Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage
Abstract
:1. Introduction
2. Governing Equations
2.1. Adsorption Model
2.2. Adsorption Rate
2.3. Adsorption Enthalpy
2.4. Mass and Energy Balance
3. Materials and Methods
3.1. Physical Model
3.2. Numerical Method
- The size, shape, and porosity of particles are assumed to be uniform;
- The air is considered to be an ideal gas (dry air + water vapor);
- The adsorbed water is assumed to be a liquid and in chemical and thermal equilibrium with zeolite;
- The work done by viscous dissipation, radiative heat transfer, and pressure changes is neglected.
3.3. Definition of the Boundary Conditions
- The temperature of the flow at the inlet is constant and equal to the environment temperature;
- The inlet loading of water in the air is constant and can be calculated based on the relative humidity or partial pressure of the water;
- The flow velocity at the inlet is constant and its direction is normal to the inlet surface;
- Neumann boundary condition is considered at the outlet for temperature and the loading of water in the air.
3.4. Validation of the Developed Code
4. Results and Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area [m2] |
A | Adsorption potential [J/kg] |
Heat Capacity | |
E | Characteristic energy [kJ/kg] |
D | Dispersion coefficient [] |
Total diffusion coefficient [] | |
Knudsen diffusion coefficient [] | |
Free gas diffusion coefficient [] | |
E | Characteristic energy [kJ/kg] |
n | Heterogeneity factor [-] |
p | Pressure [Pa] |
Saturation vapor pressure [Pa] | |
Water vapor partial pressure [Pa] | |
Rp | Average radius of zeolite particles/beads |
Specific gas constant of water vapor [kJ/kg] | |
T | Temperature [K] |
Adsorption volume [mol/g] | |
Maximum adsorption capacity of zeolite [mol/g] | |
Equilibrium loading [-] | |
Greek symbols | |
Density [kg/m3] | |
Adsorbate density at 20 °C [kg/m3] | |
Thermal expansion coefficient [1/K] | |
Diffusion coefficient | |
Tortuosity factor | |
Axial thermal conductivity | |
porosity [-] | |
Subscripts | |
ads | adsorption |
des | desorption |
ax | axial |
References
- Moon, W.C. A review on interesting properties of chicken feather as low-cost adsorbent. Int. J. Integr. Eng. 2019, 11, 136–146. [Google Scholar] [CrossRef]
- Tatsidjodoung, P.; Le Pierrès, N.; Luo, L. A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 2013, 18, 327–349. [Google Scholar] [CrossRef]
- Zheng, X.; Ge, T.S.; Wang, R.Z. Recent progress on desiccant materials for solid desiccant cooling systems. Energy 2014, 74, 280–294. [Google Scholar] [CrossRef]
- Thompson, R.W. Recent advances in the understanding of zeolite synthesis. Synthesis 1998, 74, 280–294. [Google Scholar]
- Zhang, Y.; Wang, R. Sorption thermal energy storage: Concept, process, applications and perspectives. Energy Storage Mater. 2020, 27, 352–369. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Urakami, W. Study on specific heat of water adsorbed in Zeolite using DSC. Int. J. Thermophys. 2010, 31, 2004–2009. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S. Adsorption cold storage system with zeolite–water working pair used for locomotive air conditioning. Energy Convers. Manag. 2003, 44, 1733–1743. [Google Scholar] [CrossRef]
- Wang, L.W.; Wang, R.Z.; Oliveira, R.G. A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 2009, 13, 518–534. [Google Scholar] [CrossRef]
- Engel, G.; Asenbeck, S.; Koell, R.; Kerskes, H.; Wagner, W.; van Helden, W. Simulation of a seasonal, solar-driven sorption storage heating system. J. Energy Storage 2017, 13, 40–47. [Google Scholar] [CrossRef]
- Wang, D.C.; Xia, Z.Z.; Wu, J.Y. Design and performance prediction of a novel zeolite–water adsorption air conditioner. Energy Convers. Manag. 2006, 47, 590–610. [Google Scholar] [CrossRef]
- Vasta, S.; Freni, A.; Sapienza, A.; Costa, F.; Restuccia, G. Development and lab-test of a mobile adsorption air-conditioner. Int. J. Refrig. 2012, 35, 701–708. [Google Scholar] [CrossRef]
- Bales, C.; Gantenbein, P.; Jaenig, D.; Kerskes, H.; Summer, K.; van Essen, M.; Weber, R. Laboratory Tests of Chemical Reactions and Prototype Sorption Storage Units; A Report of IEA Solar Heating and Cooling Programme-Task; IEA-SHC: Paris, France, 2008; Volume 32. [Google Scholar]
- Jähnig, D.; Hausner, R.; Wagner, W.; Isaksson, C. Thermo-chemical storage for solar space heating in a single-family house. In Proceedings of the Ecostock, Galloway, NJ, USA, 31 May–2 June 2006. [Google Scholar]
- Hongois, S.; Kuznik, F.; Stevens, P.; Roux, J.-J. Development and characterisation of a new MgSO4− zeolite composite for long-term thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1831–1837. [Google Scholar] [CrossRef]
- Köll, R.; Van Helden, W.; Engel, G.; Wagner, W.; Dang, B.; Jänchen, J.; Kerskes, H.; Badenhop, T.; Herzog, T. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Sol. Energy 2017, 155, 388–397. [Google Scholar] [CrossRef]
- Jänchen, J.; Herzog, T.H.; Gleichmann, K.; Unger, B.; Brandt, A.; Fischer, G.; Richter, H. Performance of an open thermal adsorption storage system with Linde type A zeolites: Beads versus honeycombs. Microporous Mesoporous Mater. 2015, 207, 179–184. [Google Scholar] [CrossRef]
- Bering, B.P.; Dubinin, M.M.; Serpinsky, V.V. Theory of volume filling for vapor adsorption. J. Colloid Interface Sci. 1966, 21, 378–393. [Google Scholar] [CrossRef]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics (with cd Containing Computer MATLAB Programs); World Scientific: Singapore, 1998; Volume 2. [Google Scholar]
- Glueckauf, E. Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography. Trans. Faraday Soc. 1955, 51, 1540–1551. [Google Scholar] [CrossRef]
- Kast, W. Adsorption aus der Gasphase. In Ingenieurwissenschaftliche Grundlagen und Technische Verfahren; Verlag Chemie: Weinheim, Germany, 1988. [Google Scholar]
- Bathen, D.; Breitbach, M. Einführung in die Adsorptionstechnik. In Adsorptionstechnik; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–11. [Google Scholar]
- Mette, B. Experimentelle und Numerische Untersuchungen zur Reaktionsführung Thermochemischer Energiespeicher; University of Stuttgart: Stuttgart, Germany, 2014. [Google Scholar]
- Solmuş, İ.; Rees, D.A.S.; Yamalı, C.; Baker, D.; Kaftanoğlu, B. Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit. Int. J. Refrig. 2012, 35, 652–662. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Maximum adsorption capacity of zeolite (mL/g) | 0.27 |
Characteristic energy (J/kg) | 1192.250 |
Heterogeneity factor (-) | 1.55 |
Bulk density (kg/m3) | 690 |
Average diameter of zeolite particles/beads (mm) | 2 |
Porosity of desorption bed (-) | 0.4 |
Thermal conductivity of zeolite-13X (W/mK) | 0.4 |
Heat Capacity of zeolite-13X (J/K) | 880 |
Internal porosity of the particle (-) | 0.6 |
Macropore diameter (m) | 3 × 10−7 |
Tortuosity (-) | 4 |
Parameter | Value |
---|---|
Height of the Reactor (mm) | 127 |
Diameter of the reactor (mm) | 50 |
Reactor volume (mL) | 250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abohamzeh, E.; Frey, G. Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage. Energies 2022, 15, 5944. https://doi.org/10.3390/en15165944
Abohamzeh E, Frey G. Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage. Energies. 2022; 15(16):5944. https://doi.org/10.3390/en15165944
Chicago/Turabian StyleAbohamzeh, Elham, and Georg Frey. 2022. "Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage" Energies 15, no. 16: 5944. https://doi.org/10.3390/en15165944
APA StyleAbohamzeh, E., & Frey, G. (2022). Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage. Energies, 15(16), 5944. https://doi.org/10.3390/en15165944