Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household
Abstract
:1. Introduction
2. Literature Review of the Problem
2.1. The Essence of the Research Problem
2.2. Literature Review of the Analyzed Problem
3. Materials and Methods
3.1. Case Study—Building Energy Parameters
Type and purpose | residential building, single-family house |
Standard | according to the regulations of 2020 |
Number of stories | 1 |
The height of the story, m | 2.8 |
Heated area, m2 | 162.5 |
Roof | gable |
Total area of the facade, m2 | 150 |
Insulated facade surface, m2 | 150 |
Total area of windows, m2 | 55 |
Cubature, m3 | 265 |
Location | Rzeszów, Poland |
Insolation, kWh/m2 | 1080 |
Airing, m/s | 8 |
Climate zone, °C | IV |
Material (λ = 0.036) | mineral wool |
Thickness, cm | 30 |
Factor U (W/m2·K) | 0.11 |
U-factor of a wall without additional insulation | 1.15 |
Material (λ = 0.030) | standard styrofoam |
Thickness, cm | 15 |
U-factor (W/m2·K) | 0.18 |
Exterior doors, U | 0.9 |
Material (λ = 0.035) | styrofoam XPS |
Thickness, cm | 15 |
U-factor (W/m2·K) | 0.15 |
Foundations | traditional insulated |
Tightness | airtight without recuperation |
Trial n50 | 3 |
Ventilation | gravitational |
Trackiness, % | 100 |
3.2. Criteria for Selecting a Heat Pump and PV Installation
- bottom source—it is, e.g., water, soil or air, which heat the refrigerant in the pump;
- upper source—it is a heating system to which heat is transported by a refrigerant which gives off heat in the building through, for example, underfloor heating.
- —heat given off by the pump;
- —electricity consumed by the pump.
3.3. Return on Investment Analysis
- —net present value;
- —net cash flows in subsequent calculation periods;
- —discount factor;
- t = 0, 1, 2, 3, …, n—consecutive years of the calculation period.
- —cash flow related to the current operation of the project;
- —capital outlays in the zero period;
- i—annual interest rate;
- t = 0, 1, 2, 3, …, n—consecutive years of the calculation period.
- IRR—internal rate of return;
- —interest rate value, where the NPV > 0;
- —interest rate value, where the NPV < 0;
- PV—the NPV calculated according to ;
- NV—the NPV calculated according to .
4. Results and Discussion
4.1. Analysis of the Energy Effects
4.2. Technical and Economic Analysis of the Profitability of Investment in a Heat Pump Powered by a Photovoltaic Installation
- annual electricity yield for the first year of operation of the installation—19,009.8 kWh
- decrease in the efficiency of PV installations—0.8%
- cost of the installed installation—EUR 13,450.96
- annual operation—EUR 74.26
- planned forecast—10 years
- unit price of electricity for 2022—EUR 0.17
- inflation rate of electricity prices—3.98%
- inflation of service prices in the market—7.5%
- auto-consumption of electricity—25%
- total cost of the investment under study (heat pump)—EUR 8.09
- annual exploitation of the heat pump—EUR 74.47
- the planned use of the heat pump (this is what the extended warranty with the COOPER & HUNTER manufacturer assumes) —10 years
4.3. Profitability Analysis of Investments in a Heat Pump using the NPV and IRR Methods
5. Conclusions
- High values of the NPV and IRR ratios allow for a justified capital investment in similar investment models. Contributing to investments using renewable energy sources is a welcome measure today and allows for higher rates of return than those generated by other types of investments with a similar degree of risk.
- Investments from year to year generated more and more profits than in the previous years, even despite the declining efficiency of the installation—the decline in the efficiency of the installation was not so significant compared to the assumed inflation of electricity prices.
- Investing in a heat pump is profitable. This is demonstrated by the break-even point that occurs in year 9 of the analysis—in other words, in year 9 the sum of the investment costs is less than the amount obtained by investing money and operating the pump.
- In the case of an analysis on the profitability of a heat pump investment using a photovoltaic installation, the payback period is reduced from 8 to 7 years. It can therefore be concluded that when installing a heat pump, it is financially advantageous to also install a photovoltaic installation; with this action, we increase self-consumption, so we make full use of the electricity produced by the investor’s panels and the payback period is significantly shortened.
- Government aids, such as Clean Air, reduce the profitability of investments both in the case of investments in a heat pump and a photovoltaic installation from 9 to 7 years in the case of installing both installations. Government support in the form of programs encouraging the use of alternative energy sources is expected to continue.
- An effective solution supporting the development of the heat pump market would be the introduction of electricity tariffs dedicated to heat pumps in Poland.
- Involving banks as soon as possible in the implementation of the “Clean Air” program.
- Implementation of a professional list of devices co-financed from government and EU programs.
- Tax relief for RES solutions in new buildings.
- According to the authors, it is necessary to introduce additional changes in the construction law and in other areas of law, including: a reduction in the primary energy input coefficient for electricity taken from the Polish electricity grid from wi = 3.0 to 2.5; introducing the obligation to use low-temperature installations in new buildings; introducing the obligation to balance heating and domestic hot water installations and cooling installations; and extending the duration of the discount system in the billing of the electricity produced by prosumer micro-installations, which will increase the profitability of the investment.
- Conducting a monitoring program for the installation of low-emission devices in real working conditions in single-family buildings.
- Conducting an information campaign on heat pumps and PV, taking into account the best market practices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COP | Coefficient of Performance |
SCOP | Seasonal Coefficient of Performance |
SPF | Seasonal Performance Factor |
QHP | heat given off by the pump |
EEL | electricity consumed by the pump |
NPV | net present value |
NC | net cash flows in subsequent calculation periods |
C | discount factor |
cash flow related to the current operation of the project | |
capital outlays in the zero period | |
i | annual interest rate |
IRR | internal rate of return |
interest rate value, where the NPV > 0 | |
interest rate value, where the NPV < 0 | |
PV | the NPV calculated according to |
NV | the size of the NPV calculated according to |
GPW | Catalyst scanner |
BGK | Bank of the National Holding |
FPC0631 | domestic bond |
References
- IRENA—International Renewable Energy Agency. Innovation Landscape Brief: Net Billing Schemes. 2019. Available online: https://irena.org//media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Net_billing_2019.pdf?la=en&hash=DD239111CB0649A9A9018BAE77B9AC06B9EA0D25 (accessed on 15 June 2022).
- IRENA—International Renewable Energy Agency. Country Profiles. Available online: https://www.irena.org/Statistics/View-Data-by-Topic/Renewable-Energy-Balances/Country-Profiles (accessed on 15 June 2022).
- GUS. Energy from Renewable Sources in 2019. Available online: https://stat.gov.pl/en/topics/environment-energy/energy/energy-from-renewable-sources-in-2019,3,12.html (accessed on 15 June 2022).
- Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Barbose, G.L.; Darghouth, N.R.; Millstein, D.; La Commare, K.H.; Di Santi, N.; Widiss, R. Tracking the Sun X: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States; Lawrence Berkley National Laboratory: Berkley, CA, USA, 2017. [Google Scholar]
- IEA. Trends in Photovoltaic Applications 2019 (T1-36:2019); IEA: Paris, France, 2019. [Google Scholar]
- Ministerstwo Klimatu i Środowiska—Portal Gov.pl. National Energy and Climate Plan for the Years 2021–2030. Available online: https://www.gov.pl/web/klimat/national-energy-and-climate-plan-for-the-years-2021–2030 (accessed on 15 June 2022).
- Niekurzak, M.; Kubińska-Jabcoń, E. Analysis of the Return on Investment in Solar Collectors on the Example of a Household: The Case of Poland. Front. Energy Res. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Ministerstwo Klimatu i Środowiska—Portal Gov.pl. Polityka Energetyczna Polski do 2030 Roku. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski-do-2030-roku (accessed on 20 June 2022).
- Niekurzak, M. The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions. Energies 2021, 14, 7525. [Google Scholar] [CrossRef]
- Hayibo, K.S.; Pearce, J.M. A review of the value of solar methodology with a case study of the US VOS. Renew. Sustain. Energy Rev. 2021, 137, 110599. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Niekurzak, M.; Mikulik, J. Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study. Energies 2021, 14, 8099. [Google Scholar] [CrossRef]
- Modanese, C.; Laine, H.; Pasanen, T.; Savin, H.; Pearce, J. Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing. Energies 2018, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Baeyen, E.; Khargonekar, P.; Poolla, K.; Varaiya, P. Analysis of solar energy aggregation under various billing mechanisms. IEEE Trans. Smart Grid 2019, 10, 4175–4187. [Google Scholar] [CrossRef] [Green Version]
- IRENA—International Renewable Energy Agency. Adapting Market Design to High Shares of Variable Renewable Energy. 2017. Available online: https://www.irena.org/publications/2017/May/Adapting-Market-Design-to-High-Shares-of-Variable-Renewable-Energy (accessed on 11 July 2022).
- Ziras, C.; Calearo, L.; Marinelli, M. The effect of net metering methods on prosumer energy settlements. Sustain. Energy Grids Netw. 2021, 27, 100519. [Google Scholar] [CrossRef]
- Bódis, K.; Kougais, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. Available online: http://refhub.elsevier.com/S2352-4677(21)00090-4/sb2 (accessed on 10 June 2022). [CrossRef]
- Buker, M.S.; Riffat, S.B. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renew. Sustain. Energy Rev. 2016, 55, 399–413. [Google Scholar] [CrossRef]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems—A comprehensive review (Part-A: Modeling and modifications). Renew. Sustain. Energy Rev. 2018, 83, 90–123. [Google Scholar] [CrossRef]
- Andersson, M. Comparison of Solar Thermal and Photovoltaic Assisted Heat Pumps for Multi-Family Houses in Sweden. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Niekurzak, M. Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle. Energies 2021, 14, 8394. [Google Scholar] [CrossRef]
- RED2. Renewable Energy Directive 2018/2001/EU, Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 328, 82. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=fr (accessed on 11 June 2022).
- EPP 2040. Ministry of Climate and Environment Draft of Polish Energy Policy until 2040. Energy Policy of Poland Until 2040—Gov.pl. Available online: https://www.gov.pl/documents/33372/436746/EN_Extract_EPP2040.pdf/ca2760d6-f9ab-9a87-c3a9-61063abe3681 (accessed on 17 July 2022).
- Stamatellos, G.; Zogou, O.; Stamatelos, A. Energy Performance Optimization of a House with Grid-Connected Rooftop PV Installation and Air Source Heat Pump. Energies 2021, 14, 740. [Google Scholar] [CrossRef]
- Wróblewski, P.; Niekurzak, M. Assessment of the possibility of using various types of renewable energy sources installations in single-family buildings as part of saving final energy consumption in Polish conditions. Energies 2022, 15, 1329. [Google Scholar] [CrossRef]
- PGE. Ruszyły Inwestycje w Polskie Magazyny Energii. 4 August 2021. 2021. Available online: https://wysokienapiecie.pl/39276-ruszyly-inwestycje-w-polskie-magazyny-energii (accessed on 25 July 2022).
- Adamska, B.; Rzeczywisty Początek Magazynowania Energii w Polsce? Wszędzie o Nich Głośno, ale Efektów Brak. Globenergia. Available online: https://globenergia.pl/comments/rzeczywisty-poczatek-magazynowania-energii-w-polsce-wszedzie-o-nich-glosno-ale-efektow-brak (accessed on 16 July 2022).
- Niekurzak, M. Development Directions of Low and Zero Emission Sources in the Transformation of the Energy Sector in Poland Based on the Scenario Method Based on Intuitive Logic; Energetyka/Centralny Zarząd Energetyki, Stowarzyszenie Elektryków Polskich: Warszawa, Poland, 2022; Volume 4, pp. 181–192. ISSN 0013-7294. [Google Scholar]
- Kantamneni, A.; Winkler, R.; Gauchia, L.; Pearce, J.M. Emerging economic viability of grid defection in a northern climate using solar hybrid systems. Energy Policy 2016, 95, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Adamska, B. Magazyny energii w Budynkach Mieszkalnych i Zakładach Przemysłowych—Użyteczne Rozwiązanie czy Zbędny Gadżet? Murator Plus. Available online: https://www.muratorplus.pl/technika/elektroenergetyka/magazyny-energii-w-domowych-systemach-pv-aa-b8Lp-yqDe-MKVq.html (accessed on 17 July 2022).
- Rubik, M. Pompy ciepła cz. 8. Energetyczne, ekologiczne i ekonomiczne aspekty stosowania sprężarkowych pomp ciepła. Ciepłownictwo Ogrzew. Went. 2008, 39, 14–16. [Google Scholar]
- Zimny, J.; Michalak, P.; Szczotka, K. Polish heat pump market between 2000 and 2013: European background, current state and development prospects. Renew. Sustain. Energy Rev. 2015, 48, 791–812. [Google Scholar] [CrossRef]
- Gnyra, K. Ile kosztuje ogrzewanie pompą ciepła? Ciepłownictwo Ogrzew. Went. 2008, 39, 5–9. [Google Scholar]
- Kiszczak, A.; Chochowski, A. Ocena efektywności instalacji grzewczej wykorzystującej układ pompa ciepła—Wymiennik gruntowy. Ciepłownictwo Ogrzew. Went. 2007, 38, 8–12. [Google Scholar]
- Chudzik, P. Analiza energetyczna stosowania sprężarkowych pomp ciepła. Rynek Energii 2009, 1, 32–43. [Google Scholar]
- Chudzik, P.; Strzelczyk, F. Analiza ekonomiczna stosowania sprężarkowych pomp ciepła. Rynek Energii 2010, 4, 68–76. [Google Scholar]
- Joniec, W. Wydajność pracy instalacji z gruntowymi pompami ciepła. Rynek Instal. 2012, 7–8, 56–59. [Google Scholar]
- Fidorów, N.; Bartnicki, G. Efektywność energetyczna pompy ciepła powietrze woda pracującej w funkcji krzywej regulacji. Rynek Energii 2012, 5, 38–43. [Google Scholar]
- Fidorów, N.; Szulgowska-Grzywa, M. Monitoring temperatury w pionowym odwiercie pompy ciepła. Rynek Instal. 2015, 4, 36–40. [Google Scholar]
- Rybka, K.; Joniec, W. Pompy ciepła—Przykłady pozyskiwania ciepła odpadowego. Rynek Instal. 2016, 4, 46–48. [Google Scholar]
- Piechurski, K.; Szulgowska-Grzywa, M. Obliczanie rocznej efektywności pomp ciepła powietrze/woda. Rynek Instal. 2016, 6, 35–48. [Google Scholar]
- Szreder, M. A field study of the performance of a heat pump installed in a low energy house. Appl. Therm. Eng. 2014, 71, 596–606. [Google Scholar] [CrossRef]
- Pearce, J.M.; Sommerfeldt, N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies 2021, 14, 834. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Deissenroth-Uhrig, M.; Bertsch, V. Aggregation of Households in Community Energy Systems: An Analysis from Actors’ and Market Perspectives. Energies 2020, 13, 5154. [Google Scholar] [CrossRef]
- Lorenzo, C.; Narvarte, L.; Cristóbal, A.B. A Comparative Economic Feasibility Study of Photovoltaic Heat Pump Systems for Industrial Space Heating and Cooling. Energies 2020, 13, 4114. [Google Scholar] [CrossRef]
- Rehman, H.u.; Hirvonen, J.; Jokisalo, J.; Kosonen, R.; Sirén, K. EU Emission Targets of 2050: Costs and CO2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions. Energies 2020, 13, 4167. [Google Scholar] [CrossRef]
- Zheng, W.; Yin, H.; Li, B.; Zhang, H.; Jurasz, J.; Zhong, L. Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger. Appl. Energy 2022, 305, 117690. [Google Scholar] [CrossRef]
- Mitchell, M.S.; Spitler, J.D. An Enhanced Vertical Ground Heat Exchanger Model for Whole-Building Energy Simulation. Energies 2020, 13, 4058. [Google Scholar] [CrossRef]
- Carrêlo, I.B.; Almeida, R.H.; Narvarte, L.; Martinez-Moreno, F.; Carrasco, L.M. Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the Mediterranean region. Renew. Energy 2020, 145, 2671–2682. [Google Scholar] [CrossRef]
- Lorenzo, C.; Narvarte, L.; Almeida, R.H.; Cristóbal, A.B. Technical evaluation of a stand-alone photovoltaic heat pump system without batteries for cooling applications. Sol. Energy 2020, 206, 92–105. [Google Scholar] [CrossRef]
- Martínez-Gracia, A.; Uche, J.; del Amo, A.; Bayod-Rújula, Á.A.; Usón, S.; Arauzo, I. Energy and environmental benefits of an integrated solar photovoltaic and thermal hybrid, seasonal storage and heat pump system for social housing. Appl. Therm. Eng. 2022, 213, 118662. [Google Scholar] [CrossRef]
- Govindarajan, U.; Ramachandaramurthy, V.K.; Selvi, T.S.O. Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market. Sustainability 2017, 9, 820. [Google Scholar] [CrossRef] [Green Version]
- Somakumar, R.; Kasinathan, P.; Monicka, G.; Rajagopalan, A.; Ramachandaramurthy, V.; Subramaniam, U. Optimization of emission cost and economic analysis for microgrid by considering a metaheuristic algorithm-assisted dispatch model. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2993. [Google Scholar] [CrossRef]
- Maheswaran, G.; Ravi, R.; Maheswar, R.; Shanmugasundaram, K.; Padmanathan, K.; Subramaniyan, U.; Alavandar, S.; Ganesh, R.; Manikandan, V. Conceptual context of tilted wick type solar stills: A productivity study on augmentation of parameters. Sol. Energy 2021, 221, 348–374. [Google Scholar] [CrossRef]
- Venkatesan, K.; Govindarajan, U.; Kasinathan, P.; Padmanaban, S.; Holm-Nielsen, J.B.; Leonowicz, Z. Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique. Energies 2019, 12, 3047. [Google Scholar] [CrossRef] [Green Version]
- Wójcicki, R. Solar Photovoltaic Self-consumption in the Polish Prosumer Sector. Rynek Energii 2020, 1, 11–17. [Google Scholar]
Producer | Just Solar | ||
---|---|---|---|
Model | 330 HALF CUT | ||
Type of Photovoltaic Panels | Monocrystalline | ||
Technical Parameters | STC | NOCT | Unit |
Power max. | 330 | 224 | W |
Open circuit voltage | 42.07 | 39.63 | V |
Closed circuit current | 10.27 | 8.32 | V |
Voltage at maximum power point | 34.12 | 33.49 | V |
The intensity of the current at the point of maximum power | 9.23 | 7.14 | A |
The efficiency of the photovoltaic module | 19.78 | 17.95 | % |
Efficiency | 80% | ||
Dimensions | |||
Length | 1684 | mm | |
Width | 100 | mm | |
Thickness | 35 | mm | |
Surface | 16.8 | m2 | |
Libra | 19 | kg |
Producer | Fronius | |
---|---|---|
Model | Symo 15.0-3-M | |
Parameter | Value | Unit |
Input data | ||
Maximum input current | 33 | A |
Maximum short circuit current | 49.5 | A |
Minimum voltage | 200 | V |
Rated input voltage | 600 | V |
MPP voltage range | 320–800 | V |
Input data | ||
Rated AC power | 15.000 | W |
Maximum output power | 15.000 | VA |
General information | ||
Dimensions | 725 × 510 × 225 | mm |
Mass | 43.4 | kg |
Level of security | IP 66 | - |
Energy consumption | <1 | W |
Ambient temperature range | 2.5–60 | °C |
Maximum efficiency | 98 | % |
Year | Efficiency | Planned Energy Yield | Energy Prices | Automatic Energy Consumption | The Value of Energy Recovered from the Power Plant | Actual Consumption | Operating Costs | Cumulative Cash Flows |
---|---|---|---|---|---|---|---|---|
[%] | [kWh/Year] | [EUR] | [kWh/Year] | [EUR] | [kWh/Year] | [EUR] | [EUR] | |
0 | −15,158.20 | |||||||
1 | 100.00% | 19,009.80 | 0.145 | 4752.450 | 1443.94 | 14,732.595 | 165.95 | −13,192.63 |
2 | 99.20% | 18,857.72 | 0.166 | 4714.430 | 1643.03 | 14,614.734 | 178.40 | −10,945.60 |
3 | 98.40% | 18,706.86 | 0.173 | 4676.715 | 1694.76 | 14,497.816 | 191.78 | −8635.60 |
4 | 97.60% | 18,557.20 | 0.180 | 4639.301 | 1.748.11 | 14,381.834 | 206.16 | −6261.22 |
5 | 96.80% | 18,408.75 | 0.187 | 4602.187 | 1803.15 | 14,266.779 | 221.62 | −3821.07 |
6 | 96.00% | 18,261.48 | 0.195 | 4565.369 | 1859.91 | 14,152.645 | 238.26 | −1313.74 |
7 | 95.20% | 18,115.39 | 0.202 | 4528.846 | 1918.46 | 14,039.424 | 256.11 | 1262.17 |
8 | 94.40% | 17,970.46 | 0.210 | 4492.616 | 1978.86 | 13,927.108 | 275.32 | 3908.01 |
9 | 93.60% | 17,826.70 | 0.219 | 4456.675 | 2041.16 | 13,815.692 | 295.98 | 6625.17 |
10 | 92.80% | 17,684.09 | 0.227 | 4421.021 | 2105.42 | 13,705.166 | 318.17 | 9414.99 |
Year | Cash Flow [EUR] |
---|---|
0 | −4898.73 |
1 | 190.49 |
2 | 418.54 |
3 | 475.89 |
4 | 538.84 |
5 | 607.87 |
6 | 683.52 |
7 | 766.35 |
8 | 856.99 |
9 | 956.12 |
10 | 1064.47 |
IRR = 4.6455% |
Year | Cash Flow [EUR] | Discounted Cash Flows [EUR] |
---|---|---|
0 | −4898.73 | −4898.73 |
1 | 190.49 | 184.99 |
2 | 418.54 | 394.74 |
3 | 475.89 | 435.89 |
4 | 538.84 | 479.31 |
5 | 607.87 | 525.12 |
6 | 683.52 | 573.44 |
7 | 766.35 | 624.39 |
8 | 856.99 | 678.10 |
9 | 956.12 | 734.71 |
10 | 1064.47 | 794.38 |
Year | Cash Flow [EUR] | Discounted Cash Flows [EUR] |
---|---|---|
0 | −4898.73 | −4898.73 |
1 | 190.49 | 182.04 |
2 | 418.54 | 382.20 |
3 | 475.89 | 415.29 |
4 | 538.84 | 449.35 |
5 | 607.87 | 484.41 |
6 | 683.52 | 520.51 |
7 | 766.35 | 557.68 |
8 | 856.99 | 595.96 |
9 | 956.12 | 635.38 |
10 | 1064.47 | 675.97 |
IRR | 4.64550% | NPV = 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niekurzak, M.; Lewicki, W.; Drożdż, W.; Miązek, P. Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household. Energies 2022, 15, 6089. https://doi.org/10.3390/en15166089
Niekurzak M, Lewicki W, Drożdż W, Miązek P. Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household. Energies. 2022; 15(16):6089. https://doi.org/10.3390/en15166089
Chicago/Turabian StyleNiekurzak, Mariusz, Wojciech Lewicki, Wojciech Drożdż, and Paweł Miązek. 2022. "Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household" Energies 15, no. 16: 6089. https://doi.org/10.3390/en15166089
APA StyleNiekurzak, M., Lewicki, W., Drożdż, W., & Miązek, P. (2022). Measures for Assessing the Effectiveness of Investments for Electricity and Heat Generation from the Hybrid Cooperation of a Photovoltaic Installation with a Heat Pump on the Example of a Household. Energies, 15(16), 6089. https://doi.org/10.3390/en15166089