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Abstract: “Short-term load forecasting (STLF)” is increasingly significant because of the extensive
use of distributed energy resources, the incorporation of intermitted RES, and the implementation of
DSM. This paper provides a novel ensemble forecasting model with wavelet transform for the STLF
depending on the decomposition principle of load profiles. The model can effectively capture the
portion of daily load profiles caused by seasonal variations. The results indicate that it is possible to
improve STLF accuracy with the proposed method. The proposed approach is tested with the data
taken from Ontario’s electricity market in Canada. The results show that the proposed technique
performs well in-terms of prediction when compared to existing traditional and cutting-edge methods.
The performance of the model was validated with different datasets. Moreover, this approach can
provide accurate load forecasting using ensemble models. Therefore, utilities and smart grid operators
can use this approach as an additional decision-making tool to improve their real-time decisions.

Keywords: STLF; wavelet transform; smart grid; ensemble method; load forecast; DSM

1. Introduction

Load forecasting (LF), which is related to estimating future load demand, is extremely
important in the operations and planning of a power system. This also has a significant
impact on the energy market analysis and financial distribution (i.e., economical way),
security assessment, and many other sectors in the power industry [1]. From this perspec-
tive, STLF is employed in this paper to enhance power system dependability and energy
efficiency. Because STLF commonly estimates timelines ranging from 1 h to 1 week, it is
able to regulate the operational/ maintenance cost of the power system.

So far, several strategies and models for STLF have been suggested. In recent times
“the statistical and artificial intelligence (AI)” methods have been classified as significant cat-
egories of STLF approaches [2–4]. Some of the statistical methods have shown exceptional
accuracy for linear systems, such as time-series-based estimation [5,6], regression-analysis-
based methods [7,8], stochastic-based approaches [9,10], and exponential smoothing [11].
However, these methods are not suitable for estimating loads that are highly complex
and nonlinear in nature [12]. In contrast, the AI methods have been used to handle the
nonlinear LF with ANN (“either supervised or unsupervised”) [13,14], fuzzy model [15],
SVM [16,17], and clustering data model [18–20]. Nevertheless, the irregularity in power
load is exceedingly multidimensional because of consumer’s power consumption behavior,
special occasions, and meteorological variations, thus, limiting the precision of LF [21,22].

To enhance LF progress even more, “wavelet transform (WT)”-based ensemble ap-
proaches and ANN were developed [16–19]. In these studies, various WT-levels are
accomplished, and multiple techniques are used for training the ANN. The trial-and-error
method was employed in this scenario to determine the superior level of the WT, and the
enhanced bee colony optimization has been applied to enhance its learning precision [19].
WT-based hybrid technique was proposed for 24 h ahead of LF, wherein the adaptive PSA
was employed for training the ANN [23].
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The WT was utilized efficiently for STLF by dividing the load data into subcompo-
nents [24–26]. In addition, it plays an important role in the model-based progression.
Hence, a novel ensemble scheme suitable for creating a collection of individual predictors
using wavelet transformation is proposed in this paper. It has been observed that the
type of mother wavelet and the level of decomposition are the two key wavelet factors
required in this transition. The mother wavelet type and decomposition levels are used
in the proposed method to attain diverse amalgamations of individual predictors. The
primary reason behind this is that different wavelet configurations promote diversity of
network composition and thus provide various features for ELM-based forecasters.

While developing the STLF model, determining the appropriate input variable from
the raw dataset can significantly affect the growth and performance. In general, too
many input parameters provide greater considerable discretion, but when implemented,
these many input parameters can lead to drawbacks [27]. The reason being that certain
parameters are improper or inessential for the system, confusing the learning process and
leading to incorrect outputs.

The simple averaging technique is extensively used in ensemble forecasting to combine
individual forecasts to generate an ensemble forecast [10,12,13], which assumes that each
individual has the same contribution. In practical applications, however, some individual
projections in the ensemble are more accurate than others. To handle this type of issue
in the prediction and to increase STLF accuracy, a novel WT-based ensemble approach is
suggested in this paper.

The novelty of this paper is to enhance the prediction performance of the ensemble
model and reduce the problem of overtraining by choosing appropriate wavelet parameters.
Furthermore, the model performance is evaluated and validated with the datasets IESO,
ISO-NE, and ENTSO-E, respectively. The suggested techniques greatly improved forecast
accuracy (i.e., lower MAPE) for both seasonal months and day loads, respectively.

The following are the prominent feature of LF identified from the suggested strategy:

(1). Mitigation of inconsistency
(2). Reduction in overtraining
(3). Improvement of predictive performance
(4). Selecting the appropriate wavelet parameters [21–23]
(5). Resolving the bias issues of fixed wavelet parameters
(6). Using individual reference indicators associated with imperfect wavelet parameters

to improve predictive accuracy.

The suggested technique has been tested using real-world data from the IESO-Canada
(Independent Electricity System Operator) electric utility and comparing the performance of
the model with ENTSO-E (European Network of Transmission System Operators for Electricity)
and ISO-NE (Independent System Operator New England) datasets. The remaining part of the
paper is organized into various sections as follows: Section 2 explains the principles and
technical details of the suggested approach. Section 3 describes the input, training, and
testing datasets. Section 4 provides the experimental results and comparability with other
methodologies. Finally, Section 5 concludes the paper.

2. Methodology
2.1. Wavelet Transform

The electric power load series has some consistent features such as variations in trends,
level and slope, and seasonality. These features are often the most important and critical
factors that cause load signal instability.

Hence, it is vital to delve extensively into the load series in order to get greater preci-
sion. It has been observed that the load series always has diverse frequency components,
which are extremely difficult to manage. Wavelets are used to overcome the problem
of instability because they produce better compact projections of the signal over time
and frequency domains [8]. Furthermore, the wavelet decomposition may be utilized to
illustrate primary load pattern characteristics, which are important for greater accurate
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forecasting. The WT was successfully used for STLF by subdividing the load data into
a set of sub-components [22–24]. Meanwhile, it can also play a very great role in the
prediction process.

In this study, the WT is utilized to classify the load sequence into a combination of
multiple sub-components with discrete frequencies [28]. The basic principle of the WT-
based decomposition procedure, as shown in Figure 1. The “high-frequency” components
giving precise features and abnormal related data about the load demand [29]. Furthermore,
these sub-components perform better than the actual load sequence and, as a result, could
be approximated rather precisely [30].
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According to the literature survey, the WT is classified into two types: “(1) continuous
wavelet transform (CWT) and (2) discrete wavelet transform (DWT)”. However, since the
CWT examines the mother functions continually and generates a large quantity of data, it
is complicated and time consuming to conduct. On the other hand, DWT computes param-
eters in discrete values, which is substantially faster. As a result, we utilized a DWT in this
investigation. Furthermore, wavelet analysis, in general, involves two fundamental func-
tions: the mother wavelet and the scaling functions. The mathematical representation of
DWT with the input signal x(t) and mother wavelet function ψ (t) can be expressed by [31]:

DWT (msc, ksh) =
1√
asc

.
T

∑
t

x(t).ψ (t) (1)

where, msc, ksh are the scale and shift parameters, respectively.

(i) Scale parameter ( asc)

asc = amsc
0

where, a0 is constant
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(ii) Mother function (ψ (t) )

ψ (t) = ψ

(
ksh − bsh

ash

)
where,

(iii) Shifting parameter (bsh)

bsh = n.b0.amsc
0

where, n is discrete-time index and b0 is the constant

(iv) Scaling function (ϕ(msc, ksh)(t))

ϕ(msc, ksh)(t) = 2
−msc

2 ϕ
(
2−msc , t− n

)
The detailed (Dc

m,k) and approximation (Ac
m,k) coefficients are

Dc
m,k = ∑T

t x(t). ψm,k(t) (2)

Ac
m,k = ∑T

t x(t). ϕm,k(t) (3)

The approximation (Ac
I) and detailed (Dc

J) of the signals at the particular scales I and J
are calculated by

Ac
I = ∑∞

k=−∞ Ac
m,k . ϕm,k(t) (4)

Dc
J = ∑∞

t=−∞ Dc
m,k . ψm,k(t) (5)

As result, the load series (x(t)) can be represented with mother wavelet (ψ(t)), and its
accompanying scaling function (ϕm,k(t)) is expressed as follows:

x(t) =
T

∑
t

Ac
I(t). ϕmsc , ksh(t) +

T

∑
t

∞

∑
k=−∞

Dc
J .ψm,k(t) (6)

An intuitive sample of two-level decomposition for the load series given by

x(t) = AL1(t) + DL1(t) = A21(t) + D21(t) + DL1(t) (7)

The load series x(t) is decomposed into a set of sub-components: AL2, DL2, and DL1.
The approximation component AL2 reflects the general trend and presents a smooth form of
x(t). The details terms D21(t) and DL1(t) describe the high-frequency components in x(t).

2.2. Wavelet-Based Ensemble Approach

The mother wavelet and the number of decomposition levels are two critical factors
required in the WT. Currently, there is no specific best methodology for selecting such
specifications [32]. Numerous studies have been conducted on different wavelet coefficients
and appropriate settings have been identified based on the results.

Unfortunately, there are at least three difficulties with this sort of selection approach:

1. Normally, it would take an excessively long amount of time to test a variety of wavelet
specifications.

2. The load series may not always be accurately represented by the fixed specifica-
tion [29].

3. Third, a given set of wavelet coefficients cannot always provide the best predicting
outcomes in all perspectives.

To address the aforementioned issues, a wavelet-based ensemble approach is proposed
in this paper (as shown in Figure 2). The wavelet transform is used to construct an
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ensemble of predictors, with each predictor having a distinct combination of mother
wavelets and several decomposition levels. A schematic diagram of this type of predictor
is shown in Figure 2a,b.
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In Figure 2a, the process of estimating the load is as follows: First, the input dataset is
divided into two parts, which are time and load. The load is divided into weekday and
weekend loads. Then, the load-dependent input is assigned to a particular WT and the
resulting output and time-dependent inputs are distributed to another WT to estimate the
load. This process continues until the desired best results are achieved by changing the
decomposition levels and appropriate parameters in WT.

Similarly, the ensemble forecasting model was constructed by using the model shown
in Figure 2b. Here, the models are connected sequentially, one by one, to form a novel
WT-based ensemble for predicting the load values. By changing the decomposition levels
and appropriate parameters in WT, the desired results can be achieved. The remaining
technical details regarding the wavelets and specific parameters used in this study are
mentioned clearly as follows:

The wavelet family of “Daubechies (db)” has been frequently utilized to analyze
load data in STLF [33–35]. Furthermore, it has been observed that “Coiflets (coif)” can
also provide a good representation in the results, even though they are rarely used in
the literature. Moreover, the mother wavelet order is usually between 2 and 5, and the
decomposition levels are less than 4. As a result, eight wavelet functions (“db2-db5 and
coif2-coif5”) are employed in this work, with the level of decomposition ranging from 1
to 3. Therefore, the proposed ensemble scheme comprises 24 different wavelet parameter
combinations in total.

The mother wavelets of db and coif with particular family numbers are shown in
Figure 3. It has been observed that wavelet function changes only in a short period of
time. Because the wavelet functions have varied forms, their associated sub-components
will behave differently as well. For example, a load signal is divided into three levels that
would use the wavelet techniques described above. The resultant approximation aspects
are depicted in Figure 4, where Figure 4a corresponds to db and Figure 4b belongs to coif
wavelets, respectively.
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Furthermore, the wavelet-based ensemble approach will generate distinct input pa-
rameters for each forecaster, which could also increase the ensemble’s diversity. Each
forecast is updated based on the factors that differ from those used in other factors. As a
result, each forecast in the ensemble would contain some unique information regarding
the input. The ensemble technique can increase prediction capabilities by utilizing the
relevant supplementary information. Furthermore, the ensemble technique will help to
select appropriate wavelet parameters and decrease the biases caused by arbitrary wavelet
parameters. The results demonstrate that upgrading the model structure and using the
ensemble technique may significantly improve forecasting performance.

3. Description of the Input Data
3.1. About the Input Data

In this paper, we have taken the input dataset from the “Ontario (IESO-Canada)” [28],
as shown in Figure 5, However, we considered the hourly load series from 1 January
2017 to 30 September 2019 for analysis purposes, as shown in Figure 5a. In addition, the
seasonal loads for the years 2018 and 2019 are shown in Figure 5b,c, respectively. The load
data shows some non-stationary features, including trends, scale, slope, and seasonality.
Hence, the principle aspect of this paper is to forecast the electricity load for the year 2019
by seasonal month and day, considering the daily load demand from the previous year
(i.e., 2018). For this purpose, the training and test set data are required to make the model
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work effectively. Therefore, the different forms of datasets and how they are used in the
forecasting process are shown in Table 1, in which the test dataset was considered for
model evaluation. This component is useful to see how well the model works in practical
applications. Therefore, the last two months in the dataset were selected as the test set
required to test the model [20].
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Another important thig to note is that factors affecting the load profile, such as tem-
perature, humidity, price, etc., were not considered in this research work, because the
“ISEO-Canada” database contains load values that are recorded based on the geographical
and seasonal weather conditions. In addition, many studies have demonstrated appro-
priate correlational solutions for selecting input features. They concluded that power
consumption depends on seasonal weather conditions, relative time, and geographical lo-
cation [35–42]. Therefore, only power load values are considered here based on seasonality
with respect to time.

Table 1. Different forms of the input dataset.

Input Data Season Output
(To Forecast Month) Training Set Testing Set

(Last Two Months from Input Data)

IESO Dataset
1 January 2017

To
30 September 2019

Winter January 2019 January 17 to October 18 November 18 to December 18
Spring April 2019 April 17 to January 19 February 19 to March 19

Summer July 2019 July 17 to April 19 May 19 to June 19
Fall October 2019 October 17 to July 19 August 19 to September 19

3.2. Statistical Summary Analysis of Input Data

The hourly power consumption data from 1 January 2018 to 30 September 2019, from
the Ontario grid, are taken as the input data, in which there are approximately 15,312 values
in the total input data at a rate of 24 values per day, for each day of each month. A
summary of input data per hour is as follows: The total load value was 23,895,0219 MW, the
average value was 1,560,583 MW, and the minimum and maximum values were 10,328 MW
and 23,240 MW, respectively; in addition, the total data range value was 12,912 MW.
Similarly, Table 2 shows the complete summary analysis of the training and testing set
data, respectively.
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Table 2. Statistical summary analysis of training and testing datasets.

Statistical Summary Analysis

Season
Training Set

Mean (MW) Minimum (MW) Maximum (MW) Range (MW) Sum (MW) Count (Hour)

Winter 15,689.10342 10,541 23,240 12,699 137,436,546 8760

Spring 15,769.39189 10,541 23,240 12,699 138,139,873 8760

Summer 15,610.72996 10,328 23,240 12,912 147,989,720 9480

Fall 15,465.89030 10,328 21,791 11,463 135,481,199 8760

Testing Set

Winter 15,881.27 11,765 20,152 8387 23,250,178 1464

Spring 16,207.93 12,210 20,500 8290 22,950,422 1416

Summer 14,060.91 10,328 20,248 9920 20,585,179 1464

Fall 15,125.40 10,477 21,354 10,877 22,143,585 1464

The table contains the following information. For the summer period, the load dis-
tribution value was 1,447,989,720 MW, which is 61% of the overall input. This means that
electricity consumption was very high in this season. This may be due to rising tempera-
tures caused by changes in the climate. Similarly, the load value during the fall season was
137,436,546 MW, which is 56% of the total load. This means that power consumption was
very low due to the declining temperatures in this season.

However, when it comes to average values, the load value (15,769.39189 MW) during
the spring season had a higher value than the total load average value (15,605.42183 MW).
In addition, the fall season had the lowest average value (15,465.8903 MW). When it comes
to minimum and maximum load values, the winter, spring, summer, and fall seasons had
the same values. Furthermore, the maximum value is recorded during the fall season
(21,791 MW). The winter and spring seasons had a unique range value (12,699 MW). More-
over, the summer and fall seasons had values of 12,912 MW and 11,463 MW, respectively.
Similarly, during the fall season, the highest load value was recorded (22,143,585 MW),
which is 93% of the total load. In addition, summer had the lowest value (20,585,179 MW),
which is 86% of the total load.

From the above discussion, we can conclude that the electricity consumption mostly
depends on seasonal weather conditions. Hence, only previous load values with time
factors are considered in this paper.

4. Results and Discussion

The forecasting of load with limited historical data may provide insufficient infor-
mation. Therefore, several comprehensive methods have been proposed in the past to
overcome this problem. In this order, an ensemble approach has been developed in this
paper to improve LF performance further. The suggested model has been validated us-
ing a real-world electrical dataset, and its performance has been compared with other
state-of-the-art methods using three error metrics, which are: “mean absolute percentage
error (MAPE), mean absolute error (MAE), and root mean square error (RMSE)”. They are
defined as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ Lactual − ˆL f orecasted

Lactual

∣∣∣∣∣ ∗ 100 (8)

MAE =
1
n

n

∑
i=1

∣∣∣Lactual − ˆL f orecasted

∣∣∣ (9)

RMSE =

√
1
n

n

∑
i=1

(
Lactual − ˆL f orecasted

)2
(10)
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Here, n represents the total no of input values, Lactual denotes the real or actual load,
and ˆL f orecated denotes the predicted load value.

This research was carried out by setting up the model proposed in this paper based on
the MATLAB software on a personal Acer laptop, which has Intel (R), i5, 2.60, 4 GHz, 4 GB
RAM and a 64-bit processor. The results and performance details of the model in various
case studies are as follows:

(1). Model-1 (M1): db wavelets were used in three blocks. The arrangement of this model
is shown in Figure 2a.

(2). Model-2 (M2): In this case, the model M1 blocks were replaced with coif wavelets.
(3). Model-3 (M3): The proposed model was tested in 4 optimum ways from all the

possible combinations with db and coif, resulting in the appropriate model (M3).
(4). Model-4 (M4): Based on Model M3, we developed an ensemble wavelet-based model,

as shown in Figure 2b.

The results achieved by providing the appropriate input data to the above models in
various case studies are described in the next section.

4.1. Case Studies Analysis

The model proposed in this paper was tested in four different cases, and these models
have shown interesting results in each case. These are as follows:

Case (I): In this case, the db wavelet was used in the model M1 to estimate the load.
The detailed results are given in Tables 3 and 4. Table 3 contains load estimation error
values for different seasons by either weekday or weekend, while Table 4 shows errors for
different seasons by month.

Table 3. Weekday and weekend seasonal forecasted results.

Model Day

Winter Season Spring Season Summer Season Fall Season

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

M1
Weekday 1.3405 247 353 1.6586 200 286 1.1576 669 914 1.6022 486 660

Weekend 1.1353 292 418 1.9111 174 248 1.4561 532 727 1.2843 603 823

M2
Weekday 1.6952 171 237 1.2445 267 323 1.5313 506 625 1.9801 343 483

Weekend 1.5211 190 264 1.3641 243 294 1.9007 407 503 1.6412 413 583

M3
Weekday 1.4767 156 218 1.6586 139 182 1.3869 488 540 1.1153 482 672

Weekend 1.5561 132 183 1.7245 134 176 1.8321 370 408 1.2379 435 605

M4
Weekday 0.1871 111 129 0.1521 113 122 0.3432 342 380 0.4274 424 551

Weekend 0.4274 91 109 0.5183 93 102 0.2482 321 353 0.2503 404 521

Table 4. Seasonal forecasted results.

Model

Winter Season Spring Season Summer Season Fall Season

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

M1 1.4758 94 321 1.5697 88 301 1.6137 86 294 1.7375 80 608

M2 1.2163 70 331 1.3086 65 246 1.9320 56 208 1.6211 51 590

M3 1.5328 72 210 1.3831 79 219 1.7150 107 187 1.3532 80 553

M4 0.6145 55 130 0.6704 62 169 0.5914 51 139 0.6777 60 427

From the results obtained by this model, it was observed that the winter weekend
had the lowest MAPE (1.353%) and the spring weekend had the lowest MAE (174 MW).
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Similarly, when it comes to high values, the spring and summer weekends had a MAPE of
1.9111% and MAE of 669 MW. Furthermore, with respect to the monthly (Table 4) forecast
errors during different seasons, the minimum MAPE value in the winter was 1.4758%, and
MAE was 80 MW in the fall season. On the other hand, in terms of higher values, the fall
season had a MAPE value of 1.7375%, and in the winter season, MAE was 94 MW.

From the above results, the proposed model works well in terms of load estimation. Fur-
thermore, these results show a reduction in the error when compared to WT-based ANN [28].

Case (II): In this case, the coif wavelet was used to estimate the load with the model
M2. The results obtained when testing the model through input data can be seen in Tables 3
and 4. From the results, it was observed that the spring weekend had the lowest MAPE
(1.2445%) value, while the winter weekday had the lowest MAE (171 MW). Similarly, when
it comes to high values, the fall weekday had a MAPE of 1.9801% and the summer weekday
had a MAE of 506 MW. Furthermore, when it comes to the seasonal (Table 4) forecast errors
during different seasons, the minimum MAPE value in the winter was 1.2162%, and MAE
was 51 MW in the fall season. On the other hand, in terms of higher values, the MAPE
value was 1.9320% during the fall season and MAE was 70 MW in the winter season.

Case (III): As mentioned previously, the M3 model is a combination of two wavelets
(i.e., db and coif). The proposed model showed expected results when validated with a
training and testing set, with an input dataset. These results are shown in Tables 3 and 4.
The details of the estimated results of electricity consumption with the M3 model are as
follows: It was observed that the fall weekday had the lowest MAPE (1.1153%) value, while
the winter weekend had the lowest MAE (132 MW). Similarly, when it comes to high values,
the summer weekend had a MAPE of 1.8321% and the summer weekday had a MAE of 488
MW. Furthermore, in terms of the month-wise (Table 4) forecast errors during the different
seasons, the minimum MAPE value in the fall season was 1.3552%, and MAE was 72 MW.
On the other hand, in terms of higher values, the MAPE value was 1.7150% and MAE was
107 MW during the summer season. When comparing the findings of the proposed model
with the WT-based ANN approach, these results seem promising.

Case (IV): The order in which the models are constructed was one after the other,
to form a wavelet-based ensemble model, as shown in Figure 2b. For this purpose, the
structure of the M3 model which used the same as the optimum model 3. In this research,
we have considered it as a proposed model (M4). The forecasted results are listed in the
tables. From the results obtained by this model, it was observed that the spring weekday
had the lowest MAPE (0.1521%) value, while the winter weekend had the lowest MAE
(91 MW). Similarly, when it comes to high values, the spring weekend had a MAPE of
0.5183% and the fall weekday had a MAE of 424 MW. Furthermore, when it comes to the
monthly (Table 4) forecast errors during different seasons, the minimum MAPE value in
the summer was 0.5914%, and MAE was 51 MW in the fall season. On the other hand, in
terms of higher values, the MAPE value was 0.6777% and MAE was 62 MW during the
spring season. It is clear that these results are more accurate than other WT-based ANN
methods.

The summary of the results of this proposed model is as follows:

1. The errors in the results when estimating all-season loads using the model M1 are
as follows: First, the summer season weekday (1.1576%) had the lowest error. Sec-
ond, there was an error of 1.1353% and 1.4758% during the winter weekends and
seasons, respectively.

2. When estimating all-season loads with the help of model M2, the spring season had
error values of 1.2445% and 1.3641%, respectively. However, in winter, the error value
was 1.2163%.

3. The model M3 had an error value of 1.1153% and 1.2379%, respectively, during the
summer season weekdays, and 1.3532% during the months of fall.

4. Based on the productivity results of the suggested model (M4), the spring weekday
had an error of 0.1521%, and the weekend had an error of 0.2482%.
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4.2. Validation of the Proposed Model with Various Datasets

This section describes the performance and validation details of the proposed model
based on errors such as MAPE, MAE, and RMSE, with the public datasets, IESO-Canada,
ISO-NE, and ENTSO-E, were taken as the input to the proposed model. In addition, the
comparative analysis of the model with different models are presented and the results are
as follows:

4.2.1. IESO-Canada

In this analysis, IESO-Canada data from 2014–15 were used as the input for the
proposed model. Based on this data, the load was estimated for the month and day of the
year 2016. The forecasted results of the proposed model in terms of MAPE are given in
Table 5. Furthermore, the proposed model appears to have a better forecast performance
than another existing model. The average accuracy of the proposed model for the monthly
forecasted load is 98.56%, while the model in [28] is 98.34%. Therefore, our model works
22% more effectively than other models and exhibits accuracy. However, when it comes
to the weekend vs. weekday values, the accuracy of the model is 99.02%, and the other
model is 98.82%. This means that the performance of the suggested model is 20% more
effective. Hence, the proposed model appears to have a better forecast performance than
another model.

Table 5. MAPEs of the proposed model with the IESO-Canada dataset.

MAPE (%) of the Proposed Method with IESO-Dataset

Month WT based NN [28] Proposed Model
January 1.504 1.354

February 1.618 1.266
March 1.888 1.339
April 1.763 1.634
May 1.406 1.354
June 1.961 1.799
July 1.638 1.323

August 1.627 1.512
September 1.508 1.236

October 1.434 1.273
November 1.757 1.554
December 2.024 1.692

Day(s)
Weekday 1.03 0.96
Weekend 1.33 1.01

4.2.2. ENTSO-E

The performance of the proposed model in this analysis was tested with the ENTO-E
dataset. According to the authors in [43], the same data segmentation (such as “training
and testing”) was considered for this validation. The model results are compared with the
models proposed in [43–45], respectively. Finally, the forecasted load values of the model,
with help from all three errors, are listed in Table 6.

Table 6. MAPEs of the proposed model with the ENSTO-E dataset.

Model MAPE (%) MAE (MW) RMSE (MW)

CNN-LSTM [44] 2.45 171.71 240.57
RNN-LSTM [45] 2.22 155.83 222.44

Waavenet [43] 2.24 157.28 217.98
CNN-LSTM [43] 2.02 142.23 203.23

Proposed 1.97 127.18 188.48
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From the literature [43], it is understood that the error value (% MAPE) for the ENTSO
European grid is more because the model cannot understand data that have a slightly
different distribution with training and testing. The model undergoing testing was also
highly affected by the quality of the ENTSO-European dataset.

Furthermore, the proposed model appears to have a better forecast performance
than another existing model. The accuracy of the proposed model in forecasting load is
98.03%, while the model in [44] is 97.55%. Therefore, the suggested model works 48% more
effectively than the other model and exhibits accuracy. However, when it comes to [45],
the accuracy of the model is 97.78%. This means that the performance of the suggested
model is 25% more effective than the rest. Similarly, the accuracy of the model in [43] is
97.76%. Therefore, the proposed model works 27% more effectively than the other model.
Finally, when it comes to [43], the accuracy of the model is 97.98%. This means that the
performance of the suggested model is 5% more effective than the rest. When it comes to
the values of the other errors (MAE and RMSE), the performance of the proposed model
has improved as expected. Hence, the proposed model appears to have a better forecast
performance than other models.

4.2.3. ISO-NE

Here, the input data from 1 March 2003 to 31 December 2014 were taken from the ISO-
NE database to test the generalization capability of the proposed model in two ways [46].
However, estimating the daily loads for 2006 on the dataset was considered the first test
case. Subsequent examination of model capability on the 2010 and 2011 data is considered
a second case. The load forecasted details regarding test cases and comparative analysis
with respective models are as follows:

Test Case 1

In this test case, the proposed model performance was validated or examined to
predict the load in 2006. The period of data from 1 June 2003 to 31 December 2005 was
utilized for the model. The results are compared with the models proposed in [33,36–38],
respectively. The forecasted results, in the form of error matrices, are tabulated in Table 7.

Table 7. MAPEs of the proposed model with the ISO-NE dataset in Test Case 1.

Model MAPE (%)

SIWNN [34] 1.73
WT-ELM-PLSR [21] 1.489

WT-ELM-MABC [47] 1.48
ResNetPluse [46] 1.447

Proposed 1.242

The proposed model with the lowest total MAPE can be seen in the table. While this is
the case, the WT-ELM-MABC [47] and ResNetPulse [46] models also show good results.
The accuracy of the proposed model in terms of the forecasted load is 98.76%, while the
model in [31] is 98.27% accurate. Therefore, our model works 49% more effectively than
the other model and exhibits accuracy. However, when it comes to [21], the accuracy of
the model is 98.511%, meaning that the performance of the suggested model is 25% more
effective than the rest. Similarly, the model in [47] is 98.52%. Therefore, the proposed
model works 24% more effectively than the other model. Finally, when it comes to [46], the
accuracy of the model is 98.55%, meaning that the performance of the suggested model is
20% more effective than the rest. Therefore, when testing the proposed model with different
datasets, it becomes clear that it has the expected results and normalization capability.

Test Case 2

In this case, the proposed model capability was investigated by estimating the load
for the years 2010 and 2011, respectively. The data were used to train the model from 1
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January 2004 to 31 December 2009. The performance of the suggested model comparative
results with other models are tabulated in Table 8. Results show that the proposed model
outperforms the prevailing models concerning the total MAPE for the two years, and an
enhancement of 25% and 41% is attained for the years 2010 and 2011, respectively.

Table 8. MAPEs of the proposed model with the ISO-NE dataset in Test Case 2.

Model
MAPE (%)

2010 2011

RBFN-ErrCorr orginal [44] 1.80 2.02
RBFN-ErrCorr modified [17] 1.75 1.98

WT-ELM-PLSR [21] 1.50 1.80
ResNetPluse [46] 1.50 1.64

Proposed 1.39 1.45

Therefore, the proposed model shows excellent performance when compared with
other models. This suggests that the proposed model works well for the respective datasets.
In addition, this wavelet-based ensemble model provides insight into sequence data. The
ensemble structure facilitates model self-correction by associating the output of the first
model with recent or short-sequence data. In addition, it can be understood that the
proposed method is performing better than other reference models. Therefore, the %MAPE
of the proposed method is displayed in the last row of Tables 7 and 8 by comparing with
other existing models available in the literature. In addition, Figure 6 illustrates the 24-h
load estimation results of the proposed model for the various public datasets.
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5. Conclusions

This paper proposes a unique ensemble of the wavelet-based model to improve STLF
accuracy. An ensemble of db and coif wavelets is used to develop the model. This STLF
technique is evaluated with data from the Ontario, Canada, power market, and errors such
as MAPE, MAE and RMSE are calculated. According to the observations, the proposed
technique has the lowest prediction error (MAPE) on weekdays and weekends, at 0.96%
and 1.01%, respectively. Furthermore, the performance of the model is validated with the
datasets available in the literature. From the results, the proposed model for forecasting will
give minimal error. The comparison results (including forecast curve, prediction error, and
accuracy) demonstrate that the proposed approach has great potential to forecast real-time
electricity demand. Further this novel method may be extended for generation dispatch
and price forecasting in the micro grid/smart grid environment.
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