 2306 2306 2306 2306

at DOD = 80% LCC (USD) 613,841 613,841 617,660 613,841 613,841 613,841 613,841 613,841 613,841

Table 11. Optimization results of the MPRAMC-based IHRES using CC strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 877 890 903 891 890 877 890 877 890

BMG/ NBAT 594 599 588 596 599 594 599 594 599

DG/ AFC 989 653 915 747 653 989 653 989 653

Ni-Fe ACO2 2671 1764 2469 2016 1764 2671 1764 2671 1764

at DOD = 80% LCC (USD) 623,772 623,484 625,477 623,808 623,484 623,772 623,484 623,772 623,484
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Table 12. Optimization results of the LPRAHC-based IHRES using LF strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 814 814 834 814 814 814 814 814 814

BMG/ NBAT 450 450 458 450 450 450 450 450 450

DG/ AFC 837 837 532 837 837 837 837 837 837

Ni-Fe ACO2 2259 2259 1438 2259 2259 2259 2259 2259 2259

at DOD = 80% LCC (USD) 522,945 522,945 526,708 522,945 522,945 522,945 522,945 522,945 522,945

Table 13. Optimization results of the LPRAHC-based IHRES using CC strategy at LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/ NPV 791 791 794 791 791 791 801 791 791

BMG/ NBAT 496 496 495 496 496 496 487 496 496

DG/ AFC 131 131 149 131 131 131 280 131 131

Ni-Fe ACO2 353 353 403 353 353 353 756 353 353

at DOD = 80% LCC (USD) 529,795 529,795 530,336 529,795 529,795 529,795 530,042 529,795 529,795

8.5. Optimal Configuration from the LA Battery-Based IHRESs

The LA battery can operate at two different DODs, i.e., at 70% and at 80%. In such
a way that a total of two configurations were modelled using LA battery technology and
which were tested with two different dispatch strategies such as LF and CC, their cor-
responding results using the HPRALC-based scenario are provided in Tables 8 and 9,
respectively. From the results, it was observed that the LA battery-based IHRES at 80%
DOD with LF strategy is economically feasible as compared to its CC strategy, as well as
LA battery-based IHRES at 70% DOD using LF and CC strategies, with an LCC of USD
1,492,491. It is about 1% lower than its CC strategy’s LCC, and it is about 1% and 2%
lower than the LCCs of LA battery-based IHRES at 70% DOD using LF and CC strate-
gies, respectively. The corresponding optimum component values were NPV = 1237 and
NBAT (LA) = 297. Therefore, for further comparisons with other battery-based IHRESs, the
LA battery-based IHRES at 80% DOD with LF strategy was taken into account.

The Effect of Dispatch Strategies on LA Battery-Based IHRESs

The above discussion reveals that the LA battery-based IHRES at 80% DOD with LF
strategy was identified as an optimal configuration; its annual fuel consumption (AFC) and
annual carbon dioxide (ACO2) emissions compared to other dispatch strategies (LF and
CC) of the remaining LA battery-based IHRESs are discussed as follows:

From the results given in Tables 8 and 9, it is observed that the AFC of the LA battery-
based IHRES at 80% DOD with LF strategy was 7590 L, which is 50 L less than its CC
strategy’s AFC, as well as 91 L more and 249 L less than the LA battery-based IHRES at
70% DOD’s LF and CC strategies’ AFCs, respectively.

From the results given in Tables 8 and 9, it is observed that the ACO2 emissions of the
LA battery-based IHRES at 80% DOD with LF strategy was 20,494 kg, which is 134 kg less
than the ACO2 emissions of its CC strategy, as well as 316 and 247 kg more and 672 kg
less than the ACO2 emissions of the LA battery-based IHRES at 70% DOD’s LF and CC
strategies, respectively.

8.6. Optimal Configuration from the Li-Ion Battery-Based IHRESs

The Li-Ion battery can operate at three different DODs, i.e., at 50%, at 70%, and at 80%. In
such a way that a total of three configurations were modelled using Li-Ion battery technology
and which were tested with two dispatch strategies such as LF and CC, their corresponding
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optimal results using the HPRALC-based scenario are provided in Tables 8 and 9, respectively.
From the results, it was observed that the Li-Ion battery-based IHRES at 50% DOD with LF
strategy is economically feasible as compared to its CC strategy, as well as Li-Ion battery-based
IHRESs at 70% and at 80% DOD’s LF and CC strategies, with an LCC of USD 2,397,086. It is
about 1% lower than its CC strategy’s LCC, and it is about 2%, 3%, 8%, and 9% lower than
the LCCs of Li-Ion battery-based IHRESs at 70% and at 80% DOD’s LF and CC strategies.
The corresponding optimum component values of NPV and NBAT (Li-Ion) were 1136 and 339,
respectively. Therefore, for further comparisons with other battery-based IHRESs, the Li-Ion
battery-based IHRES at 50% DOD with LF strategy was taken into account.

The Effect of Dispatch Strategies on Li-Ion Battery-Based IHRESs

The above discussion reveals that the Li-Ion battery-based IHRES at 50% DOD with LF
strategy was identified as an optimal configuration; its AFC and ACO2 emissions compared
to other dispatch strategies (LF and CC) of the remaining Li-Ion battery-based IHRESs are
discussed as follows:

From the results given in Tables 8 and 9, it is observed that the AFC of the Li-Ion
battery-based IHRES at 50% DOD with LF strategy was 7859 L, which is 1224 L less than
its CC strategy’s AFC and 32 and 1224 L less than the Li-Ion battery-based IHRES at 70%
DOD’s LF and CC strategies’ AFCs, respectively, as well as 88 L more and 1249 L less than
the Li-Ion battery-based IHRES at 80% DOD’s LF and CC strategies’ AFCs, respectively.

From the results given in Tables 8 and 9, it is observed that the ACO2 emissions of the
Li-Ion battery-based IHRES at 50% DOD with LF strategy was 21,220 kg, which is 3305 kg
less than its CC strategy’s ACO2 emissions and 87 kg and 3305 kg less than the Li-Ion
battery-based IHRES at 70% DOD’s LF and CC strategies’ ACO2 emissions, respectively, as
well as 239 kg more and 3373 kg less than the Li-Ion battery-based IHRES at 80% DOD’s LF
and CC strategies’ ACO2 emissions, respectively.

8.7. Optimal Configuration from the Ni-Fe Battery-Based IHRESs

The Ni-Fe battery can operate at two different DODs, such as at 50% and at 80%, and
it has a lifespan of more than 30+ years at both the DODs. Therefore, the analysis was
conducted at 80% DOD only with two different dispatch strategies such as LF and CC,
and its corresponding optimal results using the HPRALC-based scenario are provided
in Tables 8 and 9, respectively. From the results, it is observed that the Ni-Fe battery-
based IHRES at 80% DOD with LF strategy was identified as an optimal configuration as
compared to its CC strategy, with an LCC of USD 916,728. It is about 1% lower than its
CC strategy’s LCC. The corresponding optimum component values were NPV = 1275 and
NBAT (Ni-Fe) = 893. Therefore, for further comparisons with other battery-based IHRESs, the
Ni-Fe battery-based IHRES at 80% DOD with LF strategy was considered.

The Effect of Dispatch Strategies on Ni-Fe Battery-Based IHRESs

The above discussion reveals that the Ni-Fe battery-based IHRES at 80% DOD with CC
strategy was identified as an optimal configuration; its AFC and ACO2 emissions compared
to its LF strategy are discussed as follows:

From the results given in Tables 8 and 9, it is observed that the AFC of the Ni-Fe
battery-based IHRES at 80% DOD with LF strategy was 1600 L, which is 729 L more than
its CC strategy’s AFC.

From the results given in Tables 8 and 9, it is observed that the ACO2 emission of the
Ni-Fe battery-based IHRES at 80% DOD with LF strategy was 4320 kg, which is 1968 kg
more than its CC strategy’s ACO2 emissions.
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8.8. The System Performance with Different Battery Technologies Using HPRALC, MPRAMC,
and LPRAHC-Based Scenarios

The following describes the impact of different battery technologies and dispatch
strategies on evaluating an optimal configuration using three efficiency-based scenarios:
HPRALC, MPRAMC, and LPRAHC.

8.8.1. Low-Efficiency Appliance Usage-Based Scenario (HPRALC) (without DSM)

A low-efficiency appliance usage-based scenario refers to the usage of high power
rated appliances of low cost (HPRALC) by the consumers, which falls under the concept
without DSM. According to the results given in Tables 8 and 9 for the HPRALC-based
scenario, it is observed that the Ni-Fe battery-based IHRES at 80% DOD with LF strategy
(base case) provided an LCC of USD 916,728. It is an optimal value when compared to
other battery-based IHRES LCCs with different dispatch strategies. The LA battery-based
IHRES at 80% DOD with LF strategy provided an optimal LCC of USD 1,492,491, which is
about 63% higher than the base case LCC. The Li-Ion battery-based IHRES at 50% DOD
with LF strategy provided an optimal LCC of USD 2,397,086, which is about 162% higher
than the base case LCC.

The Effect of Dispatch Strategies with Different Battery Technologies Using Low-Efficiency
Appliance Usage-Based Scenario (HPRALC) (without DSM)

From the results given in Tables 8 and 9, it is observed that the AFC of the Ni-Fe
battery-based IHRES at 80% DOD with LF strategy was 1600 L, which is 5990 L less than
the AFC of LA battery-based IHRES at 80% DOD’s LF strategy, and it is 6259 L less than
the AFC of Li-Ion battery-based IHRES at 50% DOD’s LF strategy.

From the results given in Tables 8 and 9, it is observed that the ACO2 emission of the
Ni-Fe battery-based IHRES at 80% DOD with LF strategy was 4320 kg, which is 16,174 kg
less than the ACO2 emissions of LA battery-based IHRES at 80% DOD’s LF strategy, and it
is 16,900 kg less than the ACO2 emission of the Li-Ion battery-based IHRES at 50% DOD’s
LF strategy.

Finally, it was found that the Ni-Fe battery-based IHRES with LF strategy is more
suitable for electrifying the study area. It is clear from the preceding Section 8.8.1 that Ni-Fe
battery-based IHRES with LF strategy is more economically feasible as compared to its CC
strategy and other battery-based IHRESs with different dispatch strategies, and it is also
more eco-friendly in terms of annual fuel consumption and carbon emissions due to its
lower fuel consumption and carbon emissions as compared to other battery-based IHRESs
with different dispatch strategies. Therefore, IHRESs based on LA and Li-Ion batteries
are not considered for further analysis in Section 8.8.2 (MPRAMC-based scenario) and
Section 8.8.3 (LPRAHC-based scenario), since it is clear from the above discussion that
these two battery technologies are not economically and environmentally feasible when
compared to the Ni-Fe battery technology.

8.8.2. The Effect of Ni-Fe Battery-Based IHRES Using Medium-Efficiency Appliance
Usage-Based Scenario (MPRAMC) (with DSM)

From the results of the low-efficiency appliance usage-based scenario (HPRALC), it
was identified that the Ni-Fe battery-based IHRES with LF strategy (base case) provided a
minimum LCC when compared to its CC strategy, as well as other battery-based IHRESs
with different dispatch strategies. Therefore, this configuration was further analyzed
with the medium-efficiency appliance usage-based scenario, i.e., with DSM. The medium-
efficiency appliance usage-based scenario refers to the usage of medium power rated
appliances of moderate cost (MPRAMC) by the consumers and it is a part of the concept of
energy conservation-based DSM. From the results given in Tables 10 and 11, it is observed
that the base case LCC with the MPRAMC-based scenario with LF strategy was USD
613,841, which is about 2% lower than its CC strategy’s LCC, as well as about 33% lower
than the LCC using the HPRALC-based scenario with LF strategy. The current scenario
optimum component values are NPV = 904 and NBAT (Ni-Fe) = 569. If these values were
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compared to the HPRALC-based scenario values, it was observed that the required number
of PV panels was reduced from 1275 to 904, i.e., a reduction in requirement of 371 PV
panels, and the required number of batteries was reduced from 893 to 569, i.e., a reduction
in requirement of 324 batteries.

The Effect of Different Dispatch Strategies on the Ni-Fe Battery-Based IHRES Using
Medium-Efficiency Appliance Usage-Based Scenario (MPRAMC) (with DSM)

From the results given in Tables 10 and 11, it is observed that the AFC of the Ni-Fe
battery-based IHRES at 80% DOD with LF strategy using the medium-efficiency appliance
usage-based scenario was 854 L, which is 201 L more than the AFC using the CC strategy,
as well as 746 L less than the AFC using the HPRALC-based scenario’s LF strategy.

From the results given in Tables 10 and 11, it is observed that the ACO2 emission of
the Ni-Fe battery-based IHRES at 80% DOD with LF strategy using the medium-efficiency
appliance usage-based scenario was 2306 kg, which is 542 kg more than the ACO2 emission
using the CC strategy, as well as 2014 kg less than the ACO2 emission using the HPRALC-
based scenario’s LF strategy.

Therefore, it was concluded that the usage of medium power rated appliances of
moderate cost has a significant effect on the system performance due to the reduction of
both the LCC and the required number of components.

8.8.3. The Effect of Ni-Fe Battery-Based IHRES Using High-Efficiency Appliance
Usage-Based Scenario (LPRAHC) (with DSM)

From the results of the low-efficiency appliance usage-based scenario (HPRALC), the
Ni-Fe battery-based IHRES with LF strategy (base case) provided the lowest LCC when
compared to its CC strategy and other battery-based IHRESs with different dispatch strate-
gies. Therefore, this configuration was further analyzed with a high-efficiency appliance
usage-based scenario, i.e., with DSM. The high-efficiency appliance usage-based scenario
means the usage of low power rated appliances of high cost (LPRAHC) by the consumers
and is a part of the concept of the energy conservation-based DSM. The results given in
Tables 12 and 13 showed that the base case with LF strategy provided an LCC with the
LPRAHC-based scenario of USD 522,945, which is about 1% lower than its CC strategy’s
LCC, as well as about 43% and 15% lower than its LCCs with the LF strategy using the
HPRALC and MPRAMC-based scenarios, respectively. The current scenario’s optimal
component values were NPV = 814 and NBAT (Ni-Fe) = 450. If these values were compared to
the HPRALC-based scenario values, the number of PV panels was reduced from 1275 to
814, i.e., a reduction in the requirement of 461 PV panels, and the number of batteries was
reduced from 893 to 450, i.e., a reduction in the requirement of 443 batteries. Similarly, if
these values were compared to the MPRAMC-based scenario values, the required number
of PV panels was reduced from 904 to 814, i.e., a reduction in the requirement of 90 PV
panels, and the number of batteries was reduced from 569 to 450, i.e., a reduction in the
requirement of 119 batteries.

The Effect of Different Dispatch Strategies on the Ni-Fe Battery-Based IHRES Using
High-Efficiency Appliance Usage-Based Scenario (LPRAHC) (with DSM)

From the results given in Tables 12 and 13, it is observed that the AFC of the Ni-Fe
battery-based IHRES at 80% DOD with LF strategy using the high-efficiency appliance
usage-based scenario was 837 L, which is 706 L more than its AFC using the CC strategy
and 763 L less than its AFC using the HPRALC-based scenario’s LF strategy, as well as 17 L
less than its AFC using the MPRAMC-based scenario’s LF strategy.

According to the results given in Tables 12 and 13, it is observed that the ACO2
emission of the Ni-Fe battery-based IHRES at 80% DOD with LF strategy using the high-
efficiency appliance usage-based scenario was 2259 kg, which is 1906 kg more than its
ACO2 emission using the CC strategy and 2061 kg less than its ACO2 emission using the
HPRALC-based scenario’s LF strategy, as well as 47 kg less than its ACO2 emission using
MPRAMC-based scenario’s LF strategy.
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Therefore, it was observed that the usage of low power rated appliances of high cost
has moderate and significant effects on the system performance due to a reduction in
both the LCC and the required number of components when compared to medium and
low-efficiency appliance usage-based scenarios’ optimal values. Finally, it was concluded
that the Ni-Fe battery-based IHRES with LF strategy using the high-efficiency appliance
usage-based scenario (LPRAHC) is best suited to electrify the study area while comparing
to other battery-based IHRESs as well as other efficiency-based scenarios. Furthermore,
because of India’s well-known energy-efficient appliance usage schemes as stated in the
introduction, electrification based on the LPRAHC-based scenario is more cost-effective
for both the consumers and the government. Particularly in view of the electricity bills,
this LPRAHC-based scenario electrification is more beneficial for people living in off-grid
rural areas.

Figures 16 and 17 show the energy graphs of the different components for one week in
both the summer and winter seasons, respectively, for the Ni-Fe battery-based IHRES with
CC strategy using the LPRAHC-based scenario, According to the figures, the PV panels
only supply the load demand from morning to evening (8 A.M. to 4 P.M. in winter and
from 7 A.M. to 5 P.M. in summer). During this period, it is advantageous to charge the
battery bank with excess energy generated by the PV panels.

Figure 16. During one week of the summer season in August, energy outputs of various components
of the Ni-Fe battery-based IHRES with LF strategy using LPRAHC loads.

PV panels cannot produce energy from the evening. Therefore, the batteries supply
the deficit load demand through the discharge mechanism in order to provide a continuous
power supply that meets the greatest amount of load demand. In addition, the biomass
generator operates in conjunction with the battery bank discharge mechanism to satisfy
the peak load demands from 6 P.M. to 10 P.M. and contributes to the marginal peak load
demands. The total load demand is supplied exclusively by the batteries after 10 P.M. until
the morning hours of 7 A.M. to 8 A.M., and this cyclic process is repeated for all days of the
winter and summer seasons. Furthermore, as seen in the summer season energy graph, the
DG comes into operation during certain peak hours of the summer season when batteries
are unable to meet the peak load demands.
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Figure 17. During one week of the winter season in January, energy outputs of various components
of the Ni-Fe battery-based IHRES with LF strategy using LPRAHC loads.

8.9. Robustness of the Algorithms in Finding the Global Best Optimal Values

From the results provided for the three scenarios of sixteen configurations from
Tables 8–13, the robustness of the algorithms can be analyzed. Among these sixteen
configurations, the DE algorithm provided the global best optimal values for only six
configurations and obtained the 6th rank in providing the global best optimal values.
The DA algorithm provided the global best optimum values for eight configurations and
obtained the 5th rank. The GA, GWO, MFO, and GOA algorithms provided the global
best optimum values for eleven configurations and obtained the 4th rank. The ALO
algorithm provided the global best optimum values for twelve configurations and obtained
the 3rd rank. The PSO algorithm provided the global best optimum values for fourteen
configurations and obtained the 2nd rank. Finally, the SSA algorithm provided the global
best optimum values for all sixteen configurations and obtained the 1st rank in finding the
global best optimum values and proven its robustness when compared to other algorithms.

8.10. Convergence Efficiency of the Algorithms in Finding the Global Best Optimal Values

Each optimized value obtained in each iteration of the simulation process of each algorithm
was used to draw the convergence curves, which are shown from Figures 18–22. We used a total
of 100 iterations for the current study. The marble symbol in the figures below indicates that the
algorithm reached its global best optimal value on that number of iteration. If an algorithm does
not have a marble symbol, it does not have the global best optimal value. Figure 18 shows the
convergence curves of all algorithms for the Ni-Fe battery-based IHRES at 80% DOD with LF
strategy using the HPRALC-based scenario; these curves are useful to evaluate the convergence
efficiency of the algorithm with respect to other algorithms in finding the global best optimal
values. This configuration obtained the minimum LCC with GWO and SSA algorithms at the
98th and 27th iteration, respectively.
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Figure 18. Convergence curves of the Ni-Fe battery-based IHRES with LF strategy using HPRALC-
based scenario.

Figure 19. Convergence curves of LA at 80% DOD with HPRALC.

Figure 20. Convergence curves of Li-Ion at 50% DOD with HPRALC.
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Figure 21. Convergence curves of Ni-Fe based IHRES with MPRAMC.

Figure 22. Convergence curves of Ni-Fe based IHRES with LPRAHC.

Figure 19 shows the convergence curves of all algorithms for the LA battery-based
IHRES at 80% DOD with LF strategy using the HPRALC-based scenario. This configura-
tion obtained the minimum LCC with GA, PSO, GWO, ALO, DA, MFO, GOA, and SSA
algorithms at the 40th, 54th, 99th, 50th, 71st, 28th, 93rd, and 20th iteration, respectively.

Figure 20 shows the convergence curves of all algorithms for the Li-Ion battery-based
IHRES at 50% DOD with LF strategy using the HPRALC-based scenario. This configuration
obtained the minimum LCC with GA, PSO, ALO, DA, MFO, GOA, and SSA algorithms at
the 30th, 46th, 69th, 79th, 28th, 90th, and 23rd iteration, respectively.

Figure 21 shows the convergence curves of all algorithms for the Ni-Fe battery-based
IHRES at 80% DOD with LF strategy using the MPRAMC-based scenario. This configu-
ration obtained a minimum LCC with GA, PSO, GWO, ALO, DA, MFO, GOA, and SSA
algorithms at the 36th, 44th, 91st, 40th, 75th, 60th, 88th, and 18th iteration, respectively.

Figure 22 shows the convergence curves of the Ni-Fe battery-based IHRES at 80% DOD
with LF strategy using the LPRAHC-based scenario, the minimum LCC of this configuration
obtained with GA, PSO, DE, GWO, ALO, DA, MFO, GOA, and SSA algorithms at the 44th,
68th, 92nd, 39th, 71st, 41st, 75th, and 20th iteration, respectively.

From Sections 8.9 and 8.10, it was noted that in all sixteen configurations with different
scenarios, the proposed SSA algorithm showed its robustness and convergence efficiency in
finding the global best optimal values. Therefore, the proposed SSA algorithm is strongly
recommended for microgrid size issues.
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9. Sensitivity Analysis

To determine the LCC variability of the optimal configuration, i.e., Ni-Fe battery-based
IHRES at 80% DOD with LF strategy using the LPRAHC-based scenario, a sensitivity
analysis with a ±20% variance in input parameters such as biomass collection rate, interest
rate, and diesel prices was performed as follows:

The optimum configuration was referred to as a base case and its achieved LCC was
USD 522,945, with input parameters such as interest rate, biomass collection rate, and diesel
prices being 60%, 13%, and 1.08 USD/L, respectively.

Table 14 shows that increasing the system interest rate by 10% to 20% of its base rate
raised the system LCC from 4.47% to 9.95% in comparison to the base case LCC. Similarly,
if the system’s interest rate was reduced from 10% to 20%, the system’s LCC could be
reduced from 3.68% to 6.73% in comparison to its base case LCC, and it was concluded that
the interest rate has a significant effect on the system performance.

Table 14. Optimal configuration results with interest rate variation.

Growth −20% of
Base Case

−10% of
Base Case Base Case +10% of

Base Case
+20% of
Base Case

Interest Rate 10.4% 11.7% 13% 14.3% 15.6%

LCC (USD) 487,769 503,712 522,945 546,335 574,958

Table 15 shows that raising the biomass collection rate by 10% to 20% of its base rate
reduced the system LCC from 0.31% to 0.67% compared to the base case LCC. Similarly,
lowering the system’s biomass collection rate from 10% to 20% increased the system’s LCC
from 0.35% to 0.68% in relation to the base case LCC, and it was concluded that the biomass
collection rate has a negligible effect on the system performance.

Table 15. Optimal configuration results with the variation of biomass collection rate.

Growth −20% of
Base Case

−10% of
Base Case Base Case +10% of

Base Case
+20% of
Base Case

Biomass collection rate 48% 54% 60% 66% 72%

Available tons of biomass 7.2 8.1 9 9.9 10.8

LCC (USD) 526,524 524,753 522,945 521,316 519,443

Table 16 shows that increasing the diesel prices by 10% to 20% of its base rate raised
the system LCC from 0.3% to 0.61% in comparison to the base case LCC. Similarly, if the
system’s interest rate was reduced from 10% to 20%, the system’s LCC could be reduced
from 0.51% to 0.61% in comparison to its base case LCC, and it was concluded that the
diesel prices have a negligible effect on the system performance.

Table 16. Optimal configuration results with the variation of diesel price.

Growth −20% of
Base Case

−10% of
Base Case Base Case +10% of

Base Case
+20% of

Base Case

Diesel price/L (USD) 0.864 0.9 1.08 1.188 1.296

LCC (USD) 519,772 520,300 522,945 524,531 526,118

10. Conclusions

In this study, the available RE resources in the study area such as biomass and solar
were considered to provide electricity and freshwater availability to five un-electrified
villages in the Rayagada district of Odisha state in India. Due to the uncertainties in these
RE resources, the power supply is not continuous. Hence, a feasibility study using three
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different types of battery technologies such as lithium-ion (Li-Ion), nickel-iron (Ni-Fe),
and lead-acid (LA) was considered in order to provide a continuous power supply in
conjunction with a diesel generator (DG).

In order to find out an optimal configuration to electrify the study area, six different
configurations were modelled using available RE resources and battery technologies. Ini-
tially, these six configurations were evaluated with load following (LF) and cycle charging
(CC) strategies using the low-efficiency appliance usage-based scenario in the MATLAB©
environment at an LPSP value of 0% with nine metaheuristic algorithms such as particle
swarm optimization, grey wolf optimization, genetic algorithm, ant lion optimization, dif-
ferential evolutionary algorithm, moth flame optimization, dragonfly algorithm, grasshop-
per optimization algorithm, and Salp Swarm Algorithm. According to the results, the Salp
Swarm Algorithm showed its convergence and robustness efficiencies in comparison to
other algorithms in order to find the global best optimal values. From the results of the low-
efficiency appliance usage-based scenario, the Ni-Fe battery-based IHRES with LF strategy
was found to be an optimal configuration. This was further evaluated with medium and
high-efficiency appliance usage-based scenarios. The summary of these results are listed
as follows:

The Ni-Fe battery-based IHRES with LF strategy using the low-efficiency appliance
usage-based scenario, i.e., without DSM, obtained an LCC of USD 916,728, which is about
39% and 62% lower than the LCCs of LA (at 80% DOD) and Li-Ion (at 50% DOD) battery-
based IHRES’s LF strategies, respectively.

The Ni-Fe battery-based IHRES with LF strategy using the medium-efficiency appli-
ance usage-based scenario, i.e., with DSM obtained an LCC of USD 613,841, which is about
33% lower than its LCC using low-efficiency appliance usage-based scenario.

The Ni-Fe battery-based IHRES with LF strategy using the high-efficiency appliance usage-
based scenario, i.e., with DSM, obtained an LCC of USD 522,945, which is about 43% and 15%
lower than its low and medium-efficiency appliance usage-based scenarios, respectively.

Finally, the sensitivity analysis was performed by varying the interest rate, biomass
foliage collection rate, and diesel prices as compared to the other parameters, and the effect
of the interest rate was found to have a major impact on the system performance.

The current study focused on demand-side management based on energy conservation.
Using this study, power consumption in rural households as well as power production
components in the study area can be reduced significantly. As a result, energy bills and
total investment costs in the study area can be reduced. In future studies, with proper
planning, peak load demands can be reduced by shifting non-peak load demand periods
using energy conservation-based management. This methodology can significantly reduce
the investment cost for the specific study area.
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