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Abstract: Condition-based monitoring (CBM) has emerged as a critical instrument for lowering
the cost of unplanned operations while also improving the efficacy, execution, and dependability
of tools. Thermal abnormalities can be thoroughly examined using thermography for condition
monitoring. Thanks to the advent of high-resolution infrared cameras, researchers are paying more
attention to thermography as a non-contact approach for monitoring the temperature rise of objects
and as a technique in great experiments to analyze processes thermally. It also allows for the
early identification of weaknesses and failures in equipment while it is in use, decreasing system
downtime, catastrophic failure, and maintenance expenses. In many applications, the usage of
IRT as a condition monitoring approach has steadily increased during the previous three decades.
Infrared cameras are steadily finding use in research and development, in addition to their routine
use in condition monitoring and preventative maintenance. This study focuses on infrared crucial
thermographic theoretical stages, experimental methodologies, relative and absolute temperature
requirements, and infrared essential thermographic theoretical processes for electrical and electronics
energy applications. Furthermore, this article addresses the major concerns and obstacles and makes
some specific recommendations for future development. With developments in artificial intelligence,
particularly computer fiction, depending on the present deep learning algorithm, IRT can boost
CBM analysis.

Keywords: condition-based monitoring; diagnosis; fault detection; infrared thermography;
non-destructive

1. Introduction

Condition-based maintenance (CBM) is described as the process of seeing and doc-
umenting significant changes in tool variables, including machine noises, temperature,
and soil conditions that might indicate a future failure. Maintenance or other preventative
measures can be arranged to resolve the issue(s) before it develops into more catastrophic
shortcomings [1] by continuously monitoring equipment status and noting any abnormali-
ties that would ordinarily limit an asset’s lifespan. Figure 1 shows how CBM differs from
prognosis and diagnosis, even though recognizing defects is an essential aspect of all three.
The definitions listed below are all viable options.
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Special protective relays that can identify and isolate the linked loads may detect single 
phasing. Overcurrent and negative phase sequence relays are used in smaller motors. 
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Figure 1 [2] shows the fault prediction, diagnosis, and CBM systems. The fault
incidence is to blame for the rise in health levels. The prediction issue may be divided
into two types. The first form of forecast may only have a limited time horizon—is the
component fit to fly the next mission? The second kind is to estimate how much time we
have before a certain issue occurs, and hence how much time we have until we should
replace it. Diagnosis analyses the fundamental cause of a malfunction after it has happened;
prognosis evaluates a component’s present health state. CBM evaluates the status of an
element in real-time so that it may take appropriate action if it wanders away from its
healthy state [3]. It forecasts the component’s health at some point in the future.

Because it provides adequate infrared images of a device component with no phys-
ical attachments (non-intrusive), needs little arrangement, and provides data in a short
period, IRT is an advanced system in CBM to evaluate anomalous thermal behavior in
machinery [4]. IRT has played a significant role in predictive and preventive mainte-
nance programs, particularly for electronic components, because of its benefits of being
non-contact, independent of electromagnetic interference, secure, and able to give a compre-
hensive assessment scope [5–7]. By monitoring the quantity of infrared radiation emitted
by the device, IRT is often utilized to assess the thermophysical properties of electrical
items (temperature). Although the electrical equipment inspection technique is relatively
simple, there are a few factors to consider, such as environmental influences and the state of
the equipment, which will generally influence the study’s outcomes, particularly outdoor
inspections, such as in power distribution systems. The IRT device, the electrical equipment
to be checked, and data interpretation skills are hurdles for a skilled electrical system ther-
mographer [8]. According to [9], bearing (41%) and winding (37%) failures account for most
induction motor faults. Because it may cause an increase in motor surface temperature,
the inter-turn issue is the more serious of the two. This may result in a complete loss of
phase and lethal short circuits in the worst-case situation. Any three-phase induction motor
must be linked to a three-phase alternating current (ac) power source of rated voltage and
load for optimal operation. Even if one of the three-phase supply cables is unplugged
once these three-phase motors are started, they will continue to operate. Single phasing
is the loss of electricity via one of these phase supplies. Special protective relays that can
identify and isolate the linked loads may detect single phasing. Overcurrent and negative
phase sequence relays are used in smaller motors. Protection against single phasing is
standard on motor protection relays for bigger motors [10]. Furthermore, a short circuit
relay protects against excessive currents or currents that exceed the equipment’s permitted
current rating, and it works fast. The gadget trips and breaks the circuit as soon as an
overcurrent is detected [11]. On the other hand, the cooling system’s failure might be to
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blame for the induction motor’s temperature increase. Infrared thermography can be used
to identify this condition, although there is relatively little literature on the subject [12,13].

The theoretical phases of thermography and thermal imaging were mainly explored in
Section 2 of this article, which concentrated on thermal radiation’s underlying concepts and
functioning. The evaluation criteria for infrared thermography in condition monitoring are
divided into two sections: relative temperature criteria and absolute temperature criteria,
introduced in Section 3. Section 4 thoroughly presents the state-of-the-art Algorithms and
Methods of IRT. IRT has been effectively used in Section 5 for various condition monitoring
applications, including electrical and electronic motor equipment inspection. Despite the
ongoing study, several existing and future concerns and challenges connected to the IRT in
CBM must be addressed. Sections 5 and 6 explain the results and suggestions, respectively.

2. Theoretical on Thermography and Thermal Imaging

The cornerstone for IRT is the physical phenomenon that anybody with a tempera-
ture over absolute zero (−273.15 ◦C) emits electromagnetic radiation. The strength and
spectrum composition of emitted radiation from a body is inextricably linked to its surface.
Calculating the radiation intensity of an object may be used to determine its temperature in
a non-contact method [14]. Figures 2 and 3 demonstrate the electromagnetic spectrum and
emissive power distribution as a function of wavelength, respectively.
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Amongst the most significant benefits of IRT-based condition monitoring is the mini-
mal amount of equipment needed. The equipment includes a thermal camera, a tripod or
camera platform, and video output devices to show the gathered infrared thermal pictures
for such applications. Infrared cameras have progressed through three generations since
their inception [17]. Zhang et al. [18] and Wan [19] go into considerable detail about the
creation and basic concepts of various infrared sensors. The first cameras employed a
single element sensor and two scanning mirrors to create pictures. They were apprehensive
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about the possibility of whiteout (i.e., saturation owing to high intensity). The second-
generation cameras used two scanning mirrors, a significant linear array or a tiny 2-D array
as detectors, and a time delay integration system for picture improvement. The lack of
mirrors in third-generation cameras and the use of large focal plane array (FPA) sensors and
on-chip image processing leads to higher system dependability and sensitivity [17]. The
two kinds of thermal detectors are cooled and uncooled. Modern solid-state advancements
have cleared the road for developing novel sensors that are more precise and have better
resolutions. Uncooled cameras have a thermal sensitivity of about 0.05 degrees Celsius (◦C),
while cooled cameras have a thermal sensitivity of 0.01 ◦C [20]. These cameras provide
excellent spatial and temperature solutions, compactness, and mobility to mention a few
benefits. Furthermore, these cameras are lighter, use silicon wafer technology, and are
less costly than cooled infrared cameras [21,22]. As a result, current IRT technology will
aid electrical utilities for CBM analysis since all advancements will provide accurate data
analysis using recent AI algorithms in computer vision.

A standard experimental setup for IRT-based condition monitoring research can be
seen in Figure 4. The produced thermal pictures are exhibited on a computer, enabling the
specific temperature of the object to be calculated without touching it. The obtained thermal
pictures are often pseudo-color-coded, making interpretation more straightforward and
faster. The source snapshot and a typical infrared thermal picture of a structural element
are shown in [20].
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Before selecting an infrared camera, many factors must be examined since the ability
to create a clear and accurate thermal picture is highly dependent on these performance
criteria [23]. A few key factors are covered further down.

2.1. Spectral Range

The spectral range is the region of the infrared spectrum where the infrared camera
will work. The thermal radiation that an item generates gets more concentrated in shorter
wavelength bands as its temperature increases. For observing objects at ambient temper-
ature, a long-wavelength band (7.5–14 µm) is preferable. This is due to two factors: first,
bodies at room temperature emit mainly at these wavelengths; second, measurements
taken at some of these wavelength ranges are unaffected by solar radiation (accurate for
outdoor measurements) since solar radiation is primarily in the relatively short wavelength
bands. The use of short wave (2–5 m) technology is recommended [8].

2.2. Spatial Resolution

Temperature resolution refers to the minor temperature fluctuation seen by the in-
frared camera in view. Object temperature, ambient room temperature, object to camera
distance, filters, and other experimental factors all affect temperature resolution. Noise
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equivalent temperature difference (NETD), minimal resolvable temperature difference
(MRTD), and minimum detectable temperature difference (MDTD) are the most often
utilized temperature resolution criteria. NETD readings for Stirling cycle cooled cameras at
room temperature are usually smaller than 0.025 Kelvin (K) [20].

2.3. Spatial Resolution Laser Pointer and Interchangeable Lens

To see where the camera’s lens is aimed and prevent coming into close contact with
hot regions, laser pointers may be utilized. You may change lenses based on your require-
ments using interchangeable lenses. Flexibility with external equipment and measuring
equipment, as well as speedy data transfer through cable, Wi-Fi, and Bluetooth, and the
inclusion of text and voice feedback, are all benefits [24]. The thermal camera has become a
more helpful instrument.

2.4. Temperature Range

The temperature range specifies the temperature values that an infrared camera can
detect at the highest and lowest levels. Temperatures typically range from 20 degrees
Celsius (◦C) to 500 ◦C. Different filters may be used to extend the content up to 1700 ◦C [20].

2.5. Frame Rate

The number of frames acquired every second by an infrared camera is the frame
rate. Higher frame rate cameras are often preferred for monitoring motion informa-
tion or dynamic events like the propagation of heat fronts. The standard frame rate
is 50 Hertz (Hz) [20].

2.6. Accuracy

The precision with which the thermal camera measures the temperature is reflected in
its accuracy. The advanced thermal camera is accurate to within 1 percent (%) [25].

3. Experimental Methodologies

It is advised that severity criteria be established when employing infrared thermog-
raphy for condition monitoring in electrical equipment. There are two types of severity
criteria: generic categories that specify temperature levels, and particular sorts of equip-
ment or components. With the collection of data, severity criteria evolve. Based on the
equipment’s design, operation, installation, maintenance characteristics, criticality, and
failure causes, it is essential to create severe standards for each kind of material. The
relevance of the device or component to the overall strategy, protection, and so on are all
considerations that go into setting severity criteria for specific devices or components. Ther-
mographers use temperature increases to detect temperature intensity or structural faults
in essential equipment, mechanical parts, bearings, electrical supply, and more [26,27].

• Relative temperature criteria: A collection of safety requirements depending on the
temperature increases separated into groups is referred to as “relative temperature
criteria”. We can have advisory, intermediate, severe, and critical kinds in electri-
cal machines. You may have a rule that says if a machine’s temperature climbs
10 degrees over a baseline temperature, it is considered advisory. It is deemed to be
critical when a device’s temperature rises beyond 104 degrees above a connection or
baseline temperature.

• Absolute temperature criteria: To determine the maximum permissible temperature, a
thermographer may utilize material or design parameters obtained from previously
published data. When the emphasis of the monitoring is on the machine’s material,
material criteria are employed, whereas design criteria are utilized when the attention
is on the machine’s design. Despite the fact that the criteria are segregated into
these two groups, the material element is often included in the method, making it an
adequate criterion for monitoring dependability. The component material with the
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lowest temperature specification should be utilized as “alert criteria” if you are using
material criteria to assess the heating of many surrounding components.

• Profile Assessment Criteria: A profile assessment procedure is used to examine temper-
ature differences and trends over any surface. To do a profile evaluation in thermogra-
phy, you must first establish the absolute and differential temperatures by performing
a severity assessment. The state of the machine or component will be classified into
two parts: “as new” and “failed.” According to Hitchcock, temperature profile, histori-
cal trends, regional variations, absolute temperatures, and the region of anomalies are
all essential aspects of a profile investigation.

3.1. Classifying of Thermographic Techniques

There are two types of experimental approaches to thermographic methods: active
and passive.

3.1.1. Active Thermography

When the temperature difference is difficult to see and external stimulation is ex-
posed on the surfaces of the objects, active thermography, also known as adaptive, non-
equilibrium, and non-steady-state thermography, is often utilized [28]. Active thermog-
raphy needs an external heat source to activate the materials under test. A heat gun, hot
water jets, hot air jets, or a hot water bag might be used as the initial heat source. Optical
heat sources include high-power cinematographic lamps, quartz line IR lamps, high-power
photography flash, and laser beams [29].

3.1.2. Passive Thermography

The item’s temperature under inquiry is recorded without any external heat stimu-
lation since the material alone functions as a source of heat in passive thermography. It is
feasible to assess the condition of structural components, such as rotor blades, from the
earth’s surface without halting their operations using passive thermography. Periodic
pressures during blade rotation generate heat, and defective locations may be diagnosed
using accurate heat flow dynamics [30]. In mechanical testing, passive thermography
may also be utilized to detect the degradation and thermomechanical behavior of the
composite [31].

3.2. Image Acquisition for Thermographic Images

The following thermal images were taken using a thermal infrared camera from the
main switchboards of numerous buildings. An FPA detector with a pixel size of (160 × 120),
spectral coverage of 7.5 millimeters (mm)–14 mm, and thermal sensitivity of 0.1 at 30 ◦C
was used in this camera. In the 368 images, there are 500 hot components, each with
its own priority level. Each piece of equipment has one or more hot ingredients as well
as a reference or standard feature. The thermal imager was directed firmly at the target
electrical equipment to acquire a precise measurement while collecting the imaging. The
distance between the infrared camera and the target electrical equipment was 0.5–1.0 m.
As recommended for essential electrical equipment, the emissivity was tuned to 0.95 [32].
The ambient temperature of the equipment was about 30–33 ◦C throughout the inspection.
Manual condition classification of electrical equipment is performed in this research using a
qualitative classification approach known as the ∆T (temperature difference) criterion [33].
The ∆T criterion is determined by calculating the temperature difference between the
hotspot and the reference site. The temperature of a malfunctioning component that
is higher than the reference location is known as the hotspot temperature, where the
reference location is the same kind, load, or repetitive component of the equipment with
the lowest temperature. According to the priority level, the circumstances are categorized
into two classes, normal and faulty, which are shown in Table 1 with their accompanying
suggested measures.
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Table 1. ∆T values and necessary steps regarding component thermal condition.

Thermal Condition Priority Level ∆T (◦C) Recommended Actions

Overheated I ∆T ≥ 15 Significant disparity; must
correct it immediately

II 5 < ∆T < 15 Repair as soon as possible if
there is a potential defect

Normal III ∆T ≤ 15 Overheating of a minor kind
demands further study

Figure 5 shows a thermal picture of equipment in the following states: (a) overheated
(priority 1), (b) overheated (priority 2), and (c) standard. Area B is hotter than regions A and
C, as shown in Figure 5a. Figure 5b depicts A as being overheated in comparison to B and
C, while Figure 5c illustrates B and C as being overheated in contrast to A. Consequently,
the reference components in Figure 5a–c are, respectively, areas A, B, and C. An automated
solution is necessary since the existing approach relies significantly on human segmentation
of key regions for CBM analysis on electrical equipment using classic image processing
methods [34]. Figure 5 shows how high-resolution thermal imaging expert information may
be utilized as prior knowledge in AI modeling to measure the ∆T (temperature difference),
which is among the most crucial metrics in the CBM analysis of electrical instruments.
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3.3. Image Processing and Feature Extraction

The thermal picture is turned into a greyscale image at the image processing step,
which contains the image’s intensity information. The malfunctioning zone in the greyscale
picture is brighter than the typical recurring region in the equipment. The thresholding
approach is widely used to identify faults in thermal images [35,36]. Manual thresholding
takes a long time and requires more human effort to notice a defect. To identify flaws in
electrical equipment, a modified maximum entropy-based Kapur thresholding approach
was developed [37]. On the other hand, the suggested method can only deliver the crucial
feature with specific user-defined threshold values. Three sets of characteristics are taken
from the areas of interest once the target regions have been detected. Figure 6 displays
multiple thermal grey pictures and their associated images after thresholding.
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3.4. IRTs Typical Condition Monitoring for Electrical Equipment

The temperature comparison between hot and reference regions is used for manual
component condition monitoring [34]. Qualitative ∆T factor analysis is the name given
to this procedure. Once the thermal images have been acquired, and a color map has
been evaluated, the hotspot and reference areas are visually identified. The hotspot allows
complicated components to reach their maximum temperature. However, the reference
region supports the lowest temperature of the same sort, load, or recurring element in
the equipment. The ∆T factor, utilized as decision-making criteria for the overheated
component’s state, is calculated using the ratio between the hotspot and reference spot
temperatures. The ∆T factor may be calculated just with RGB data. The International
Electrical Testing Association (NETA) [8], the American Society for Testing and Materials
(ASTM): E 1934-99a [38], the National Fire Protection Association (NFPA), the military
standard: MIL-STD2194 [39], and the Allen-Bradley motor control center standard [39]
are just a few of the most commonly used standards. Because of its simplicity and low
emissivity impact, it is often employed in electrical thermography. The most significant
disadvantage of this method is that it will not function in a three-phase system since all
phases would overheat simultaneously. The flowchart of an IRT evaluation of a three-phase
electrical system [40] is shown in Figure 7.

The following are the infrared thermographic examination methods exhibited in
Figure 7:

• Temperature trends are compared between stages. The temperature is uniform with a
balanced load and under typical operating circumstances.

• For each phase, the conductor route is traced. There are no hot patches or temperature
gradients on the conductor.

• If the metal enclosure blocks the current-carrying elements of the switchgear and
electrical junction during scanning, the camera will show the heat pattern generated
by the sheet metal. Between stages, the picture is compared to the internal components
and the heat pattern. The heat pattern associated with load currents is linked to
switchgear trended data.



Energies 2022, 15, 6000 9 of 37

Energies 2022, 15, x FOR PEER REVIEW 9 of 40 
 

 

The following are the infrared thermographic examination methods exhibited in 
Figure 7: 
• Temperature trends are compared between stages. The temperature is uniform with 

a balanced load and under typical operating circumstances. 
• For each phase, the conductor route is traced. There are no hot patches or 

temperature gradients on the conductor. 
• If the metal enclosure blocks the current-carrying elements of the switchgear and 

electrical junction during scanning, the camera will show the heat pattern generated 
by the sheet metal. Between stages, the picture is compared to the internal 
components and the heat pattern. The heat pattern associated with load currents is 
linked to switchgear trended data. 

 
Figure 7. Infrared thermographic examination flowchart [41]. 

4. The State-of-the-Art Algorithms and Methods 
Statistical characteristics are retrieved using the K-means algorithm, and a support 

vector machine (SVM) is used as a classifier in our method. A coarse-to-fine parameter 
optimization strategy is used to improve the classification performance of SVM. 

4.1. K-Means Algorithm 
K-means [42], sometimes known as K-average, is a clustering technique. The 

representative point of each cluster subset is the mean of all data in that cluster. The main 
concept behind the K-means method is to partition a dataset into distinct categories via 
an iterative process, with the goal of optimizing the criteria function for assessing 
clustering performance. Distance (e.g., Euclidean distance, Manhattan distance, or 
Minkowski distance), error sum of squares, or cluster mean are all regularly used criteria 
functions.  

An infrared picture without a temperature scale is first transformed into a greyscale 
image, which contains the image’s intensity information. In a greyscale picture, the 

The temperature trends of the two phases are compared 

Any phase's conductor route traced 

Two phases of thermal imaging are compared 

Confirming the previously found hotspots 

Examination of a hotspot scenario and data interpretation 

The camera displays the heat pattern that exists between the two stages 

Start 

END 

Figure 7. Infrared thermographic examination flowchart [41].

4. The State-of-the-Art Algorithms and Methods

Statistical characteristics are retrieved using the K-means algorithm, and a support
vector machine (SVM) is used as a classifier in our method. A coarse-to-fine parameter
optimization strategy is used to improve the classification performance of SVM.

4.1. K-Means Algorithm

K-means [42], sometimes known as K-average, is a clustering technique. The represen-
tative point of each cluster subset is the mean of all data in that cluster. The main concept
behind the K-means method is to partition a dataset into distinct categories via an iterative
process, with the goal of optimizing the criteria function for assessing clustering perfor-
mance. Distance (e.g., Euclidean distance, Manhattan distance, or Minkowski distance),
error sum of squares, or cluster mean are all regularly used criteria functions.

An infrared picture without a temperature scale is first transformed into a greyscale
image, which contains the image’s intensity information. In a greyscale picture, the prob-
lematic areas in equipment seem brighter than the usual parts [34]. The K-means algorithm
is then used to cluster this greyscale picture into k sections. The lowest, mean, median, and
maximum grey values, as well as the area (total number of pixels) in each cluster, are all
easily determined.

Figure 8 depicts the flow chart for extracting statistical characteristics using the
K-means algorithm. The following is a description of the procedure:

• Convert a thermal picture to a greyscale image and set up cluster centers for each of
the k groups.

• All points in the picture should be clustered into k groups based on their minimal distance.
• Calculate each cluster’s mean value and use it as the new cluster center.
• Steps (2) and (3) should be repeated until the cluster centers do not change.
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• Each picture is divided into k areas, with grey values ranging from tiny to big being
colored differently.

• Obtain the minimum, mean, median, and maximum grey value and area information
for each cluster, and then the temperature information for each cluster.
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4.2. SVM Parameter Optimization

The support vector machine (SVM) is used as a classifier, which is a learning system
that estimates decision surfaces directly rather than modeling a probability distribution
across training data using a hypothesis space of linear function in a high dimensional
feature space, and the Gauss function is usually used as the radial basis function (RBF)
kernel. SVM is extensively used because it has several appealing qualities, including good
overfitting avoidance, the capacity to handle vast feature spaces, and data condensing [43].
The choice of punishment parameter C and kernel function g has an impact on SVM classi-
fication performance [44]. Gradient descent, simulated annealing, ant colony optimization,
genetic optimization, particle swarm optimization, and more SVM parameter optimization
techniques are available [45].
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A parameter optimization strategy from coarse to fine is described to enhance the
classification performance of SVM. To begin, the punishment parameter C’s and the kernel
function g’s scope and step length are both initialized. The most accurate parameters are
then discovered by exploring the mesh parameter grid using cross-validation. Finally, by
doing a chaotic search of logistic sequences around the parameters acquired in the first step,
the global approximation optimum parameters are produced. The parameters obtained
in the preceding two processes are used to train and test individually, with the best result
being utilized as the final result. Our technique has the benefit of being able to rapidly
determine global approximate optimum values.

The stages in the SVM parameter optimization process are described in Figure 9.

Energies 2022, 15, x FOR PEER REVIEW 11 of 40 
 

 

4.2. SVM Parameter Optimization 
The support vector machine (SVM) is used as a classifier, which is a learning system 

that estimates decision surfaces directly rather than modeling a probability distribution 
across training data using a hypothesis space of linear function in a high dimensional 
feature space, and the Gauss function is usually used as the radial basis function (RBF) 
kernel. SVM is extensively used because it has several appealing qualities, including good 
overfitting avoidance, the capacity to handle vast feature spaces, and data condensing 
[43]. The choice of punishment parameter C and kernel function g has an impact on SVM 
classification performance [44]. Gradient descent, simulated annealing, ant colony 
optimization, genetic optimization, particle swarm optimization, and more SVM 
parameter optimization techniques are available [45]. 

A parameter optimization strategy from coarse to fine is described to enhance the 
classification performance of SVM. To begin, the punishment parameter C’s and the 
kernel function g’s scope and step length are both initialized. The most accurate 
parameters are then discovered by exploring the mesh parameter grid using cross-
validation. Finally, by doing a chaotic search of logistic sequences around the parameters 
acquired in the first step, the global approximation optimum parameters are produced. 
The parameters obtained in the preceding two processes are used to train and test 
individually, with the best result being utilized as the final result. Our technique has the 
benefit of being able to rapidly determine global approximate optimum values. 

The stages in the SVM parameter optimization process are described in Figure 9. 

 
Figure 9. SVM parameter optimization process. 

5. IRT Applications in Condition Monitoring for Electrical Energy 
Component failure is mainly caused by excessive heat and resistance. Figure 10 

shows how infrared cameras monitor this heat, which may be employed in several 
applications. An infrared camera detects the IR energy of an object, converts it to 
temperature, and displays the temperature distribution for structural health monitoring 
and non-destructive examination [46]. Thermography is a valuable diagnostic technique 
in the electrical sector that is crucial to assessing problems across various assets such as 
switchboards, transformers, cables, and other electrical components with electrical defects 
and high resistance connections. Non-contact temperature monitoring systems have 
grown in popularity as online condition monitoring technology has become an 
unavoidable aspect of today’s maintenance plan. As online condition monitoring 
technology has become an inevitable part of maintenance strategies in today’s scenario, 

Step 1: Divide the dataset into the training and test sets, then establish 
the punishment parameter C's scope and step length, as well as the 

kernel function g's.

Step 2: Using cross validation, get the bestc1 and bestg1 parameters in the 
grid.

Step 3: Set up the chaos sequence and the amount of iterations, then search 
for bestc1 and bestg1 using the chaos array; the results are saved as bestc2 

and bestg2.

step 4: The bestc1 and bestg1 sets, as well as the bestc2 and bestg2 sets, 
are used to train and test independently, with the better set being utilised 
as the final result. In the event that they are equal, the set with the lesser 

absolute value total is chosen as the final result.

Figure 9. SVM parameter optimization process.

5. IRT Applications in Condition Monitoring for Electrical Energy

Component failure is mainly caused by excessive heat and resistance. Figure 10
shows how infrared cameras monitor this heat, which may be employed in several
applications. An infrared camera detects the IR energy of an object, converts it to tem-
perature, and displays the temperature distribution for structural health monitoring and
non-destructive examination [46]. Thermography is a valuable diagnostic technique
in the electrical sector that is crucial to assessing problems across various assets such
as switchboards, transformers, cables, and other electrical components with electrical
defects and high resistance connections. Non-contact temperature monitoring systems
have grown in popularity as online condition monitoring technology has become an
unavoidable aspect of today’s maintenance plan. As online condition monitoring tech-
nology has become an inevitable part of maintenance strategies in today’s scenario,
with loss of insulation materials (e.g., refractory) in high or low-temperature process
equipment, damage to rotating equipment, electrical and cooling issues that are not
visible to the naked eye, non-contact type monitoring strategies have become more
popular. Non-contact temperature monitoring systems have grown in popularity as
online condition monitoring technology has become an unavoidable aspect of today’s
maintenance plan. Infrared thermography [47] is a non-contact method of obtaining a
precise, reproducible surface temperature profile. The applications for which infrared
thermography may be used are shown in Figure 11.
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5.1. Results in the Electrical and Electronics Applications

According to numerous assessments, IRT thermography is widely employed in the
electrical and electronics engineering field [8,39,50]. Many of the applications in this field
are connected to industry, but they also include tertiary sectors, transportation, and power
plants, to name a few. The maintenance of electrical systems is an essential application of
IRT. Experts have used the IRT camera for years to inspect panel boards, bus bars, electric
cables, and other critical elements of these installations like transformers, power meters,
or capacitor banks for reactive power compensation [39,51–57], where experts use the IRT
camera to observe the correct operation of the equipment based on established limits. For
electrical and electronic applications in condition monitoring, Bellow identified numerous
criteria, examples, and methodologies.

5.2. Hotspot Detection

The easiest approach to find the hotspot inside the IRT picture is to use segmentation.
The authors of [58] compare many picture segmentation approaches and discuss their
advantages and disadvantages. Because of its straightforward implementation, the thresh-
olding approach has become a popular picture segmentation technique. The grey-level
histogram separates the target object from the background at a defined threshold. The
automatic threshold technique of the T. Otsu method is widely used in many applications.
Capacitors, transformers, and other electronic components have been utilized to identify
flaws using the Infrared Thermal Anomaly Detection Algorithm (ITADA). ITADA is based
on Otsu’s statistical threshold selection technique and detects flaws in capacitors, trans-
formers, and other electronic components using grey-level histograms. Support vector
machines (SVMs), used to segment color images, have a promising future. In [59], it is
shown how to segment stochastic photos using random walker segmentation based on par-
tial differential equations (PDE). Additionally, ref. [60] describes the use of thermographic
image processing to identify faults in lightning arresters. To perform fault categorization, it
utilized a collection of neuro-fuzzy networks. The neuron-fuzzy classifier is used to detect
faults. It is also possible to use edge-based segmentation algorithms such as the Robert,
Sobel, Prewitt, and Canny operators [61]. This approach identifies the moment when
grey level intensity levels abruptly shift. Color picture segmentation may be done using
spectrum analysis. However, previous information about the object’s hues is difficult to
come by. The topic of picture segmentation has seen a lot of research [59,61–65]. However,
only a handful have been examined in terms of employing thermal image processing to
monitor electrical equipment state [5,33,60,66–70]. Consequently, in the context of electrical
equipment condition monitoring, this work focuses on picture segmentation methods for
thermographic pictures obtained by IR cameras. The condition of the spinning gear is
monitored using various signal processing techniques [71,72], e.g., the implementation
of an unsupervised online detection using artificial neural networks (ANNs) has been
described in [73]. Yazici et al. [74] have reported an adaptive, statistical time-frequency
method for the detection of bearing faults. In [75], a fuzzy fault detector using Concordia
patterns was used to detect stator unbalance and open-circuit faults. Broken bar faults can
also be detected by time- and frequency-domain analysis of induced voltages in search
coils placed internally around stator tooth tip and yoke and externally on the motor frame.
Stator fault detection using external signal injection is discussed in [76]. Power trans-
formers’ fault detection methods and techniques are also discussed in several articles,
e.g., frequency-response analysis (FRA) addressed in [72] is a powerful diagnostic method
in detecting winding deformation, core, and clamping structure for power transformers, the
multiple linear regression model is proposed in [77], for the early detection of transformers
with accelerated oil aging, the vibroacoustic method (first noticed in aviation technology)
will be applicable, transformers with a rated power of several tens of MVA [78], and a
numerical procedure has been developed using the wavelet transform for processing and
analysis of vibration signatures produced by the operation of tap changers [79,80]. In
certain circumstances, non-contact thermographic image measurement may be beneficial.
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As a result, the current project tries to address these issues. The majority of scholars in
this field [59,60,62,66,69,81] have used grayscale for processing. It has been discovered that
the Sobel operator performs better for thermal pictures based on several image criteria.
Following that, the Otsu approach is used on the identical photos, yielding good results.
Figure 12 depicts hot zone identification using grayscale pictures and image processing
techniques: (a) RGB image, (b) grayscale image, (c) Prewitt, (d) Roberts, (e) Sobel, (f) Otsu.
On the other hand, the offered approaches locate the interest area without classifying
the intensity of the equipment’s condition, necessitating human determination of crucial
parameters, most notably the method’s threshold value.
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5.3. Improving Inspection Techniques

The quality of measurements has increased as new advances in current IRT equipment
have been made. Surface temperature variations of less than 0.1 ◦C may be resolved by most
contemporary IR imagers [83,84]. Despite the advantages of modern IRT camera designs
coupled with powerful image processing and display systems, there are still various con-
siderations to consider while performing an inspection, even if temperatures can be reliably
detected. This is crucial particularly for outside assessments conducted in substations, un-
derground, and aerial distribution [7]. Procedural, technical, and environmental/ambient
variables are the main elements that influence the accuracy of IRT measurements [83,85]. If
certified or competent personnel are used, it may reduce the procedural component. The
essential technical features are the emissivity of the equipment under examination, load
current variation, the distance of the item under inspection, and IRT camera characteris-
tics [83,85,86]. Results may be misconstrued or inaccurate if all these aspects are ignored.
Table 2 highlights all the environmental consequences that must be considered when doing
an IRT examination [6,83,85–87]. Before beginning, any IRT examination should complete
preliminary research. In this case, most thermographers will need some data from the
target site. It is sometimes required to investigate the history of the target place and the
electrical power equipment. To acquire the most essential and most precise measurement,
you need to use a suitable and appropriate tool. IRT devices’ long-wave (usually 8–14 m)
sensing is ideal for prolonged outside inspections, particularly during bright seasons. This
is because thermal detectors in this wave range are more sensitive to ambient temperature
objects and have robust smoke transmission [6,88]. Tables 2 and 3 outline all of the criteria
for the inspection tools and the target equipment, respectively.
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Table 2. Consideration of environmental factors during the inspection.

The Aspect of the
Environment The Impact on the IRT Measurement

Ambient air temperature

When the ambient temperature rises, so does the temperature of
the machinery. The IR system becomes less reliable at very hot or
shallow temperatures. According to the temperature increase of
0–9, 10–20, 21–49, and >50 ◦C, the authors classified the severity

of the flaw-induced overheating into four types: attention,
moderate, severe, and critical [39].

Precipitation/humidity
(snow, rain, fog, etc.)

The temperature may drop drastically, causing the data to be
misinterpreted. The only moderately heated equipment may be

cooled below the abnormal temperature.

Wind or other convection

Wind velocities may drastically cool a high resistance fitting from
speeds as minimal as 1–5 miles per hour (mph). The temperature
differential between the equipment and the ambient space may be

decreased to a few degrees above the ambient space at speeds
greater than 5 mph.

Sun or solar radiation
Minor temperature swings will be hidden by the device’s sun

heating, mainly if it absorbs much solar light (such as
old conductors).

Table 3. The characteristics of factors related to the target equipment and the inspection tool.

Tools and Equipment Characteristic

Electrical Loads

The proper load on the wires must be negotiated with the
customer before the inspection.

- The load on the line should be at least 40% of the nominal
load during the recording.

- Approximately 75% of the load is optimum.
- When the load is more than 90%, the lines get very hot,

making precise identification of overheated spots
impossible [86].

Equipment Emissivity

The emissivity of most conductors is between 0.1 and 0.3. While
emissivity values as high as 0.97 may be found in greasy, dark,
hot, and aging conductors, visual evaluation in the field from a
distance is frequently difficult [83,86]. Moreover, there are several
non-contact and nondestructive inspection tools that have already
been introduced such as the Laser Ultrasound Inspection system,
Study of Flip Chip Solder Joint Cracks [89], Laser-SQUID
Microscopy, monitoring and Analysis of Large Scale Integration
(LSI) -Chip-Defects [90], laser line photoluminescence imaging for
outdoor inspections [91,92], Ultrasonic Suspension for force
measurement [93], and laser ultrasonic signals from particles
suspensions [94].

Thermal Gradient
High-resistance heat is typically generated at the surface on the
inside. Thermal gradients exist between the apparatus’s hottest
point and the surface under investigation [87].

IRT Device (camera)
The observed waveband and the spatial and measurement
resolution are all elements to consider [87]. It is also essential to
consider the sensitivity and signal processing speed [83].

Distance andAngle
As the distance between them widens, the IRT picture’s resolution
drops. An acute angle image has less information than one shot at
a straight angle.
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5.4. Methods of Measurement and Analysis

Electrical equipment’s thermal condition may be measured in two ways. The first
is known as quantitative, and it involves taking the equipment’s precise temperature.
The second form is qualitative, which measures a hotspot’s relative temperature to other
equipment areas under comparable circumstances. Electrical components’ evaluation of-
ten employs qualitative analysis [35,95]. IRT inspection is governed by the International
Electrical Testing Association (NETA), the American Society for Testing and Materials
(ASTM)—E 1934, and the National Fire Protection Association (NFPA)—NFPA 70-B. The
application of methods allows for a quick, reliable, and comprehensive assessment of
the severity of observed issues. The NETA standard is often used in the testing process
for electronic components, employing the delta T criterion as indicated in Table 4 to
establish the degree of severity. Temperature increases over a predefined reference,
such as ambient air temperature, a comparable component under similar circumstances,
or the maximum allowable temperature, determine these delta Ts. Rather than using
current standards, some thermographers create their testing specification tables from
their own experiences. The severity level rating is often based on the highest tempera-
tures for both qualitative and quantitative data. As shown in Figure 13a, the maximum
temperature values may be estimated using any commercial infrared image analysis tool
by choosing an area or specifying a spot on the components or equipment. As shown
in Figure 13b, a single line temperature profile can depict the temperature changes
throughout all stages. In general, automated area of interest selection may improve the
human selection process.

Table 4. NETA and MIL-STD2194 standards for IRT-based electrical equipment inspection
features [8,48,96].

Standards

Temperature Difference (∆T) (◦C)

Actions to Be TakenUnder Equivalent Stress, between
Comparable Components

∆T over Ambient
Temperature (◦C)

NETA

1–3 1–10 A potential shortage needs
further examination.

4–15 11–20 Indicates a potential flaw that has to be
fixed as soon as feasible.

- 22–40 Continuously monitor until a solution
can be found.

>15 >40 There is a significant imbalance that
must be addressed once and for all.

MIL-STD2194

10–20 -

Despite the remote possibility of
component failure, corrective steps must

be conducted at the next scheduled
routine maintenance period.

24–40 - Failure of a component is likely unless it
is repaired.

40–70 - Component failure is almost inevitable
unless something is done.

>70 - A component is on the verge of failing.

Introspection Institute
Standard for Electrical

Components

1–10 -
During the following maintenance

period, corrective action should
be conducted.

>10–20 - Corrective actions are necessary when
time allows.

>20–40 - Immediate corrective action is essential.

>40 - Immediate corrective action is required.
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5.5. Application to Motors

Induction motors with three phases are the most used prime movers in numerous indus-
trial applications. Thermography for motor condition monitoring and problem diagnostics is
necessary and may be justified economically [97]. The stator, rotor, and bearings are the main
components of an induction motor (IM). IMs will fail if any of these components or their sub-
components are damaged. The stator, bearing, rotor, and other mechanical flaws are the most
common IM faults, although the wide categorization of IM faults is presented in Figure 14.
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Although IMs are quite constant in their functioning, their failure limits the smooth
operation of IMs, which costs the industries a lot of money. The Electric Power Research
Institute (EPRI) and the Institution of Electrical and Electronics Engineers conducted
statistical analyses of IM failures, as shown in Figure 15 (IEEE). In Figure 15, a bar chart
depicts a comparison of several problems that often occur in rotating machinery. Bearing,
stator, rotor, and other defects are the different types of faults. The percentage frequency
of their occurrence is clearly shown in the bar chart. According to [9], the majority of
induction motor defects (41%) and winding (37%) are connected, as indicated in Figure 15’s
bar chart. The inter-turn defect is the more dangerous of the two since it may cause a rise
in motor surface temperature. Due to a short circuit, this might result in a full loss of phase
and potentially deadly accidents. However, a failure of the cooling system might cause a
temperature increase in an induction motor [12,13].
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5.5.1. Failure of Cooling System

The discrepancy between the input electrical power Pi and the output mechanical
power P0 is referred to as Ploss(1). These losses are dissipated in the form of heat. This heat
is evacuated into the environment through convection and radiation processes. Heat is
dispersed into the surroundings in a self-cool motor by forced convection Pf conv radiation
Prad, as defined in (2) [68]. The collection of debris, obstruction of air passages, damage or
loose fans, and poor clearance during installation are all major causes of cooling system
failure [97]. When the cooling system fails, forced convection is disrupted, causing the mo-
tor surface temperature to rise. A thermographic examination can identify this temperature
increase. The International Electrical Testing Association (NETA) suggested a standard
for thermographic testing of electrical systems, as illustrated in Table 4. This is used to
determine the severity of a malfunction and the degree of maintenance priority for electrical
systems and spinning machinery. Early identification of cooling system failure may be
aided by recreating this defect in the laboratory and measuring the temperature of the
motor at the target area of interest in line with NETA standards. Figures 16 and 17 depict a
healthy cooling system and a cooling system failure, respectively, using thermography [97].

Ploss = Pi − P0 (1)

Ploss = Pf conv + Prad (2)

The regions Al and A2 in Figures 16 and 17 indicate the surface temperature of the
motor stator and fan cowing, respectively. The maximum surface temperature of the motor
stator and the cooling section are represented by TA1 and TA2. All these tests were carried
out at a constant temperature of 27 ◦C (Ta).
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5.5.2. Bearing Faults

Bearings are one of the most important components of rotating equipment, and they
are used in a wide range of technical applications such as turbines, heavy machinery, rolling
mills, and ships. Bearings, being the principal component of a rotating machine, provide a
number of tasks, including decreasing friction between relative moving components and
providing support for the spinning shaft [99]. According to IEEE and EPRI, 41 percent and
42 percent of bearing faults occur during operation, respectively, as illustrated in Figure 15.
For the CM of bearings in IMs, acoustic emission and vibration signal analysis were
compared [100]. Figure 18 depicts an autonomous bearing problem detection framework
that uses thermal imaging to identify four distinct bearing states in an induction motor.
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Figure 18. Thermal picture of four bearing states (a) No lubrication (b) Inner race defect (c) Outer
race defect (d) Healthy. In an electrical laboratory at NITTTR, Chandigarh, thermal pictures of an
induction motor were captured using a FLIR E-60 (thermal camera). During the experiment, the
camera was placed 2 feet away from the induction motor. Under laboratory circumstances, thermal
pictures of an induction motor were recorded. Thermal photos of the four bearing states in the
three-phase squirrel-cage induction motor were captured: outer race, inner race, lake of lubrication
problems, and healthy. Each condition included 24 thermal photographs [101].

5.5.3. Stator Fault

One of the most well-known issues in IMs is stator winding failure [102]. If an IM isn’t
working properly, it might slow down production or even shut down the facility, which can lead
to an increase in the frequency of accidents. Early defect identification lowers production time
lost, increases operator safety, and decreases maintenance costs [103]. Stator windings, stator
frames, and winding laminations are some of the most prevalent stator problems, although
stator windings are the most common. Thermal, mechanical, electrical, and environmental
stressors all contribute to stator winding breakdown [104]. Thermal stress is one of the most
important factors in the breakdown of insulation. According to IEEE and EPRI, stator winding
faults occur 28 percent of the time and 36 percent of the time, respectively, as illustrated in
Figure 15. An infrared investigation of winding asymmetry is shown in Figure 19.
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and, most likely, over 100 ◦C within). During the examination, no cooling irregularities were
discovered. The bearings were re-lubricated and repaired at a workshop as a preliminary step, but no
temperature decrease was noted. After that, the motor terminal box was examined, and just a little
temperature differential was discovered between the connections. An ohmmeter was used to test the
winding resistance of each phase, and the findings were rather fascinating; there was a large winding
asymmetry across phases, resulting in a Max Delta R value of about 9%. Internal high resistance
connections, broken twists, or internal shorts might all be the cause of this. This might be the source
of the unusual heat dissipation. Finally, rewinding the motor was advised.

5.5.4. Eccentricity Fault

The situation is known as air-gap eccentricity when the distance between the rotor and
the stator in the airgap is not uniform. The two types of eccentricity defects are static and
dynamic eccentricity, as illustrated in Figure 20. The condition of static eccentricity occurs
when the offset between the center of the shaft and the center of the stator is constant, while
dynamic eccentricity occurs when the offset between the center of the shaft and the center
of the stator is changeable. As indicated in Figure 20, Rr is the rotor’s radius and Rs is the
stator’s radius. Methods such as FFT, wavelet, and Hilbert transform have been utilized to
extract signals for the detection of eccentricity defects in IMs [106].
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5.6. Including and Excluding Criteria

There are some criteria that are assigned to select the manuscripts from the specific
Scopus database. In Table 5, The criteria for exclusion and inclusion of the manuscript for
the selected 76 papers in the condition monitoring of thermography in Electrical, Electronics,
and electrical motors application is as given below:
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Table 5. The research between the years 2002 and 2022 on Condition monitoring of thermography towards Electrical, electronics, and rotating equipment.

Ref. No. Authors DOI Number Keywords Monitor Publisher Year Country of Origin Total Citation

[107] Sangeeetha M.S et al. 10.1007/978-981-16-2422-3_14 Improved active contour modeling;
Multilevel thresholding; Segmentation Electrical equipment Springer 2022 India 0

[108] Li W. et al. 10.1016/j.microrel.2021.114409
Electric inverters; Electric losses; Parameter

estimation; Insulated gate bipolar
transistor inverter

IGBT inverter Elsevier 2021 China 0

[109] Vakrilov N.V. et al. 10.1109/ET52713.2021.9579707 infrared thermography; thermal analysis;
thermal monitoring Electrical machines IEEE 2021 Bulgaria 0

[110] Phuc P.N. et al. 10.1109/TEC.2021.3060478 induction motor; rotor temperature
estimation; validation; virtual sensing Induction Machines IEEE 2021 Belgium 0

[111] Leppänen J. et. al 10.1016/j.microrel.2021.114207
Device technologies; Electrical breakdown;

High-humidity environment; Power
semiconductor module

Semiconductor diodes Elsevier 2021 Finland 0

[112] Das A.K. et al. 10.1109/JSEN.2021.3079570
Convolutional neural network; metal oxide

surge arrester; pollution severity
classification; transfer learning

Surge Arrester IEEE 2021 India 0

[113] Nit Hamirpur et al. 10.1109/ICCES51350.2021.9489095
Hotspot detection; Induction motor; Infrared

thermography (IRT); Remaining life;
Thermal efficiency

Three phase induction
motor IEEE 2021 India 0

[114] Xia C. et al. 10.1049/hve2.12023
Electric fault currents; Electric power

transmission networks; Failure analysis;
Image enhancement

Power equipment John Wiley and Sons Inc. 2021 China 4

[115] Choudhary A. at el. 10.1016/j.measurement.2021.109196 Deep learning; Fault detection; Infrared
thermography; Machine learning Rotating machine Elsevier 2021 India 11

[116] Hassan M.U. et al. 10.1049/gtd2.12106
Cable sheathing; Degradation; Distribution

functions; Insulation;
Nondestructive examination

Aerial bundled cables John Wiley and Sons Inc. 2021 Pakistan 0

[117] Susinni G. et al. 10.3390/electronics10060683 Condition monitoring; Junction temperature;
Power device; Power electronics; Reliability Semiconductor devices MDPI 2021 Italy 4

[118] Kumar P.S. et al. 10.1109/JSEN.2020.3029041
Condition monitoring; hall effect sensors;

induction motor; infra-red sensors;
inter-turn winding fault

Stator End-Winding IEEE 2021 Singapore 2

[119] Vidhya R. et al. 10.1109/ICEES51510.2021.9383639 Condition Monitoring; Image Processing;
Wavelets Transformer breather IEEE 2021 India 1

[120] Shao H. et al. 10.1109/TIM.2021.3111977
Fault diagnosis; infrared thermal images;

rotor-bearing system; two-stage
parameter transfer

Rotor-Bearing IEEE 2021 China 0

[121] Ziuzev, A.M. et.al 10.18799/24131830/2021/1/3002

AC electric motors; Compressor station;
Stator winding insulation; Thermal circuits

with lumped parameters; Thermal insulation
resource; Thermodynamic model

AC electric motors
Tomsk Polytechnic

University,
Publishing House

2021 Russia 0
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Table 5. Cont.

Ref. No. Authors DOI Number Keywords Monitor Publisher Year Country of Origin Total Citation

[122] Najafi M. et al. 10.1109/ICSPIS51611.2020.9349599
Condition Monitoring; Image Processing;

Infrared Thermography; Interpretable
Machine Learning

Electrical Equipment IEEE 2020 Iran 0

[123] Alshorman O. et al. 10.1109/ICDABI51230.2020.9325635
Fault diagnosis and detection; gearboxes;

image; rotating machinery; sensors;
wind turbines

Rotating Machinery IEEE 2020 Saudi Arabia 3

[124] Redon P. et al. 10.1109/IECON43393.2020.9254639
Deep learning; fault diagnosis; image

processing; induction motors;
infrared thermography

Induction motors IEEE 2020 Spain 2

[125] Sahu M. et al. 10.1109/GUCON48875.2020.9231138
Aging Acceleration Factor; Hotspot

Temperature; Per Unit Life; Transformer
Preventive maintenance

Transformer IEEE 2020 India 0

[126] Xu X. et al. 10.1109/ICHVE49031.2020.9280056
Cable accessories; Faster RCNN; infrared

image processing; Mean-Shift; smart
condition diagnosis

Cable Accessories IEEE 2020 China 1

[127] Shahriari Nasab P. et al. 10.1109/TEC.2020.2974789
Computational Fluid Dynamics; Coupled

magneto-thermal model; Switched
Reluctance motor; temperature signature

Reluctance Motor IEEE 2020 Iran 2

[128] Wang B. et al. 10.1109/TIM.2020.2965635
Fault diagnosis; infrared detection; instance
segmentation; insulator images; substation

automation; temperature fitting
Insulator IEEE 2020 China 27

[129] Ni Z. et al. 10.1109/TPEL.2019.2962503
Accelerated lifetime test (ALT); active

thermal control; ageing indicator; condition
monitoring; failure mode

Power converters IEEE 2020 United States 27

[130] Singh R.P. et al. 10.1109/ICESC48915.2020.9155858 Condition Monitoring; Dissolved Gas
Analysis; Thermography; Transformers Transformers IEEE 2020 India 0

[131] Zhang P. et al. 10.1109/JSAC.2020.2968974 Bearing rotating elements; temperature
sensor; thermal monitoring

Bearing Rotating
Elements IEEE 2020 China 4

[132] Al-Musawi A.K. et al. 10.1016/j.infrared.2019.103140
Bearing faults; Edge detection; Image

segmentation; Induction motor; Thermal
condition monitoring

Three-phase
induction motor Elsevier 2020 Iraq 13

[133] Nasiri A. et al. 10.1016/j.applthermaleng.2019.114410
Convolutional neural network; Cooling
radiator; Deep learning; Fault detection;

Thermal image analysis
Radiator Elsevier 2019 Iran 14

[134] Phuc P.N. et al. 10.3390/en13010037
Induction motor; Lumped-parameter

thermal network; Model fitting; Transient
thermal modelling

Induction machine Energies 2019 Belgium 6

[135] Chen J. et al. 10.13334/j.0258-8013.pcsee.190362
High-voltage power electronics; Junction

temperature application; Junction
temperature physical meaning

High Voltage
Power Electronics

Chinese Society for
Electrical Engineering 2019 China 5
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Table 5. Cont.

Ref. No. Authors DOI Number Keywords Monitor Publisher Year Country of Origin Total Citation

[136] Olanrewaju O. et al. 10.1109/PEE.2019.8923270
infrared thermography; power modules;

steady state; temperature distribution;
thermal maps; transient

Power Module
Prototype IEEE 2019 United Kingdom 0

[137] Novizon et al. 10.1088/1757-899X/602/1/012007
Metal oxide surge arresters; Surge arresters;

Temperature profiles; Thermal images;
Thermal parameters

Surge arrester IOPscience 2019 Indonesia 0

[138] Dragomir A. et al. 10.1109/UPEC.2019.8893616 Infrared monitoring; thermal fault;
thermographic report Electrical Equipment IEEE 2019 Romania 1

[139] Zhang Q. et al. 10.1109/ICEMS.2019.8922346 Junction temperature; MOSFET; online
condition monitoring; SiC devices

MOSFET On-line Based
on On-state Resistance IEEE 2019 China 5

[140] Doolgindachbaporn A.
et al. 10.1109/EIC43217.2019.9046583

Condition monitoring; time series
decomposition; transformer thermal model;

winding temperature indicator

Cooling Faults in
Power Transformers IEEE 2019 United Kingdom 0

[101] Choudhary A. et al. 10.1109/GUCON.2018.8674889
Condition Monitoring; Preventive

Maintenance; Thermal Camera;
Thermal Imaging

Induction motor IEEE 2018 India 8

[141] Dragomir A. et al. 10.1109/ATEE.2019.8725019 Condition monitoring; infrared; thermal
stress; thermography Electrical Equipment IEEE 2018 Romania 1

[142] Andrade A.F. et al. 10.1109/ICHVE.2018.8642094
Electrical systems; Housing temperature;
Radiation heat; Surge arresters; Thermal

behaviors; ZnO surge arresters
ZnO Surge Arrester IEEE 2018 Brazil 1

[143] Hu Y. et al. 10.1109/ACCESS.2019.2918029
Base-plate solder; health condition

monitoring; multi-chip IGBT module; Wind
power converters

Multi-Chip IGBT
Module IEEE 2019 China 11

[144] Wei K. et al. 0.1109/ACCESS.2019.2909928 Bond wires; Condition monitor; IGBT;
Solder fatigue IGBT Modules IEEE 2019 China 8

[145] Lee S.Y. et al. 10.1007/978-981-13-6447-1_68
Electrical fault detection; Infrared

thermography; Intelligent fault diagnosis;
Thermal imaging

Electrical fault
diagnosis Springer 2018 Malaysia 3

[146] Sangeetha M.S. et al. 10.1109/ICOEI.2018.8553948 Condition monitoring; distance; electrical
equipment; emissivity; Thermographs Electrical Equipment IEEE 2018 India 2

[147] Krishnan S.R. et al. 10.1002/smll.201803192 Epidermal electronics; hydration; NFC;
thermal sensing; wireless electronics Epidermal electronics Wiley-VCH Verlag 2018 United States 43

[148] Mariprasath T. et al. 10.1016/j.infrared.2018.02.009
Condition monitoring technique; Hotspot

temperature; Power quality; Thermal
imager; Transformer

Transformer Elsevier 2018 India 25

[149] Choi U.-M. et al. 10.1109/TPEL.2017.2690500
Failure mechanism; insulated gate bipolar
transistor (IGBT); power cycling (PC) test;

power device module; reliability
Power Device Modules IEEE 2018 Denmark 86
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[150] Resendiz-Ochoa E. et al. 10.1109/ACCESS.2018.2883988
Condition monitoring; failure analysis;
image segmentation; Induction motor;

infrared imaging; thermal analysis

Induction Motor
Failure IEEE 2018 Mexico 10

[151] Lopez-Perez D. et al. 10.1109/IECON.2017.8216652
Fault diagnosis; induction motors; infrared

thermography; isotherm; predictive
maintenance

Industrial electric
motors IEEE 2017 Spain 3

[152] Liu Z. et al. 10.1109/SDPC.2017.35
Convolution neural network; Fault

diagnosis; Infrared (IR) imaging; Rotating
machinery

Rotating machinery IEEE 2017 China 7

[153] Dragomir A. 10.1109/SIELMEN.2017.8123307 HV busbar systems; Infrared thermography;
Thermal stresses Electrical equipment IEEE 2017 Romania 4

[154] Resendiz-Ochoa E. 10.1109/DEMPED.2017.8062412
Condition monitoring; fault diagnosis;
image segmentation; induction motors;

infrared imaging
Induction motors IEEE 2017 Mexico 17

[155] Mechkov E. et al. 10.1109/ELMA.2017.7955462 Evaluation criteria; infrared thermography;
maintenance; transformers

Transformer’s
maintenance IEEE 2017 Bulgaria 5

[156] Munoz-Ornelas O. et al. 10.1109/IECON.2016.7793682
Condition monitoring; Induction motors;
Infrared imaging; Predictive maintenance;

Thermal analysis
Induction motors IEEE 2016 Mexico 9

[99] Ramirez-Nunez J.A. et al. 10.1109/IECON.2016.7793158
Fault detection; Image processing; Infrared

image sensors; Infrared imaging;
Monitoring; Predictive maintenance

Industrial machinery IEEE 2016 Mexico 10

[157] Dragomir A. et al. 10.1109/ICEPE.2016.7781319 Dust thickness; infrared monitoring device;
thermal stresses Electrical equipment IEEE 2016 Romania 50

[158] Khan Q. et al. 10.1109/ICEEOT.2016.7755208
Condition Monitoring; Infrared

Thermography; Motor; Preventive
maintenance; Transformer

Electrical equipment IEEE 2016 India 10

[97] Singh G. et al. 10.1109/ICPES.2016.7584040
Condition monitoring; Failure of cooling
system; Fault diagnosis; Induction motor;

Infrared thermography
Induction motor IEEE 2016 India 9

[159] Singh G. et al. 10.1016/j.infrared.2016.06.010
Condition monitoring; Fault diagnosis;

Induction motor; Inter turn fault;
Thermography

Induction motors inter
turn Elsevier 2016 India 65

[82] Dutta T. et al. 10.1109/CMI.2016.7413761 Edge detection; color model; image
segmentation; thermal monitoring Electrical equipment IEEE 2016 India 22

[160] Zou H. et al. 10.1016/j.infrared.2015.08.019
Feature extraction; Infrared thermography;

Intelligent fault diagnosis; Parameter
optimization; Support vector machine

Electrical equipment Elsevier 2015 China 50
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[161] Janssens O. et al. 10.1016/j.infrared.2015.09.004
Condition monitoring; Fault diagnosis;

Image processing; Infrared imaging;
Machine learning; Rotating machinery

Rotating machinery Elsevier 2015 Belgium 76

[162] Perpiñà X. et al. 10.1109/TPEL.2014.2346543
Light-emitting diodes (LEDs); solid-state
lighting (SSL); thermal modeling; thermal

parameters extraction
LED lamps IEEE 2015 Spain 16

[163] Taheri-Garavand A. et al. 10.1016/j.applthermaleng.2015.05.038
Artificial neural network; Condition

monitoring; Cooling radiator; Discrete
wavelet transform;

Cooling radiator Elsevier 2015 Iran 50

[164] Zou H. et al. 10.1109/ChiCC.2015.7260642
Feature extraction; Infrared image;

Intelligent fault diagnosis; Parameter
optimization; Support vector machine

Electrical equipment IEEE 2015 China 14

[165] Dragomir A. et al. 10.1109/ICEPE.2014.6969915 Diagnosis; infrared thermography;
monitoring; thermal stresses Electrical equipment IEEE 2014 Romania 9

[166] Garcia-Ramirez A.G. et al. 10.1109/ICELMACH.2014.6960449 Induction motors; Infrared imaging;
Temperature; Thermal analysis Induction motor IEEE 2014 Mexico 24

[167] Karvelis P. et al. 10.1109/IECON.2014.7049001 Fault diagnosis; image segmentation;
Induction motor; object matching Induction motor IEEE 2014 Greece 26

[168] Li K. et al. 10.1109/TPEL.2013.2288334
Eddy current pulsed thermography (ECPT);

insulated gate bipolar transistor (IGBT);
nondestructive evaluation

IGBT modules IEEE 2014 United Kingdom 125

[169] Chen H. et al. 10.1109/TDMR.2013.2292547
Circuit topology; monitoring; MOSFET

switches; prognostics and health
management; thermal management

Power MOSFETs IEEE 2014 China 124

[34] Huda A.S.N. et al. 10.1016/j.infrared.2013.04.012
Condition monitoring; Electrical equipment;

Features; Infrared thermography;
Multilayered perceptron network

Electrical equipment Elsevier 2013 Malaysia 47

[170] Huda A.S.N. et al. 10.1016/j.applthermaleng.2013.07.028
Discriminant analysis; Electrical equipment;

Infrared thermography;
Preventive/predictive maintenance

Electrical equipment Elsevier 2013 Malaysia 105

[171] Jadin M.S. et al. 10.1109/SIECPC.2013.6550790 Condition monitoring; image classification;
Infrared image; object recognition; reliability Electrical installations IEEE 2013 Malaysia 12

[172] Cui H. et al. 10.1109/ICEIEC.2013.6835498 Fault diagnosis; image processing; Infrared
thermography; neural network Power equipment IEEE 2013 China 17

[69] Eftekhari M. et al. 10.1016/j.infrared.2013.10.001
Condition monitoring; Feature extraction;
Induction motor; Infrared thermal image;

Inter-turn short circuit fault

Inter-turn fault in
induction motor Elsevier 2013 Iran 35

[33] Jadin M.S. et al. -
Electrical equipment; Image preprocessing;

Image processing; Infrared thermogram;
Thermal anomalies

Electrical equipment Academia 2011 Malaysia 15
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[173] Manana M. et al. 10.1016/j.applthermaleng.2010.11.023 DC motors; Electric machines; Fault
diagnosis; Infrared imaging Field winding fault Elsevier 2011 Spain 36

[174] Younus A.Md. et al. 10.1109/PHM.2010.5414573
Infrared thermography; Machine condition

monitoring; Machine fault diagnosis;
Mechanical systems

Machine fault IEEE 2010 South Korea 12

[175] Feng J.Q. et al. 10.1109/ICPST.2002.1067880 Condition monitoring; genetic algorithms;
Power transformers Power transformer IEEE 2002 United Kingdom 9
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6. Conclusions and Recommendations

IRT has shown to be a successful condition monitoring and fault diagnosis tool for
noncontact and non-invasive real-time temperature monitoring of targets throughout
the years. IRT is especially useful for preventative maintenance programs and online
monitoring of electrical equipment since it delivers accurate and trustworthy data. To
minimize misunderstandings or improper analysis of IRT data, modifications and changes
to the algorithm and analysis techniques should be explored. Recent developments in the
IRT inspection of electrical equipment demonstrate that an intelligent system is in high
demand. IRT is a safe imaging technique aside from its superior temperature sensitivity,
spatial resolution, and noncontact nature. The improved IRT inspection tools may aid CBM
analysis by transferring data to a new and powerful AI for computer vision, which will
provide utility companies with helpful information.

Recent advancements in IRT technology are noted as possible future work prospects
leading to scientific CBM analysis. Existing IRT technologies have the potential to become
well-known and competitive fault diagnosis CBM approaches for electrical equipment in
the following years. Aside from the previously reported observations and conclusions,
which are trustworthy and efficient for qualitative and qualitative diagnostics, quantifying
the influence of each thermal fault pattern on the performance of various applications
is an unavoidable issue [176]. When combined with AI as a decision-making tool, the
thermal fault pattern with high resolution from IRT might be a game-changer for CBM
analysis. However, present and near-future research problems include knowing “when”
each defect arises and “how” it propagates during field operations, even after it has been
identified. Resolving such knowledge gaps is critical in pursuing [177] from a variety of
viewpoints. Furthermore, the goal of recent developments, ongoing studies, and future
research challenges is to standardize IRT readings in the field as part of issue diagnostics
and preventive maintenance strategies. In response to these directives and concerns, utility
industries will pursue future IRT-based fault detection systems using thermography in
electrical diagnostic and predictive maintenance. In general, the goal is to build a broad
application in the electrical utility business that is commercially successful. As a result, the
IRT with AI modeling will almost certainly face the following challenges:

• NFPA 70E, Standard for Electrical Safety Requirements for Employee Workplaces,
1995, is one of the numerous publications in the 70 series released by the National Fire
Protection Association (NFPA). One of the essential improvements in thermographers’
work habits is conducting electrical checks. It has to do with avoiding an electrical arc
flash, which may be very dangerous or even deadly at low levels of 400 V. Additionally,
thermographers who are not electricians may be ignorant of the risks of working near
active components. NFPA 70E defines limitations and advises personal protective
equipment (PPE) to reduce the severity of accidents. Another alternative is to utilize an
Infrared Inspection Window, which separates environments with different pressures
or temperatures while still allowing IR radiation to pass through.

• Continuous thermal imaging provides additional advantages over periodic thermal
examination, particularly in electrical equipment reliability. Continuous thermal mon-
itoring is a benefit since defects may occur at any moment. Furthermore, it is not
operator-dependent, and it is not reliant on frequent inspection, particularly under
large loads. In addition, real-time monitoring may trigger signals or alerts if abnormal-
ities arise unexpectedly, allowing necessary action to be performed simultaneously.
Furthermore, integration with existing Supervisory Control and Data Acquisition
(SCADA) systems would allow for real-time remote monitoring without the need for
a separate system or report, which is conceivable but not practicable with regular
thermal inspections.

• Thermocouples, infrared (IR) cameras, and fiber Bragg gratings have all been used to
measure high temperatures (FBGs). Most thermocouples and infrared cameras monitor
temperature on the cutting tool’s rake and flank faces. They are not appropriate for
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temperature readings because of the difficulties of placement between the flank face
and the workpiece surface. Furthermore, FBGs are contact sensors, which have the
drawback of being fragile and difficult to mount near the measurement site. Only a
few solutions give a reasonable solution for temperature readings on the workpiece
surface, but integrated sensors in the cutting tool are difficult to install. A two-color
fiber-optic pyrometer might be used to circumvent these limitations. To circumvent
the emissivity dependency of temperature, it exploits the ratio of optical powers at
two spectral bands to construct a self-referencing mechanism. Using optical fibers,
you can see isolated regions with a spatial resolution limited only by the numerical
aperture and fiber diameters.

• Due to the increased need for preventative maintenance in electrical power equipment,
more reliable and resilient intelligent solutions, such as the automated segmentation
algorithm to determine the region’s interest in detecting the hotspots of electrical
equipment, are urgently required. The majority of existing systems employ manual
segmentation based on standard image processing methods. These methods’ output
will likely capture the artificial hotspot in the region of interest, enabling CBM analysis
to detect the temperature difference. Due to the various properties of the equipment,
the created intelligent systems could only be employed for special electrical equipment
up until now. As a result, a clever, smart system model must be devised and built
to address the picture quality issue. Noises will usually impact the collected picture
when inspections are done outside. As a result, complex image processing methods
and new algorithms have to be investigated to tackle these issues.
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141. Dragomir, A.; Adam, M.; Andruşcă, M. A Review about Wireless Monitoring of Electrical Equipment Temperature. In Pro-
ceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania,
28–30 March 2019. [CrossRef]

142. AAndrade, F.; Fernandes, J.M.B.; Alves, H.M.M.; Costa, E.G. Thermal Behavior Analysis in a Porcelain-Housed ZnO Surge
Arrester by Computer Simulations and Thermography. In Proceedings of the 2018 IEEE International Conference on High Voltage
Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018. [CrossRef]

143. Hu, Y.; Shi, P.; Li, H.; Yang, C. Health Condition Assessment of Base-Plate Solder for Multi-Chip IGBT Module in Wind Power
Converter. IEEE Access 2019, 7, 72134–72142. [CrossRef]

144. Wei, K.; Wang, W.; Hu, Z.; Du, M. Condition Monitoring of IGBT Modules Based on Changes of Thermal Characteristics.
IEEE Access 2019, 7, 47525–47534. [CrossRef]

145. Lee, S.Y.; Teoh, S.S. A survey on infrared thermography based automatic electrical fault diagnosis techniques. Lect. Notes Electr.
Eng. 2019, 547, 537–542. [CrossRef]

146. Sangeetha, M.S.; Nandhitha, N.M.; Karthikeyan, S.; Venkatesh, N. Mathematical Relationship between Hotspot Temperature,
Emissivity and Distance in Thermographs for Condition Monitoring of Electrical Equipments. In Proceedings of the 2018 2nd
International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–12 May 2018; pp. 984–988.
[CrossRef]

147. Krishnan, S.R.; Su, C.; Xie, Z.; Patel, M.; Madhvapathy, S.R.; Xu, Y.; Freudman, J.; Ng, B.; Heo, S.Y.; Wang, H.; et al. Wireless,
Battery-Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin. Small 2018,
14, e1803192. [CrossRef]

148. Mariprasath, T.; Kirubakaran, V. A real time study on condition monitoring of distribution transformer using thermal imager.
Infrared Phys. Technol. 2018, 90, 78–86. [CrossRef]

149. Choi, U.M.; Blaabjerg, F.; Jørgensen, S. Power Cycling Test Methods for Reliability Assessment of Power Device Modules in
Respect to Temperature Stress. IEEE Trans. Power Electron. 2018, 33, 2531–2551. [CrossRef]

150. Resendiz-Ochoa, E.; Osornio-Rios, R.A.; Benitez-Rangel, J.P.; Romero-Troncoso, R.D.J.; Morales-Hernandez, L.A. Induction Motor
Failure Analysis: An Automatic Methodology Based on Infrared Imaging. IEEE Access 2018, 6, 76993–77003. [CrossRef]

151. Lopez-Perez, D.; Antonino-Daviu, J. Failure detection in industrial electric motors through the use of infrared-based isothermal
representation. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing,
China, 29 October–1 November 2017; pp. 3822–3827. [CrossRef]

152. Liu, Z.; Wang, J.; Duan, L.; Shi, T.; Fu, Q. Infrared image combined with cnn based fault diagnosis for rotating machinery. In
Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China,
16–18 August 2017; pp. 137–142. [CrossRef]
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