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Abstract: In this paper, a thorough framework for multiobjective design optimization of switched
reluctance motor (SRM) is proposed. Selection of stator and rotor pole embrace coefficients is an
essential step in the SRM design process since it influences torque output and torque ripple in SRM.
The problem of determining optimal pole embrace is formulated as a multi-objective optimization
problem with the objective of optimizing average torque, efficiency and torque ripple, and response
surface models were obtained based on the genetic aggregation method. The results obtained by
genetic aggregation response surface (GARS) and the non-dominated genetic algorithm (NSGA-II)
were validated with the finite element method (FEM) model of the initial SRM. The optimized
model displayed better efficiency profile over a wide speed range. The initial and optimized models
recorded maximum efficiencies of 85% and 94.05%, respectively, at 2000 rpm. The efficiency values
of 93.97-94.05% were achieved for the three pareto optimal candidates. The findings indicate the
viability of the suggested strategy and support the use of GARS and NSGA-II as useful methods for
addressing SRM key challenges.

Keywords: efficiency; genetic aggregation response surface; genetic algorithm; pole embrace coefficients;
switched reluctance motor; torque ripple

1. Introduction

High performance electric machines are central in many industrial applications such
as in electric vehicles, wind energy drives, aerospace, robotics, submarines and so on [1,2].
Since torque and flux control could easily be accomplished by adjusting the armature and
field currents in separately excited systems where quick response is required with high
performance at very low speeds, conventional DC motors have traditionally been used
in adjustable speed drive applications [3]. The disadvantage of these DC motors is the
mechanical commutator assembly coupled with brushes for electrical continuity of the
rotor mounted armature coil, which increases shaft inertia and slows response time [4].
Additionally, they need regular maintenance since brush wear reduces motor life and the
commutator’s efficiency in high-speed applications due to arcing and heating with large
current carrying capacities [3,5]. Similarly, the major concern with permanent magnet
synchronous generators is the high expense of the premium permanent magnets needed
to make them [6,7]. The employment of non-conventional electrical machines such as
switched reluctance motors (SRMs) has drawn the attention of the majority of researchers
and industrialists as a means of resolving these problems [8-11].

SRMs have been used in several industrial applications such as: linear transporta-
tion [12], wind generators [13], mining equipment [14], flywheel energy storage applica-
tions [15], high speed and high power applications [16,17], different generators [18-20],
automotive applications [21-23]. This is due to their simple structure, low manufacturing
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cost, and high robustness. The power density, efficiency and torque output of SRMs are
high over a wide speed range [24,25]. These merits have increased the research efforts
and made SRMs preferred for high speed applications [10,22,25]. Several multi-objective
optimizations of SRMs have been studied in [26-32] and good results were obtained. The
optimization process was carried out to increase SRM’s average torque and decrease its
torque ripple in order to enhance the overall performance of SRMs in [28]. In [29], the
optimization was performed by considering the ratio between the length of an SRM core to
the pole arcs of a stator and rotor. The stator and rotor pole arcs were varied to achieve a
self-starting positive torque. With every variation in stator and rotor pole arcs, the objective
functions (average torque and torque per volume) were calculated. A compromise between
the average torque and the torque per volume numbers led to the selection of the arc’s
values. However, the work assumed fixed ratios for the lengths and arcs and did not
consider other values which many produce another optimal design. In [33], multi-objective
optimization of SRM for electric vehicle (EV) applications was proposed. Three objective
functions (torque per volume of the core of the motor, average torque per copper loss,
and average torque) based on the requirements of EVs were optimised using three weight
factors and three base values, while the optimised parameters were only the stator and
rotor pole arcs” angles.

Recently, a new family of electric machine design optimization methods which in-
volve stochastic evolutionary approaches and design of experiments (DoE) are notewor-
thy [9,34-36]. The techniques minimize the computing complexity of the conventional
strategies that relate stochastic evolutionary methods with finite element analysis (FEA). The
central composite design (CCD) was applied to the creation of response surface (RS) models
in [35]. Based on the first-order regression coefficients of the RS models, sensitivity tests were
carried out to determine the significant design variables. However, while employing the
first-order regression coefficients as the sensitivity indices, the impacts of the interactions
between design factors were not taken into account. Following the sensitivity analysis, the
ideal values of the chosen significant design variables were determined using a differential
evolutionary method in conjunction with an FEA solver. Due to the usage of the FEA for each
candidate design, the optimization procedure had a significant computing cost. The high
computational cost was eliminated by coupling the evolutionary method with RS models
in [36]. DoE was utilised to build the second-order RS models, which were then used to
forecast the machine responses throughout the optimization’s search phase. The search
algorithm for the best designs successfully lowered the computing cost by removing FEA
iterations. However, the second-order RS model’s drawback is that its accuracy declines with
the size of the design space, which could result in inaccurate optimal solutions. Furthermore,
more samples are needed to cover the design space with a larger dimension for the RS
model’s construction. The distribution of the samples is crucial to the RS model’s reliability.
The CCD samples, however, are proportional to the size of the design space. As a result,
applying the CCD to the target problem may not be appropriate. However, the distribution of
the samples obtained through the Latin Hypercube Design (LHD) method must be carefully
planned in order to guarantee the accuracy of the RS model [24]. On the other hand, the
quantity of samples obtained through the LHD method is controllable. Thus, the accuracy of
RS models and selection of acceptable methods are the major difficulties associated with the
conventional RS model-based techniques which will be addressed in this study.

To the best of the authors” knowledge, this is the first attempt to improve SRM perfor-
mance by considering the effect of pole embrace (ratio of pole arc to pole pitch) of a rotor
and stator, yoke thickness of a stator and saturation level in the multi-objective optimization
process by using genetic aggregation response surface (GARS) and the non-dominated
genetic algorithm (NSGA-II). It is clear from the analysis of the literature [9] that different
optimization methodologies should be investigated in relation to the design optimization
of SRM. To this end, the current study is focused on the application of GARS and MOGA
in order to achieve enhanced design of SRM with increased performance. Because of its su-
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perior computing complexity, guarantee of elitism, and more even individual distribution
than the pareto front, NSGA-II is preferred [37].

The fundamental drawback of SRM is its doubly salient pole configuration, which
results in a relatively significant torque ripple. This results in a high torque ripple,
noise and vibration effects during the operation of the motor. To minimise torque rip-
ples in SRM, two alternative strategies are taken into account which include geometry
modification/optimization and deployment of control algorithms to improve the perfor-
mance [25,37]. The control of SRM plays an essential role in its operation and it differs
depending on the application [13,24,25]. Additionally, even when using electronic torque
ripple reduction approaches, it is preferable to search the best SRM geometry for enhanced
improvement [38].The stator-rotor pole overlap angle, pole shape, material attributes, num-
ber of poles, and number of phases affect the torque characteristics of SRM [7,39]. The pole
arcs and tooth widths of the stator and rotor, which are influenced by the pole embrace
coefficients of both the rotor and the stator, have an impact on the torque output and
torque ripple of SRM. To ensure enough torque during phase commutation, the stator and
rotor of the motor should be built with sufficient pole overlap. The best pole embrace
arrangement must be chosen in order to minimise torque ripple because of their direct
impact on inductance and torque calculation. However, proper consideration should also
be paid to the stator’s yoke thickness because wider stator pole causes more copper loss and
availability of a smaller window for winding [40]. As a result, the problem of determining
the ideal stator yoke thickness and pole embrace coefficients of the stator and rotor is
formulated in this paper as a multi-objective optimization problem with the objectives
of optimizing average torque, efficiency and torque ripple by seeking an optimum flux
density. The maximum flux density in the motor will be limited to this optimum value. The
main findings of this study will serve as an important tool for designers as it allows them
to relate the effects of geometric dimensions on the motor performance.

The remainder of this paper is organized as follows. Section 2 presents the design
concept and initial consideration of the proposed motor. Section 3 shows the formulation of
optimization objective functions and constraints. The comprehensive framework based on
GARS and MOGA for optimal design of SRM is proposed in this section. Section 4 presents
the simulation results, and in Section 5, the conclusions are presented.

2. Design Concept and Initial Consideration

SRMs’ designs are less complex than those of other machine designs because of their
simple structure [24]. The number of salient rotor and stator poles is uneven. The stator
carries the coils, while the rotor has no cage and magnets. The operation of the SRM is
dependent on the fluctuating reluctance created by the air gap between the stator and the
rotor. Figure 1 is the cross-sections of the geometry of the SRM while the values of various
parameters are presented in Table 1.

4 ad

Figure 1. Geometric parameters of 8/6 SRM for (a) Rotor (b) Stator.
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Table 1. Parameters of the SRM.

Parameters Values
Rated voltage 380V
Rated speed 1000 rpm
Power output 1.50 kW
Stacking factor 0.95
Core length 65 mm
Stator pole number 8
Stator outer diameter 120 mm
Stator inner diameter 75 mm
Stator pole embrace 0.45
Stator yoke thickness 12 mm
Rotor pole number 6
Rotor pole embrace 0.30
Rotor yoke thickness 9 mm
Rotor inner diameter 27.10 mm
Rotor outer diameter 74 mm
Ferromagnetic material M109 steel (24 gauge)

(D, Dsp, &5 Pry Gr, Yr, Be, Brs 95, Ys, Bs, Ps, Bs, Do) in Figure 1 represent bore diameter,
shaft diameter, air gap length, rotor poles, rotor pole pitch, rotor yoke thickness, rotor pole
length, rotor pole arc, stator pole pitch, stator yoke thickness, stator pole length, stator poles,
stator pole arc, and outer diameter, respectively. Due to the effect of magnetic saturation on
the flux linkage-to-angle curve, SRM is expected to be operated with a unipolar current
excitation, and its mathematical model is nonlinear [24]. The phase voltage equation used
to calculate the torque is given as [41]:

AApn  pns Opn
. pr\“phr=p
dA h(i 10 h)
pr\“phr=p
L l ,9 T (2)
(i) = 22l
dAyy
Epp = —~w, (3)
a0y,
. . diph
Upn = Rsipy + Lt (lphfeph) —r T Ewm 4)
. iph . .
W<lph/9ph> :/0 /\ph (lphzgph)dlph/ ()
. oW (6,1 o
90,
The equation for motion is given as:
dw
—=T-T, — 7

where v, stands for voltage per phase; R, stands for stator resistance per phase; i, stands
for current per phase; 8, stands for angle per phase; A, stands for flux linkage per phase;
J stands for rotor inertia; T stands for rotor torque; T}, stands for load torque; B;,; stands for
rotor damping; and w stands for mechanical rotational speed.

The design procedure of SRM starts with specifying the available dimensions from
space constraints such as shaft size, axial length, number of stator and rotor poles, pole
arcs, pole pitch, and so on. The number of stator poles Ps; and the number of rotor poles P,
are usually selected based on experience with the application requirements and converter
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configuration to be used. This paper primarily focuses on the 8/6 topology because it has
the advantage of lower torque ripple than the conventional 6/4 topology.
Referring to [42], the minimum stator pole arc to achieve self starting is given as:

47

P.D ®)

min[f,] =
The following is the requirement that guarantees there is no overlap of the stator and
rotor poles in the unaligned position:

Bt pr <=2, ©)
r
where B, and B, represent the pole arcs of the rotor and stator, respectively. The motor will
develop positive inductance rate of change before reaching the minimum value if (9) is not
obeyed. This will cause the unaligned inductance value to be higher which will result in
lower torque generation.
The following is the stator pole arc length, ¢;, at the winding’s closest point to the

shaft’s centre: D
b = (5)Bs + 2 (10)

where the wedge, hy,, is chosen as 4 mm which is required to hold the windings in place
as calculated in [25]. Calculating a modified stator pole pitch, g3, and incorporating the
wedges holding the windings in place leads to:

(D +2h
Gsp = ( b wed)‘ (11)
s

The maximum height of the winding (/) is obtained by subtracting (/,,;) from stator
pole height (ks):

hy = hs — hwed- (12)

The number of layers that can fit in the available winding height is calculated as follows:

hywK
Ny = —1, (13)
dw
where Ky represents the fill factor. The value of Ny is rounded off to the nearest lower
integer while the number of horizontal layers needed for the winding is provided by:

Ton
N, = -2 14
A (14)
The distance between two stator pole tips at the bore is given by:
Z = pp — ts. (15)

The width, w;, of the winding and the clearance, CL, between the winding at the bore
are respectively given as:

N,
wy = dzuf;. (16)
CL =7 —2ws. (17)

The magnetic flux density distribution of the SRM is displayed in Figure 2. It could be
observed that the maximum flux density at the pole is higher than the knee point (1.86 T)
of the core material (M19-24G). Design experience has proven that limiting the motor’s
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maximum flux density to this value is a recommended practise. Noise in the motor is
reduced as a result of this practise [43].

B [tesla]

2.0329E+00
1.8974E+00
1.7619E+00
1.6263E+00

1.4908E+00
1.3553E+00
1.2198E+00

1.08426400
94871E-01
 s319ED
| 67766E01

5.4213E-01
4.0661E-01
2.7108E-01
1.3555E-01
2.5243E-05

Time  =10.00000ms

Figure 2. Magnetic flux and field distributions of the SRM model showing maximum flux density of
2.03 T around the poles of the motor.

The stator pole area, As, is defined as:

D
As = S LB (18)

The flux in the stator pole and yoke are respectively defined as:

(P = BSASr (19)
BsAs
by=5 =5 20)

If the yoke flux density, By, is half the stator flux density B, the yoke flux and flux
density in the rotor pole, B;, can respectively be written as:

B
¢y = ByAy = ?SAy- (21)
BsAs
B, = . 22
= 22)
The area of the rotor core, A,, is given by:
_.,D Dy,
Ape = L(§ g§—hr T) (23)
The reluctance, %, of the air gap is given as:
21
8
= , 24
HoAg (24)

where g and A, are the permeability of free space and air gap area, respectively. The
air-gap flux density, By, and magnetic field intensity of the air-gap, Hg, are respectively
given as:

AsBs

B, = . (25)
8 Ag
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B 8
He = o107
The magnetic circuit of the SRM is shown in Figure 3. The reluctances of the stator
pole, yoke, rotor pole, rotor core and air-gap are represented by %s, &y, &y, Rrc, and R,
respectively.

(26)

0.5*Q Ry

Figure 3. SRM’s magnetic circuit showing the interconnection of circuit parameters.

The mathematical representation of reluctance, %, in any section is:

H*L H*L
% = — = ,
B*A ¢
where H is the magnetic field intensity, L is the section’s mean path length, B is the section’s
flux density, A is the section’s area, and ¢ is the section’s flux.
The torque ripple, TR, is defined as [24]:

(27)

TR — Tmax — Tmin, (28)
Tuvg
where the maximum, minimum, and average torques are denoted by Tyax , Tin , and Tyog,
respectively.
The efficiency of SRM, 7, is given as the ratio of shaft power output and motor input
power, which will be computed from input current and voltage waveforms during period,
Ts, in accordance with the following equation:

Py = = Y vint, (29)
S

where m is number of phases and At is sampling time of the current and voltage waveforms.
The efficiency can also be predicted by the knowledge of losses [44—46]. Due to the non-
sinusoidal nature of the flux waveforms and the variations in the shape of the flux density
waveforms in different sections of the SRM’s magnetic circuit, calculating losses in the
SRM, and particularly assessing core losses, is a highly challenging task. Additionally,
rotation speed and the type of control employed both affect core losses. For low speeds, the
mechanical losses can be neglected. Hence losses, Tr, may be calculated as:

T1, = Copper Loss + Core Loss. (30)

Once the losses are obtained, the efficiency is calculated as:

T T,
n= _ Loy (31)
TLTavg + TL

3. Multi-Objective Optimization

Evolutionary algorithms are effective techniques for achieving the best possible prod-
uct design. Single-objective and multi-objective optimization algorithms are the two main
categories of optimization algorithms in terms of objective functions. In single-objective
optimization, one objective function is present, or occasionally, the entire objective function
is made up of several objective functions that have been combined into one objective
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function using weighing factors. The drawback of single-objective optimization algorithms
is that choosing weights does not guarantee that the eventual result will be satisfactory.
Additionally, a consistent and continuous variation of the weights may not always produce
an accurate and comprehensive depiction of the pareto optimal set [47].

On the other hand, multi-objective optimization allows the optimization of more than
one single objective function and is based on non-dominated solutions, meaning that a
function cannot be decreased without at least one other function also increasing at the
same time. Objective functions in multi-objective optimization may conflict. It follows that
enhancing one objective function will make the other one worse. As a result, multi-objective
optimization allows the simultaneous consideration of several objectives and the existence
of a set of optimal solutions, in contrast to single-objective optimization where there is only
one extreme for the problem. The Pareto-front is a collection of solutions where a user
must select the best option among a large number of similar options based on the demands
of a particular application. Additionally, since contradictory objective functions can be
included in the optimization problem, which gives a mathematically precise definition of
compromise solution, multi-objective optimization eliminates the challenges associated
with the selection of weighing factors and produces more realistic results [47,48]. To
accurately complete the multi-objective goal of the studied SRM, a minimum of two factors
are needed. First, the motor’s mathematical model (explained in Section 2), which provides
information on the SRM’s efficiency, average torque and torque ripple for any set of variable
parameters. The second factor, the search algorithm, operates under the multi-attribute
rule [41].

3.1. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The SRM is designed optimally in this paper using the non-dominated sorting genetic
algorithm II (NSGA-II). When compared to other multi-objective approaches such as Pareto-
archived evolution strategy and strength-Pareto evolutionary algorithm, this algorithm
performs better in terms of finding a variety of solutions and convergent to the exact
Pareto-optimal set [47,48]. The summary of NSGA-II is depicted in Figure 4.

R, Non-dorpinated Crowding P,
sorting distance sorting
Ly| | pesecccccccee- >
Pn L2 .............. |
L;

eesccmecccscccccs Pec@assecqeccccccceca thsC -------------------------
2, AN
<+— Rejected

Figure 4. NSGA-II procedure for MOGA showing the different layers of the sorting process [48].

From Figure 4, the stages are as follows:

Stage 1: A parent population, Py, of size Nj, is produced. Then, a population of
offspring, Qo, is produced using the cross-over and mutation operations. In order to
facilitate generalisation, subsequent phases are stated as nth generation.

Stage 2: Production of the combined population R, = P, U Q. The size of the
population Ry, is 2Np,.

Stage 3: Decoding the combined population R, and determining the fitness of the
objective functions. The population Ry, is then sorted using non-dominated solution sets
such L1, Ly, and L3. The best solutions for the problem are those that belong to the best
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non-dominated solution set L1, as can be seen in Figure 4. Solutions from the set L3 are
picked last and in second priority, then solutions from the set L,.

Stage 4: The initial sets are chosen when the total of their members equals or exceeds
Njp. Every member’s crowding distance inside the chosen sets is computed. For the
following generation P, 1, the first k; sets are chosen based on elitism. According to
crowding distance, the kth set is sorted, and those with a high crowding distance are chosen
and added to the P, ;1 generation after them until the population reaches Nj,.

Stage 5: If the number of generations reaches its limit, the programme ends and the
fitness of the objective functions and non-dominated solutions are found. If not, proceed to
Stage 6.

Stage 6: The new population P, is subjected to crossover and mutation operators to
produce the new population Q,,1, after which Stage 2 is reached.

For any member g and £, selection in NSGA-II is based on the crowded-comparison
operator provided by (32).

g< h, if (gmnk < hmnk) or ((grank < Nygni and (gdist < hdist))/ (32)

where the non-domination ranks for the individual members of g and & are gy, and hqk,
respectively. The crowding distances for single members of ¢ and & are g ;s and hyjq,
respectively. According to the relation g < h, the single member, g, is superior than the
separate member, &, which means that the solution with the better (least) non-domination
rank is picked. The option with a greater crowding distance is picked if the two solutions
have the same ranks. The designer must classify the non-dominated solution that was
obtained and choose one based on the importance of the objectives. In this paper, the order
of priority is efficiency, torque ripple, and average torque.

3.2. Proposed Framework for Multiobjective Design Optimization of SRM

The comprehensive framework for multi-objective design optimization of the SRM is
presented in this section. Table 2 displays the maximum and minimum limits of the design
variables while Figure 5 is the proposed framework implemented by using ANSYS Workbench.

Table 2. Ranges of design variables.

Parameters Range
Stator yoke thickness, Y 10.80-13.20 mm
Stator pole embrace, Es 0.41-0.50
Rotor pole embrace, E, 0.27-0.33
Stator pole flux density, Bs 186 T
Torque ripple 20.41%
Average torque 16.32 Nm
Efficiency 85%

The proposed framework of Figure 5 begins with setting the maximum and minimum
limits of the design variables as presented in Table 2. The first phase entails choosing three
parameters (torque ripple, efficiency, and average torque) as the output variables, and three
parameters (pole embrace of stator, pole embrace of rotor and yoke thickness of stator) as
the input variables and flux density of stator pole as the seek variable. The generation of
different sample points was carried out in the second step.

The central composite design approach is the DOE strategy used in this work. It
establishes how many and which design points (D P) should be resolved in order to optimise
as effectively as possible. There are 15 design points at which the parameters will be solved.
The variations of Bs, with the design points are shown in Figure 6, while the relationships
between the input parameters and design points are presented in Figure 7.
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Start

Design specifications
Define design variables, constraints and
objectives

Set Design of Experiments (DoE)
Set variations of input parameters

Generate sample points based on
approach of central composite design

Perform sensitivity analysis

v

Implement a curve fitting approach to
determine response surfaces

Create Response Surface to analyze the
impact the parameters have on one
another

Optimization
Perform multiobjective optimization
based on NSGA-II

Set objectives for the output parameters
Generate the tradeoff plots

Select optimal candidates within the
pareto optimal solutions

v

End

Figure 5. Illustration of the proposed scheme implemented in ANSYS workbench. As shown, the
process can be broadly split into three sub-process viz: design specifications, DoE and optimization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Design Points

Figure 6. Target parameter of Bs, with design points.

From Figure 6, it can be seen that DP — 5 has the best 1.86 T while DP — 10 recorded
the lowest 1.86 T. These design points do not guarantee best and worst performance.This
is further shown in the plot of the output parameter relationship with the design points
of Figure 8. In addition, the accurate selection of the input parameters of Figure 7 will be
ascertained after investigating the optimized motor response at the target value of 1.86 T.
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i 0.30
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0.28
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©
Figure 7. Input parameters with design points (a) E, with design points (b) Es; with design points
(c) Y5 with design points.

The motor response relationships are presented in Figure 8.

From Figure 8a, DP — 3 and DP — 9 gave the best efficiency, while DP — 13 gave
the best average torque in Figure 8b. In addition, DP — 15 gave the lowest torque ripple
in Figure 8c. It can be observed that none of these design points correspond to DP — 5
of Figure 6. Hence, the DoE has fallen short of predicting the behavior between the
variables. Therefore, there is need to employ a better technique in order to find the optimal
combination of these variables that will give the best response at 1.86 T.

In this study, the sensitivity of the motor responses to each design feature is quantified
using a genetic aggregation response surface (GARS) based sensitivity analysis approach.
According to [9,35,36], local sensitivity assessments of SRM have traditionally been carried
out using the one-factor-at-a-time technique. However, this approach did not take into
account the interactions between the design variables or quantitatively assess the sensi-
tivities. Due to the utilisation of numerous response surfaces and the cross-validation
procedure, GARS is more reliable than the traditional response surface meta-models [49].
The functional relationship between global objective and constraint functions in a design
space of response surface can be approximated as [50]:

N"l
yx) =Y aigi(x). (33)
i1

The second order polynomial when solving quadratic approximation is given as:

2
1,x1,%0, o0, X, XY, X1, X0, 000, X1 X, oo, Xy, (34)

while the prediction of the ith response of the surrogate model is given as:
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(35)

2
i

ap + Zaixi + ) X

N N,

9:

N
+ Z al-]-xl-xj.

1

1

1

i

1

1

It should be noted that g; is determined by using the least squares regression given as:

(36)

(XTx)~1xTy,

a

(37)

Vi,

Nm
c(x) = Z w;

The genetic aggregation response surface adopted in this paper is expressed as an

ensemble using weighted average of several different meta-models [50]:

1

satisfies:

while w;

(38)

m-

landw; > 0,1 <i <N,

Design Points
@

Design Points
(b)

(c)

Design Points

Figure 8. Output parameter with design points (a) 7 with design points (b) Tsy¢ with design points

(c) TR with design points.

The symbols used in Equations (33)-(38) are presented in Table 3.
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Table 3. Symbols in Equations (33)—(38).

Symbols Description
y(x) Relation between objective and constraint functions
@i(x) Basic functions
x Design variables
a; Weighting parameters
Ny, Number of meta-models
7 The predicted ith response surface
7 The predicted ensemble
X Matrix of basic functions
xT Transpose of the matrix of basic functions
w; The weight factor of the ith response surface

GARS creates a population of meta-models with a diverse array to maximise the
likelihood of receiving the most efficient solution. This population is equivalent to the
genetic algorithm’s initial population. By combining prior populations and mutating them,
the next populations are created. The genetic algorithm keeps other response surfaces
that are less prevalent while removing a portion of the response surface type that is over
represented in the population in order to maintain the diversity of response surfaces. When
the anticipated values are different, the population contains similar meta-models in terms
of prediction accuracy, which raises the likelihood that errors will be eliminated on the
ensemble [50]. The sensitivity indices of the motor responses to the design variables are
evaluated and the results are shown in Figure 9.

60 Y's (mm)
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Er

Ny
o
|

N
o
|

o
L

Sensitivities

N
o
| L

-60 <

T T T T T T
Torque Ripple Average Torque Bsp

Output Parameters

T
Efficiency

Figure 9. Sensitivity Chart. It is used to identify key variables impacting performance metrics, and

the quantitative nature of their impact, respectively.

From Figure 9, the efficiency and average torque response have a positive sensitivity
with stator yoke thickness, Ys and negative sensitivity with stator pole embrace, Es and rotor
pole embrace, E;, while the output parameter of torque ripple has a negative sensitivity
with them. The set target, Bsy has a positive sensitivity with Y; and E,, and negative
sensitivity with E,. All of these sensitivity tendencies are in line with general machine
design experience, and the chart can also be used to determine the important ratio.

After sensitivity analysis, the RS models are constructed by considering the data of
DoE of Figures 6-8. The accuracy of the RS models highly depends on the DoE and the
curve fitting approach. The accuracy of the Curve Fitting can be analyzed by using the fit
accuracy approach as presented in Figure 10.
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Figure 10. Fit accuracy plot showing how closely the output parameters fit the expected response.

The goodness of the line can further be examined by checking the R-squared value
from Figure 10. The value gives a sense of how closely the points fit the matched line.
Normally, the value should be close to 1 [51], and in Figure 10, the value is 0.99987 which is
satisfactory. Based on the accuracy of the plot, the response surface analysis can accurately
predict the design points.

The three-dimensional (3D) response surfaces of the motor response are presented in
Figure 11. This is a useful approach used to visualize and analyze the impact that parame-
ters have on one another. The approach assumes that all the parameters are significant by
searching for higher order trends. The values of these parameters are listed in Table 4.

Bsp
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Figure 11. 3D Response surface plots of the SRM. The plots display three-dimensional relationship
between the parameters and are useful for establishing desirable response values.
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Table 4. Details of Min-Max Search Algorithm.

Parameters Y; (mm) Es E, 71 (%) TR (%) Tavg (Nm) Bsp (T)

Minimum Values

1 (%) 10.80 0.50 0.33 93.69 19.83 15.30 1.86

TR (%) 13.20 0.50 0.33 94.52 19.74 15.79 1.87

Tavg (Nm) 10.80 0.50 0.33 93.69 19.83 15.30 1.86

Bsp (T) 11.08 0.50 0.28 94.08 20.35 15.58 1.83
Maximum Values

1 (%) 13.20 041 0.28 94.99 21.02 16.81 1.90

TR (%) 10.89 0.41 0.27 94.27 21.35 16.21 1.86

Tavg (Nm) 13.20 041 0.31 94.92 20.70 17.00 1.89

Bsp (T) 13.20 0.45 0.33 94.75 20.13 16.51 1.97

From Figure 11, the RS of the SRM were plotted based on the sensitivities of each
of the design variables to the motor responses based on Figure 9. The Min-Max search
algorithm was used to evaluate the response values of all the variables by searching the
minima and maxima of each of the output parameters with their corresponding input
parameters as listed in Table 4. The values were considered in the optimization program to
obtain optimal solutions.

The multi-objective optimization problem can be stated as [41]:

Maximize?(?)
{ subject to : g (%) < 0and 7(7) =0. (39)

? = X1,X2, ..., Xp

The vector ?(?) includes several objective functions. It is defined as:
Objective:
min x(—Tapg(x), —17(x), TR(x)), (40)

subject to: X, < x < Xy; 17 > 85%; Bsp < Bst,

where x = (E;, Vs, E;); X =(0.41,10.80, 0.27); X, =(0.50, 13.20, 0.33), Bs; = saturating flux
density which ranges from 1.7 T to 2.2 T depending on the steel material [43]. It is chosen
as 1.8 6 T which is the knee point of the steel material.

The maximum and minimum limits of the variables in Table 2 were selected to give
logical values with related physical meanings. These ranges were based on the power level
(1.5 kW) of the motor. They were further checked to satisfy the following constraints:

Dsh + 2bry +2h, + Zg =D, (41)
D + 2bsy + 2hs = Dy, 42)
Es E
Es L 4
PS Pr / ( 3)
E. E 1
P D <p (44)

where bry, bsy, Es, and E; are back iron lengths of rotor and stator, pole embraces of stator
and rotor, respectively. Es; and E, are given as:

Bs * Ps
E - 4
S< 271_ 7 (5)
E < PrrPr (46)

27
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4. Results
4.1. Optimization Results

The NSGA-II algorithm is configured for 10,000 estimated evaluations with 500 sam-
ples every iteration and 500 initial samples for the solution of this study. The maximum
number of candidates is three, and the permitted Pareto percentage is 70. Figure 12 and
Figure 13 show the search direction of the objective functions with Bs, as more generations
are produced at the set target of flux density of 1.86 T. The results show that a wide range
of design solutions are found, offering significant improvements in weight and losses over
the benchmark design.

A general criticism of optimization-based designs is that it is easy to lose track of the
optimization process and, hence, useful engineering insights will not be gained from the
design [52]. For improved clarity and visibility, three categories of plots are presented to
visualize the process and observe design trends. The first category is the design variable
plot in Figure 12, showing the input variables for the Pareto front solutions normalized
to the upper and lower limits of their search space as displayed in Table 2. The second
category is the output variables plot in Figure 13, showing the constrained performance
outputs for the Pareto front solutions. The tradeoff plots between the output variables
belong to the third category as shown in Figure 14. The optimization program was initiated
to select three best candidate points among the generated solutions.
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Figure 12. Tradeoff plot of input variables with B, (a) Es with Bsp (b) E, with Bsp (c) Ys with Bs).
The input solutions highlighted in the dashed-line box dominate other solutions in the white areas
since they are generated around 1.86 T. The best to worst solutions go from red to blue.

Figures 12 and 13 show that both the NSGA-II and GARS algorithms were able to find
more feasible solutions for the target value of 1.86 T, but many of the obtained solutions
fell outside the range of the optimal solutions meaning they were unfeasible. In each case,
the solutions highlighted in the dashed-line box dominate other solutions in the white
areas since they are generated around 1.86 T. The tradeoff plots represent the points at
which improvement in one parameter’s goal can be achieved without sacrificing the other
at 1.86 T. Four Pareto fronts were obtained in the optimization process by solving (40), and
the best to worst solution go from red to blue, respectively.
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From Figure 12a,b, a clear trend of increasing pole embraces of stator and rotor are
observed for the target value of 1.86 T. The range of values for pole embraces of stator
and rotor are between 0.492-0.495 and 0.326-0.328, respectively. These optimized values
mean that the proposed model will bear sufficient pole overlap which will ensure enough
torque during phase commutation. The best pole embrace arrangement will be chosen
for the optimized model in order to minimise torque ripple because of its direct impact
on inductance and torque calculation. Nevertheless, the range of values for stator yoke
thickness is 11.45-11.73 mm which are lower than the benchmark value of 12 mm as seen
in Figure 12c. This implies that the optimized model will have lower copper loss than the
initial model because a wider stator pole causes more copper loss in electrical machines.

Furthermore, the relationship between motor responses and Bs, can also be seen in
Figure 13. For Bsp of 1.86 T, the range of optimized values for torque, torque ripple and effi-
ciency are 15.53-15.54 Nm (in Figure 13a), 19.81-19.86% (in Figure 13b), and 93.97-94.05%
(in Figure 13c), respectively. The average torque is reduced to decrease the torque ripple,
but at the same time, efficiency is increased, to ensure that the optimization objectives are
not violated.

Figure 14 shows the relationships between the objective functions in pairs of (max,
max), (max, min), and (min, max), respectively.

The candidate points denoted as Candidate A, Candidate B, and Candidate C in the
plots represent the best designs that were generated by the optimization program. In this
work, efficiency has most priority, followed by torque ripple and average torque. Therefore,
the final selected candidate will have improved efficiency.

Since the objective is to optimize efficiency, average torque and torque ripple at 1.86 T,
the program tries to achieve better candidates by searching right or left of the search area.
It is obvious that the area which indicates the optimal search exists in either lower right
and left quarter (considering the axes limits), where best values for efficiency, average
torque, and torque ripples are sought. The best solutions for the (Max, Min) and (Min,
Max) functions as seen in Figure 14b,c are in the lower left and right quarter, while the
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best solutions of the (Max, Max) function of Figure 14a has a different shape because of the
complexity of setting the program at 1.86 T.
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Figure 14. Pareto fronts of the multiobjective optimization obtained from the proposed GARS and
NSGA-II-based method (a) Efficiency with Average Torque (b) Average Torque with Torque Ripple
(c) Torque Ripple with Efficiency.

The input and output parameters of the initial model and the final candidates with
their corresponding performance are specified in Table 5.

Table 5. Parameters of the initial model and optimal candidates at rated conditions .

Parameters Initial Model Candidate A Candidate B Candidate C
Y; (mm) 12 11.73 11.59 11.45
Es 0.45 0.50 0.49 0.49
E, 0.30 0.33 0.33 0.33
Bsp (T) 1.95 1.86 1.86 1.86
TR (%) 2041 19.81 19.84 19.86
Tapg (Nm) 16.32 15.53 15.54 15.53
Efficiency (%) 85 94.05 94.01 93.97

Table 5 shows the candidates of final generation with the three objective functions.
The results shown confirm the accuracy of the search direction and proposed method.

4.2. Finite Element Verification of the Optimized Model

This section validates the pareto optimum candidate produced by the proposed ap-
proach and further assesses its efficacy using time-stepping finite element analysis. One of
the most crucial and effective tools for this is the finite element analysis-based Maxwell
software. A 2D finite element simulation of Candidate A (in Table 5) was performed using
the software.

Figure 15 shows finite element mesh of the optimized motor. Mesh engineering was
performed, and the finite element mesh was constructed with surface approximation of
0.065 mm and normal deviation of 15 and 12,407 surface elements. The meshing comprises
of various mesh types in the model’s different regions (stator, core, and coils).
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50 100 (mm)

Figure 15. Meshing of the optimized model. A zoomed-in view is also provided for improved
mesh detail.

The comparative characteristics of the initial and optimized models are shown in
Figure 16. The equivalent flux linkages of the initial and optimized models were observed
to be 0.463 Wb and 0.358 Wb, respectively as shown in Figure 16a. The 22.68% decrease in
the flux linkages noticed in the optimized model means a reduction in energy conversion
per each step which shows that magnetization will occur slower than the initial model.
This led to reduction in torque production as compared with the initial model.
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Figure 16. Comparison of motor performance of the initial and optimized model (a) Flux linkage
characteristics (b) Torque profile (c) Motor efficiency with speed.

In Figure 16b, the output torque of the initial model (36.08 Nm) is higher than that
of the optimized model (32.55 Nm) due to the higher flux linkages of the initial model.
Nevertheless, torque ripple of the optimized model is lower than the initial model as a
result of the influence of the optimized parameters that were used in the design of the
optimized SRM model. The ripples were evaluated with the FEM tool used in this paper
based on Equation (28).



Energies 2022, 15, 6086

20 of 23

Figure 16¢ shows the efficiency profile of the initial and optimized motor. It could be
observed that the values of efficiency of both models are almost identical with each other
until the speed reached 900 rpm. In addition, the optimized SRM recorded better efficiency
response than the initial SRM over a wide speed range. The maximum efficiencies of initial
and optimized models are 85% and 94.045%, respectively, at 2000 rpm, which shows the
additional capabilities of the proposed optimizing process.

From Figure 16, it is apparent that there is significant improvement in the charac-
teristics of the optimized model when compared with the initial model. The proposed
techniques in [24,53] are general, however, they made a lot of assumptions and use math-
ematical models in the analysis to reduce computational time, which makes the process
more complex and needs more analytical work before the commencement of the optimiza-
tion process. Efficiency values are 75-80%, 80-86%, 82-85%, 80-85% and 73.83-88.18%
in [24,25,54-56], respectively, while efficiency values of 93.97-94.05% are achieved for the
three Pareto optimal candidates in this study. The approach proposed in this paper has
shown success in optimization, as objective function values indicate. In addition, it can
be adopted for any electrical machine optimization if the suitable objective functions and
constraints are added.

5. Conclusions

This paper offered a thorough framework for SRM design optimization utilising GARS
and MOGA while taking into account the objectives of average torque, efficiency, and
torque ripple. FEA analysis is adopted in the optimization process as it provides high
accuracy. The maximum flux density in the motor was limited to 1.86 T which is the knee
point of the industrial steel used as the core material. GARS was proposed to find important
design factors to build RS models for the ensuing optimization, while NSGA-II was used
because of its excellent performance and intensification in optimization issues.

The results show the variation of variables that were considered in the optimization of
the objective functions. The equivalent maximum flux linkages of the initial and optimized
models were observed to be 0.463 Wb and 0.358 Wb, respectively. The 22.68% decrease
in the flux linkages of the optimized model led to its reduced torque production. Never-
theless, torque ripple of the optimized model was lower than that of the initial model as
a result of the influence of the optimized parameters that were used in the design of the
optimized model.

Furthermore, the optimized SRM exhibits a better efficiency profile than the initial SRM
over a wide speed range. The initial and optimized models recorded maximum efficiencies
of 85% and 94.045%, respectively, at 2000 rpm. The efficiency values of 93.97-94.05%
were achieved for the three Pareto optimal candidates in this study which are better the
values obtained in related literature. This proves the success of the proposed framework
for performance improvement of SRM. However, further work is recommended before
the framework is used to address the minimization of noise/vibration and for specific
industrial applications.
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