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Abstract: Over the years, cities have undergone transformations that, invariably, overload and even
compromise the functioning of an energy matrix dependent on increasingly scarce resources. The
high demand for energy has challenged stakeholders to invest in more sustainable alternatives, such
as bioenergy, which, in addition, helps to reduce the pressure for finite resources, enable the energy
recovery of waste and contribute to the mitigation of carbon emissions. For these improvements
to be successful, stakeholders need specific technological strategies, requiring tools, methods and
solutions that support the decision-making process. In this perspective, the current work aimed to
develop a framework optimizing the evaluation of waste bioenergy projects through the application
of algorithms. Therefore, a literature review was carried out to select the algorithms and identify
the sectors/areas and stages in which they are applied. These algorithms were then grouped into
two sequential phases. The first targeted the evaluation of region, based on the type and supply
of biomass, while the second sought to optimize aspects related to infrastructure and logistics.
Both phases were concluded with the application of multi-criteria methods, thus, identifying the
areas/regions with the greatest potential for implementing bioenergy projects. In general, it was
observed that there are different algorithms and multi-criteria analysis methods that can be suitable
in bioenergy projects. They were used to identify and select the regions with the greatest potential for
bioenergy plant implementation, focusing on the type, quantity and perpetuity of biomass supply,
to assess the operational efficiency of machines, equipment, processes and to optimize the logistics
chain, especially the collection and transport of biomass. Thus, the joint work between the use of
algorithms and multi-criteria decision methods provides greater assertiveness in choices, helping to
identify the most viable projects and mitigating risks and uncertainties for decision-makers.

Keywords: bioenergy; waste; algorithm; circular economy; framework; decision-making

1. Introduction

The principles of the circular economy have emerged over the years as a regenerative
model based on closed-loop system designs and on the reuse of materials, which should
configure a sustainable, low-carbon and resource-efficient economy [1,2].

A complementary approach to the circular economy by Molina-Moreno et al. [3] incor-
porates the reuse and rethinking of materials to be recycled in supply chains, contributing
to improving the quality, quantity and sustainability of bioenergy production.
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In this sense, Li et al. [4] pointed out that, for this improvement to be effective, decision-
makers need to develop specific technological strategies for each location, requiring tools
that address mathematical modeling and facilitate this process, as well as algorithms and
models based on or oriented to data. These algorithms can adjust, optimize and analyze
data, make predictions and model complex non-linear relationships [5], pointing to a more
sustainable configuration and favoring the circular economy [4].

Population growth and the demand for quality of life lead to a higher level of en-
ergy consumption that cannot be supplied only by conventional sources, which favors
the strengthening of renewable energy sources, such as solar, wind and biomass. In
Mirkouei et al. [6], the authors considered bioenergy as one of the most sustainable and
promising sources to replace traditional sources. It can be said that bioenergy is in an
evolutionary process and is currently considered one of the greatest potential sources [6].
This is due, in part, to attractive financial subsidiaries and market forces that promote
interests to energy suppliers and fuel producers [7].

Bioenergy can be produced from natural materials, such as forest sources, agricultural
residues, algae and energy crops [6,8,9].

For Hagman et al. [10], the agricultural sector, for example, has enormous potential
for generating bioenergy, since it produces a large volume of waste, which is often lost. In
this context, the authors also highlighted the important role of biorefineries that enable
the development and generation of new products, including biofuels and energy, for the
bioeconomy, without the need to increase land use. In addition to contributing to adding
value to waste, these plants allow for diversified use of inputs, such as agricultural, forestry,
aquaculture, municipal solids waste (MSW), among others [11].

Souza et al. [12] stated that, if there are good management practices, bioenergy tends to
contribute to energy, food and climate security and to sustainable development. According
to Castillo-Villar [13], mathematical optimizations can be applied to solve bioenergy supply
chain problems. Optimization algorithms in this field aim to maximize profits and minimize
emissions and costs.

In this sense, Thran et al. [14] created a framework to evaluate appropriate options for
energy system assessment, considering 29 criteria to build a decision matrix, and applied it
to several bioenergy technology pathways. For this purpose, four major steps were consid-
ered, namely (a) selection of bioenergy technologies, (b) definition of criteria, (c) creation of
an evaluation scale and (d) summarizing the results in a holistic, comprehensible matrix.

Wu et al. [15] proposed a framework for optimum location decisions on agroforestry
biomass co-generation (AFBC), considering 3 main criteria and 11 sub-criteria, once again lead-
ing to a decision matrix but now adding multi-criteria decision-making (MCDM) techniques,
such as analytic network process (ANP), simple additive weighting (SAW) and technique for
order preference by similarity to ideal solution (TOPSIS), for alternative ranking.

A similar study was developed by Maccarini et al. [16], in which a framework to
evaluate the feasibility of using pruning residue in power (electricity) generation was
presented. However, none of the studied frameworks established a mapping between
criteria and algorithms to optimize and increase the accuracy of the assessment.

For Babazadeh et al. [17], the development of bioenergy projects is quite complex
and generally involves multiple elements that need to be considered in the final decision.
Types of raw material, suppliers, plant location, mode of transport and products are just
examples of criteria that need to be analyzed in projects of this nature. Fortunately, today,
there are already several models, techniques and algorithms that support this decision-
making process.

Gracia et al. [18], for example, used genetic algorithms to optimize the routes and
agricultural vehicle fleet between the raw material collection and its packaging in a supply
center, while Velázquez-Martí et al. [19] used dendrometric algorithms to estimate the
volume of biomass in an olive plantation.

Casanova-Peláez et al. [20] proposed the use of artificial neural networks (ANNs)
to improve the drying process of residues generated in the production of olive oil and
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thereby, optimize the capacity to transport biomass. The optimization of biomass transport
logistics is, by the way, one of the recurrent themes in the literature, being also studied by
Zamar et al. [21], Matindi et al. [22], Zhu and Yao [23] and Plessen [24].

Therefore, Babazadeh et al. [17] developed a model and applied a Benders Algorithm
to design a second-generation biodiesel network that integrates all stages, from supply
centers to consumer centers. Zhao and You [25], on the other hand, applied a linear
programming model with a global optimization algorithm (parametric algorithm plus a
decomposition algorithm) to assess the effectiveness of public policies to encourage the
generation of bioenergy.

In large part, this research focuses on the application of a specific type of algorithm,
whether these algorithms are genetic, swarm, decomposition, parametric, among others.
However, no work, as far as we are aware, proposes an analysis on the role of algorithms
in the decision-making process. Therefore, the present study aims to face this gap by
evaluating the use of algorithms in bioenergy projects, considering the different types,
interaction models and application fields. In particular, it aims to develop a framework for
the optimized evaluation of waste bioenergy projects through the application of algorithms.

The article has the following structure: Introduction, with the purpose of placing the
reader in the context of the researched topic and offering an overview of the study carried
out; Materials and Methods, presenting the techniques and procedures applied to the
development of scientific production; Results and Discussions, concerning composition and
exposure of relevant data obtained and synthesized in a framework, with critical evaluation
of the research itself with its limitations and positive aspects, as well as interpretation of the
information found; and, finally, Conclusions, being the representation of the work outcome
based on the study results.

2. Materials and Methods

The methodology of this work is divided into two stages: The first refers to the litera-
ture search to identify the types of algorithms used and identify the areas/sectors/steps in
which the algorithms are used. Next, the structuring of the framework is carried out.

2.1. Bibliometric Review

To carry out the scientific survey, the following databases were used: Science Direct,
Scopus and Web of Science. In the three databases, the same combination of keywords
was used, employing Boolean operators and respecting the criteria of each database. The
combination was: algorithm AND bioenergy AND (waste OR msw).

The search period in the databases was not limited and, therefore, coverage was
investigated from the beginning of accounting in 1945 until 15 April 2021 (the effective date
of the search). During this phase, it was decided to select only full and review articles.

In total, 59 articles were found, considering the three search bases. Then, two types
of filters were applied to select documents. The Mendeley tool supported the first as
soon as the documents were downloaded onto the platform and the duplicated jobs were
automatically deleted, leaving 40 documents remaining. The second was applied after
reading the titles, keywords and abstracts and works identified as not related to the topic
were excluded, resulting in 24 articles. In addition, four more articles resulting from
snowballing, which consists of selecting other references directly from papers chosen in
previous steps, were inserted. The total number of documents found in each database, as
well as the result after applying the filters, are shown in Figure 1.

With the result of portfolio analysis, 28 articles were selected for evaluation, whose
main information is summarized in Appendix A (Tables A1–A4).

The systematic review was based on the ninth stage of the Methodi Ordinatio [26],
which advocates reading and dynamic analysis among the articles in the portfolio. From
this process, an electronic spreadsheet was filled with data collected from the literature,
such as year, country, objectives, problem, sector, model, type of applied or developed
algorithm, application phase, etc.
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In the next subsection, the main parameters for the development of the proposed
framework methodology are presented.

2.2. Composition of the Analysis Framework Review

From the information collected as explained earlier, the identification of similarities
among data, as well as distinct application purposes for the algorithms found, began. The
identification of these key elements fed the connection between the applied techniques and
offered subsidies for the construction of the framework.

As application step, type and category of the algorithm used, as well as criteria for
evaluating the alternatives through multi-criteria methods provided by each of the articles,
made up the final portfolio.

The framework was divided into two phases, namely Biomass and Region Assessment
and New Biorefinery or Retrofit, comprising three steps each. Therefore, its structure
was as follows: Phase 1 step 1, definition of the region and type of biomass; Phase 1
step 2, application of algorithms for optimized valuation of each criterion raised during
the bibliometric review (Biomass Seasonality, Biomass Generation Estimate, Disposal
Rate, Investment Subsidies, Social Impact and Environmental Impact); Phase 1 step 3,
application of multi-criteria methods, namely Analytic Hierarchy Process (AHP), TOPSIS,
Fuzzy TOPSIS and Fuzzy Višekriterijumsko Kompromisno Rangiranje (VIKOR), to rank
the alternatives based on region/biomass optimized by the application of the respective
algorithms per criterion; Phase 2 step 1, selection of the first three placed in the ranking of
Phase 1 step 3; Phase 2 step 2, application of specific algorithms for optimized valuation
of each criterion raised during the bibliometric review for this specific phase (Drying
of Biomass, Energy Return on Energy Invested (EROEI), Biomass Logistics, Biorefinery
Location and Optimization of Production and Cost); and Phase 2 step 3, final ranking
through the application of the above multi-criteria methods.

3. Results and Discussion

The proposal developed in this work aims to develop a framework to evaluate, in an
optimized way, bioenergy projects from waste by applying machine learning algorithms.
In general, it is a conceptual structure intended to serve as a support or guide for potential
project evaluation on waste management targeting to minimize cost, maximize benefits in
a faster way and increase accuracy compared to traditional approaches.

For the development of this work, a comprehensive mapping of waste bioenergy
projects and the best practices adopted was carried out, considering agricultural, industrial
or urban waste management approaches.

In this process, a gap was identified for models that simultaneously work with multiple
sources of waste, including qualitative and quantitative data. It also considers the opinion
of decision-makers, allowing comparisons and optimization and driving a better choice
in more complex scenarios of possibilities. First, the existing studies evaluated specific
parts of the process, focusing on just one source, such as agricultural, industrial or urban
residues. Second, by advancing deeply in the literature to describe how the variables
found in quantitative studies are carried out in reality, this new global view resulted in best
practices that can positively influence the overall efficiency of the sector.
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Among the works analyzed, we found a series of projects that use algorithms in differ-
ent phases and contexts. To facilitate the analysis and understanding of these applications,
it was preferred to group the research findings into two large sequential phases, which,
in a way, summarize the most frequent occurrences in the literature. Figure 2 shows a
representation of these phases. The first aim is to assess the region (R), as a function of the
type and supply of biomass (B), while the second is more oriented to infrastructure and
logistics issues. Both phases are concluded with the application of multi-criteria methods,
thus, obtaining the rankings of areas/regions with the greatest potential for implementing
bioenergy projects.
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The phases and steps that make up the framework are detailed below.

• Phase 1: Biomass and Region Assessment.

The use of algorithms as support tools in this phase refers to the identification and
selection of the best regions for bioenergy projects, based, above all, on the analysis of
biomass supply. In general terms, it comprises elements, such as the supply, quantity and
type of biomass available in each region, the perpetuity of the supply of raw material and
strategies for evaluating public policies to encourage bioenergy projects (Figure 3).
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This phase is divided into three steps. In the first step, the potential areas for the
implementation of bioenergy projects are listed, which can be a neighborhood, city, state
or country. Likewise, the different types of biomasses present in this area/region are
identified and analyzed. It is noteworthy that this is not necessarily just one type of input.
In fact, it can be considered a composition of different types of biomasses, according to
their local availability.

After identifying these potential regions and the types of biomasses present in these
areas, represented by the R/B ratio in Figure 3, the second step of analysis begins with
the application of a series of specific algorithms. Among the algorithms mapped in the
literature and that can be used in this phase are the dendrometric [19,27] and the random
forest [28] ones, which aim to estimate the amount of biomass in each area or region, in
addition to those with potential for global optimization that can be applied to measure
the effectiveness of public incentive policies, such as final disposal fees and subsidies for
bioenergy projects [25].

Further, in this second step, other important criteria for bioenergy projects can be
identified and listed, such as the seasonality of biomass supply and parameters that aim
to assess social and environmental impacts [29]. From the perspective of this work, these
criteria are not analyzed through algorithms, but through other strategies, such as the
comparative assessment carried out by regional experts on biomass seasonality as environ-
mental engineers and agronomists. Thus, the analysis would be performed for each R/B
using linguistic terms for later application of a fuzzy set.

Then, after applying the algorithms and evaluation by elected experts, the results are
forwarded to a multi-criteria decision matrix (step 3), with each R/B combination being an
alternative. At the end of this stage, a ranking of the regions with the greatest potential
is obtained, considering the choices and weights defined by the decision-makers. For the
next phase, only the three best-positioned regions in the ranking follow.

• Phase 2: Construction or Retrofit of Biorefinery Units.

With a closer look at the predefined regions in the previous phase, the use of algorithms
in this phase aims to optimize the evaluation of the listed criteria, which are oriented to
operational issues, such as infrastructure and logistics.

The application of algorithms aimed to improve the operational efficiency of machines,
equipment and processes is contemplated in this phase. The optimization of the logistics
chain, especially for the collection and transport of biomass, helps decision-makers to decide
between expansion or construction of transformation plants and for the optimization of
aspects related to costs and productivity. The algorithms mapped in the literature, which
are part of step 2, are shown in Figure 4.

Energies 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. Detailed illustration of steps 2 and 3 in Phase 2. 

As in the previous phase, in the second stage, the respective algorithms are applied 
to optimize the values of each criterion in its corresponding combination of biomass and 
region. 

It is worth noting that the algorithms considered and applied in this step were all 
mapped in the literature related to this topic. Among the several listed for bioenergy pro-
jects, the following stand out: Levenberg–Marquardt [20], Evolutionary Algorithms [29], 
Ant Colony Optimization (ACO) [30], Genetic Algorithms (GAs) [31–33], K-Means [34], 
Particle Swarm Optimization and Decision Tree Gradient Increase PSO-GBDT [35], Pro-
gramming Algorithm, Scheduling Algorithm [36], Progressive Coverage Algorithm [37], 
Artificial Neural Networks (ANNs) [38], Hybrid Genetic Algorithms (HGAs) [18,39,40], 
Evolutionary Algorithms [41], K-Medoids [42] and Agglomerative Hierarchical 
Algorithm [43]. 

At the end of this phase, the best alternatives, which were optimized by the algo-
rithms, are directed to a multi-criteria decision matrix (Figure 4, step 3), which, in turn, 
makes it possible to list the regions with the greatest potential. 

Multi-criteria analysis methods (MCDMs) can be thought of as tools that deal with 
the evaluation alternatives set in terms of decision criteria, often conflicting. Thus, given 
a set of options and a criteria series, the objective of a MCDM is to provide a choice that, 
in most cases, lists alternatives in order of preference [44]. It is important to highlight the 
need to harmonize the criteria that often have different units of measurement, which can 
cause an undesirable effect, polarizing the model’s responses to the most significant crite-
rion. 

In both phases considered in this work (Figure 1), the different authors worked with 
multi-criteria methods [17,25,30–33,45,46], with the most cited ones being AHP, TOPSIS, 
Fuzzy TOPSIS and Fuzzy VIKOR. 

Below, there is a brief description of each method. 
• AHP is based on the use of pairwise comparisons, both to estimate criteria weights 

and to compare alternatives against decision criteria. On the other hand, it has a 
higher computational cost compared to other methods [44]; 

• TOPSIS is based on an aggregation function that represents the proximity of refer-
ence points. It addresses an MCDM problem considering that the optimal alternative 
must have the shortest distance from the ideal solution and the longest distance from 
the anti-ideal [44]; 

Figure 4. Detailed illustration of steps 2 and 3 in Phase 2.



Energies 2022, 15, 6136 7 of 15

As in the previous phase, in the second stage, the respective algorithms are applied
to optimize the values of each criterion in its corresponding combination of biomass
and region.

It is worth noting that the algorithms considered and applied in this step were all
mapped in the literature related to this topic. Among the several listed for bioenergy
projects, the following stand out: Levenberg–Marquardt [20], Evolutionary Algorithms [29],
Ant Colony Optimization (ACO) [30], Genetic Algorithms (GAs) [31–33], K-Means [34],
Particle Swarm Optimization and Decision Tree Gradient Increase PSO-GBDT [35], Pro-
gramming Algorithm, Scheduling Algorithm [36], Progressive Coverage Algorithm [37],
Artificial Neural Networks (ANNs) [38], Hybrid Genetic Algorithms (HGAs) [18,39,40],
Evolutionary Algorithms [41], K-Medoids [42] and Agglomerative Hierarchical Algo-
rithm [43].

At the end of this phase, the best alternatives, which were optimized by the algorithms,
are directed to a multi-criteria decision matrix (Figure 4, step 3), which, in turn, makes it
possible to list the regions with the greatest potential.

Multi-criteria analysis methods (MCDMs) can be thought of as tools that deal with the
evaluation alternatives set in terms of decision criteria, often conflicting. Thus, given a set
of options and a criteria series, the objective of a MCDM is to provide a choice that, in most
cases, lists alternatives in order of preference [44]. It is important to highlight the need to
harmonize the criteria that often have different units of measurement, which can cause an
undesirable effect, polarizing the model’s responses to the most significant criterion.

In both phases considered in this work (Figure 1), the different authors worked with
multi-criteria methods [17,25,30–33,45,46], with the most cited ones being AHP, TOPSIS,
Fuzzy TOPSIS and Fuzzy VIKOR.

Below, there is a brief description of each method.

• AHP is based on the use of pairwise comparisons, both to estimate criteria weights
and to compare alternatives against decision criteria. On the other hand, it has a higher
computational cost compared to other methods [44];

• TOPSIS is based on an aggregation function that represents the proximity of reference
points. It addresses an MCDM problem considering that the optimal alternative must
have the shortest distance from the ideal solution and the longest distance from the
anti-ideal [44];

• VIKOR is a multi-criteria decision method based on the commitment to the solution,
that is, obtaining a satisfactory solution closer to the ideal solution to the problem [44];

• Fuzzy numbers, or more precisely Fuzzy Sets, are represented by sets whose limits are
not precise: an element presents a degree of membership about the set [44].

In general, it is noted that there are different algorithms and multi-criteria methods
that can be applied in bioenergy projects. The application of algorithms is quite wide
and diverse. It is observed they can be used to analyze the potential of crops and raw
materials in each region [27], to point out the most suitable location for the installation of a
transformation plant and to help in the improvement of the bioenergy generation logistics
chain [33]. The use of these tools enables optimization techniques focused on combinatorial
analysis to meet specific characteristics and project challenges [18].

The implementation of bioenergy projects can bring several benefits to a given region.
The creation and consolidation of the logistics chain for energy production from biomass
enables the development of a more competitive and sustainable production system with
economic, social and environmental gains [17]. Projects of this nature favor the development
of a more circular economy, as they allow the use and aggregation of waste value and
generation of income and energy, which can either be commercialized or used by the
producers themselves [47].

From this perspective, the role of algorithms is of paramount importance, as they
optimize the results that serve as input for the construction of decision matrices [48].
Thus, the joint use of algorithms and multi-criteria decision methods provides greater
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assertiveness in choices, helping to identify the most viable projects and mitigating risks
and uncertainties for decision making [30].

Each of the specific algorithms has it own goal, such as to maximize material waste
collection and optimize transport (Scheduling Algorithm), minimize distance implement-
ing an optimized logistic routing from waste sourcing (Ants Colony Optimization (ACO)),
define improved location to build waste conversion industry, among others, thus, maxi-
mizing the overall return of each potential project and allowing decision-makers to take a
decision with a lower level of risk.

Another point to highlight is the strategy considering a data-driven analysis frame-
work that splits the evaluation into two phases, which was developed by integrating
multi-methods and leveraging multi-source data for any waste source.

At first, the method focuses on more general characteristics, such as biomass seasonal-
ity, biomass generation, disposition fee, investment grants, social impact and environment
impact. As shown in Figure 3, these factors are ranked considering potential return aspects.
Second, more technical data, such as biomass drying, EROEI, biomass logistics, biorefinery
location and logistics and cost optimization, are considered to increase the efficiency and
investment return (Figure 4).

This integrated analysis framework allows for assessing the potential performance
of complex projects and provides a comprehensive picture of the regional bioenergy de-
velopment in any application area. Using adapted modifications of biomass sources and
bioenergy products, this holistic analysis framework can also be extended to the use of
other biomasses for other bioenergy products in other regions.

From this perspective, this work sought to structure a decision-making model that
shows the necessary steps and highlights the tools and methods used in each process
step. This work does not aim to point out the most suitable method or tool since there
are multiple possibilities. The definition of these variables depends on the context of each
region where the bioenergy project will be implemented.

It is expected that this project will be very useful in the evaluation of different bioenergy
projects, increasing the chances of better assessment in the economic, social and environ-
mental sectors, meeting and enhancing the best practice analysis of circular economy, job
creation, etc., in addition to energy recovery. This is a potential option for analyzing and
accelerating projects focused on incorporating renewable bioenergy sources into the energy
matrix of any region, in addition to providing a guideline for evaluating different economi-
cally viable solid waste solutions. At the same time, composing this generation circularly,
it is expected to allow the study of the decentralized use of biomass to take place, which
can generate more jobs and better distribution of social wealth compared to traditional
methods concentrated in a single large bioenergy plant, serving a macro-region concerning
the supply of biomass. It also offers a mathematical modelling tool for known problems
with algorithm optimization in several areas, such as logistics, chemical composition and
biofuel application [49–51].

This work aims to be applied to all sources of bioenergy from solid waste. In general,
with the attention of the government and the private sector, it is expected that this frame-
work will offer opportunities for entrepreneurship, raising both private and public financial
resources to expand the energy matrix with respect to traditional methods of generation,
such as wind power, solar, hydraulic, fossil fuels, nuclear, etc.

4. Conclusions

Mathematical modeling and algorithms are increasingly being developed and ap-
plied to evaluate and optimize the implementation of waste bioenergy projects. In this
perspective, this work proposed to build a framework for the optimized evaluation of
waste bioenergy projects through the application of algorithms. The idea is that this frame-
work makes it possible to analyze the application of algorithms, aimed at optimizing and
evaluating different stages.
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As seen throughout this work, the application of algorithms is quite broad and diversi-
fied and contributes to different stages within bioenergy projects. They are used to identify
and select the regions with the greatest potential for implementing bioenergy plants, fo-
cusing on the type, quantity and perpetuity of biomass supply, to assess the operational
efficiency of machines, equipment, processes and to optimize the logistics chain, especially
the collection and transport of biomass.

Therefore, this framework can act as a guide for evaluating potential projects with a
focus on the formation of clusters for bioenergy projects, maximizing both their financial
and socio-environmental returns, especially by optimizing resources, integrating logistics
and the supply chain. It is also worth highlighting the possibility of evaluating government
incentives for the implementation of these projects.

The decision-maker would then be asked to identify clusters and regions that would
be suitable for building a community biodigester. Here, a great challenge is identified,
as the greater the region and the variability of biomass, the greater will be the obstacles
related to potential conflicts of interest of the formed group, which may involve farmers,
entrepreneurs, society and public authorities. The model, then, would provide information
to the decision-maker in a more agile and assertive way. Thus, by evaluating multiple
alternatives and reducing the possibilities, it is believed that the use of algorithms and
multi-criteria decision methods provides greater assertiveness in choices, helping to identify
the most viable projects and mitigating risks and uncertainties for decision-making.

As future works, the framework can be applied in a real case study, evaluating the
potential and new opportunities, since both the multi-criteria methods and the algorithms
are in constant evolution. As for possible limitations, it is believed that the proposed
model does not act in the definition of incentive policies, since it only evaluates and
considers the existing policies in the chosen study region, which may restrict the location
of the biodigester.
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Appendix A

The algorithm models identified in the analysis portfolio as well as their applications
and expected results are presented in Table A1 (papers from 2009 to 2013), Table A2
(papers from 2014 to 2017), Table A3 (papers from 2018 to 2019) and Table A4 (papers
from 2020 to 2021).



Energies 2022, 15, 6136 10 of 15

Table A1. Algorithm models identified in the analysis portfolio as well as their applications and
expected results from 2009 to 2013.

Authors Year/Ref. Technique Application

Ayoub et al. 2009/[31] Genetic Algorithm (GA)

Integrates the bioenergy supply
chain. As a result of the

development of the bioeconomy,
the extension of the life of natural

resources has been allowed,
reducing the environmental

burden and providing a better
human living condition, besides
adding value to products thanks

to the use of waste.

Zhu and Yao 2011/[23] Mixed Integer Linear
Programming (MILP)

The model, produced as
mixed-integer linear

programming, determined the
storage locations, the number of
people for the harvest team, and
the quantity and type of biomass
harvested for purchase, storage,

and processing each month. It has
proven that there are advantages
to using various kinds of biomass
raw materials rather than working
with just one type. In addition, it
analyzed the relationship between

the supply capacity of biomass
raw material with the production

and the cost of biofuel.

Muth Jr. et al. 2012/[36] Scheduling Algorithm

Optimization of the biomass
collection process. In addition to

including geoprocessing tools and
integration of different spatial

scales of data.

Chen and Fan 2012/[37] Progressive Coverage Algorithm

Optimizes the ethanol production
chain, focusing on cost reduction.
Through the proposed model, it

was possible to conclude that
bio-waste-based is as an

alternative solution for the
sustainable energy of the future.

Ren et al. 2013/[49] Design the most sustainable
bioethanol supply chain

Design of a more sustainable
bioethanol supply chain. The

proposed method studied several
ethanol raw material systems,

thus finding the best solution to
obtain an ecological footprint.

Kaundinya et al. 2013/[42] K-Medoids

This method divides the entire
region into clusters and locates
the biomass energy generation

systems in the medoids. A
Geographical Information System

(GIS) map has represented the
results of the clusters.

Velázquez-Martí et al. 2013/[27] Dendrometric Algorithm

The model calculates the
estimated biomass generation.
From the regression equations

and the dendrometric
characteristics of the trees, it was
possible to assume the biomass
available per tree and hectare.

From the results of these
equations, it is possible to
implement GIS maps and

estimate the amount of biomass
generated in each area.
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Table A2. Algorithm models identified in the analysis portfolio as well as their applications and
expected results from 2014 to 2017.

Authors Year/Ref. Technique Application

Gracia et al. 2014/[18] Hybrid Genetic Algorithm—HGA

Responsible for optimizing
logistics to route equipment and
collect agricultural waste. A real

case study was developed
through a hybrid approach based
on genetic algorithms and local

search methods. With the
application of algorithms from the

industrial engineering domain,
results have been obtained that
show a significant improvement

in operational efficiency.

Velázquez-Martí et al. 2014/[19] Dendrometric Algorithm

It estimated the volume of
biomass in an olive orchard.

Correlated productivity and fruit
quality, the quantity of residual

pruning biomass with Light
Detection and Ranging (LIDAR)

data obtained an efficient and
accurate method to predict

biomass.

Muir et al. 2015/[50]

14C flue gas analysis by
accelerator mass spectrometry
(AMS) and liquid scintillation

counting (LSC).

Defined the biomass fraction of
mixed waste located in an

operational energy-from-waste
plant. Concluded that

14Ctechniques are advantageous
for data acquisition and the

accuracy and reliability of the
electricity generator and industry

regulator.

Casanova-Peláez et al. 2015/[20]
Artificial Neural Network (ANN)

and Levenberg-Marquardt
Algorithm

It optimized the process of drying
and transporting biomass. It was

defined that ANN is the most
appropriate method to get a

mathematical function for CO
drying kinetics and to open new
perspectives for the use of waste

as energy.

Enitan et al. 2017/[30] Computational Optimization
Methods

Distinct approach models to
improve the anaerobic digestion

processes. Optimization strategies
and controls were performed for
advanced actor performance and

biogas production through
evolutionary algorithms.

Zamar et al. 2017/[21] Evolutionary Algorithm

Responsible for optimizing the
biomass transportation logistics.

With this, a stochastic vehicle
routing problem was solved by a
combination of scenario analysis
and heuristics. The performance
of the proposed model revealed

approximately 6 GJ energy
savings compared to the reference

method.
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Table A3. Algorithm models identified in the analysis portfolio as well as their applications and
expected results from 2018 and 2019.

Authors Year/Ref. Technique Application

Matindi et al. 2018/[22] Optimization Algorithm LDS

Work developed to optimize the
logistics of biomass transportation. In
this study, the Bounden Discrepancy
Search algorithm was adapted with
the integration of other algorithms

developed for scalable transport. The
algorithms were encoded using the

Optimization Programming Language
(OPL) to optimize the transportation
time of sugarcane and its residues.

Cui et al. 2018/[34] K-Means

Used to point out potential sites for
the installation of biodigestion plants

based on the analysis of biomass
availability in a given region. The
results showed that, by converting

10% of pasture and agricultural land
to sorghum, about 37% of the 214
existing corn ethanol biorefineries
could be adapted or expanded to

work with cellulosic feedstocks and
that additional 71 new biorefineries

could be built.

Babazadeh et al. 2019/[17] Benders Decomposition Algorithm
(BDA)

Applied to perform the projection of a
supply network for second generation
biodiesel production. The efficiency of

the accelerated decomposition
algorithm and the performance of the
proposed programming model were
validated through a computational

analysis using data from a real case in
Iran.

Zhao and You 2019/[25] Global Optimization Algorithm

The use of this algorithm aimed to
evaluate the effectiveness of the

implementation of incentive policies
for the generation of bioenergy. The
applicability of the proposed model
was validated through a case study

that aimed to monitor the rate of
adoption of biodigesters in dairy

farms in the state of New York. The
results obtained showed the

effectiveness of public policies in
promoting bioelectricity.

Sarker et al. 2019/[32] Genetic Algorithm—GA

Optimization of the supply chain for
biomethane production. The

application of this algorithm allowed
the resolution of representative

problems in an efficient way and with
better quality when compared to other

solutions found in the market.

Khishtandar 2019/[39] Hybrid Genetic Algorithm—HGA

Employed to design the formation of a
supply network for biogas production.

The results indicated that the
proposed algorithm effectively

contributes to solving the biogas plant
location allocation model within an

interesting computational time.

Chakraborty et al. 2019/[28] Random Forest Algorithm

Estimate of bioenergy generation
potential from surplus crop residues.
The mapping results, which can be
used for planning public policies,
indicated the type and quantity of
surplus waste that can be used as
inputs for bioenergy generation in

each region of India.
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Table A4. Algorithm models identified in the analysis portfolio as well as their applications and
expected results from 2020 and 2021.

Authors Year/Ref. Technique Application

Kokkinos et al. 2020/[46] Analysis and Optimization
Algorithms

Analysis of all social actors involved to assess the impacts
of the use of biowaste for the energy transition. A

decision-making tool was presented that uses optimization
algorithms to guide the involved actors on aspects related
to sustainable energy transition towards decarbonization.

Yu et al. 2020/[35]

Particle Swarm Optimization
and Gradient Boosting

Decision Tree (PSOGBDT)
Algorithm

Optimization of energy production through the combined
pyrolysis of agricultural residues and sludge from the

pharmaceutical industry. The results contributed to
evaluate the behavior of the mixture at different heating
rates, to the optimization and to increase the efficiency of

the bioenergy production system.

Geng et al. 2020/[51] Clustering Algorithm

The application of the algorithm in this process aimed to
assist the projection and optimization of a biodiesel supply
chain and to identify the best location for the installation of
a biorefinery to produce this resource. The results indicated

that the optimization of the chain can contribute
significantly to increase biodiesel production and reduce
costs. In relation to the installation site of the plant, the

model results showed that the current location is the most
appropriate because of the large supply of inputs and low

transportation costs.

Gorokhova et al. 2020/[47] Bioeconomy Support
Algorithm

Development and strengthening of bioenergy projects in
Ukraine. The research results showed that bioeconomy
development can contribute to the diversification of the

local economy, to the development of renewable
commodities, to the strengthening of territories and regions,

and to the extension of the life span of natural resources.

De Jesus et al. 2021/[29] Multicriteria—GIS

Development and application of a methodology that
enables the identification of suitable locations for the

implantation of biodigesters. The results showed that the
definition of biodigesters’ location is a fundamental step for

the project’s viability, since, in addition to meeting
environmental issues and legal requirements, it directly

influences issues related to biomass transport costs.

De Jesus et al. 2021/[43]
Agglomerative hierarchical

algorithm/multi criteria
analysis/(GIS)

Identification of opportunities to create strategic
partnerships for the generation of bioenergy. The results,
obtained through a case study, showed that it is perfectly

viable to build clusters to produce bioenergy using
geographic coordinates of raw material suppliers and the

volume of biomass residues supplied by each actor. In
addition, with the input of environmental, economic, social,

and legal criteria and requirements, it is also possible to
identify the best location for installing the biodigesters.

Geng and Sun 2021/[33] Genetic Algorithm—NSGAII
Optimization of the biodiesel supply chain. The efficiency
of the method and the optimal solution were verified by a

case study.

Lomazov et al. 2021/[45] Genetic Algorithm—GA

Optimization of construction costs for a biogas plant. The
use of evolutionary algorithms in this process aims,

together with other classic tools and methods, to optimize
the construction steps of a bioenergy generation plant. The

research results showed the development of a
mathematical model that contributes to increase the

efficiency of the system and that provides a reduction in the
construction costs of a biogas plant.

References
1. Rodias, E.; Aivazidou, E.; Achillas, C.; Aidonis, D.; Bochtis, D. Waterenergy-nutrients synergies in the agrifood sector: A circular

economy framework. Energies 2021, 14, 159. [CrossRef]
2. Diamantis, V.; Eftaxias, A.; Stamatelatou, K.; Noutsopoulos, C.; Vlachokostas, C.; Aivasidis, A. Bioenergy in the era of circular

economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renew. Energy 2020, 168, 438–447.
[CrossRef]

3. Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of Indicators of Circular Economy as
Instruments for the Evaluation of Sustainability and Efficiency in Wastewater from Pig Farming Industry. Water 2017, 9, 653.
[CrossRef]

4. Li, L.; Li, X.; Chong, C.; Wang, C.-H.; Wang, X. A decision support framework for the design and operation of sustainable urban
farming systems. J. Clean. Prod. 2020, 268, 121928. [CrossRef]

5. Fisher, O.J.; Watson, N.J.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Multiple target data-driven models to enable sustainable
process manufacturing: An industrial bioprocess case study. J. Clean. Prod. 2021, 296, 126242. [CrossRef]

http://doi.org/10.3390/en14010159
http://doi.org/10.1016/j.renene.2020.12.034
http://doi.org/10.3390/w9090653
http://doi.org/10.1016/j.jclepro.2020.121928
http://doi.org/10.1016/j.jclepro.2021.126242


Energies 2022, 15, 6136 14 of 15

6. Mirkouei, A.; Haapala, K.R.; Sessions, J.; Murthy, G.S. A mixed biomass-based energy supply chain for enhancing economic and
environmental sustainability benefits: A multi-criteria decision making framework. Appl. Energy 2017, 206, 1088–1101. [CrossRef]

7. Scott, J.A.; Ho, W.; Dey, P.K. A review of multi-criteria decision-making methods for bioenergy systems. Energy 2012, 42, 146–156.
[CrossRef]

8. Shen, Y.; Zhao, P.; Shao, Q.; Takahashi, F.; Yoshikawa, K. In situ catalytic conversion of tar using rice husk char/ash supported
nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl.
Energy 2015, 160, 808–819. [CrossRef]

9. World Bioenergy Association. Statistics; World Bioenergy Association: Stockholm, Sweden, 2019.
10. Hagman, L.; Blumenthal, A.; Eklund, M.; Svensson, N. The role of biogas solutions in sustainable biorefineries. J. Clean. Prod.

2018, 172, 3982–3989. [CrossRef]
11. Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag.

2010, 51, 1412–1421. [CrossRef]
12. Souza, G.M.; Ballester, M.V.R.; de Brito Cruz, C.H.; Chum, H.; Dale, B.; Dale, V.H.; Fernandes, E.C.; Foust, T.; Karp, A.; Lynd, L.;

et al. The role of bioenergy in a climate-changing world. Environ. Dev. 2017, 23, 57–64. [CrossRef]
13. Castillo-Villar, K.K. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and

Future. Energies 2014, 7, 7640–7672. [CrossRef]
14. Thran, D.; Bauschmann, M.; Dahmen, N.; Erlach, B.; Heinbach, K.; Hirschl, B.; Hildebrand, J.; Rau, I.; Majer, S.; Oehmichen,

K.; et al. Bioenergy beyond the german “energiewende”–assessment framework for integrated bioenergy strategies. Biomass
Bioenergy 2020, 142, 105769. [CrossRef]

15. Wu, Y.; Yan, Y.; Wang, S.; Liu, F.; Xu, C.; Zhang, T. Study on locationdecision framework of agroforestry biomass cogeneration
project: A case of china. Biomass Bioenergy 2019, 127, 105289. [CrossRef]

16. Maccarini, A.; Bessa, M.; Errera, M. Energy valuation of urban pruning residues feasibility assessment. Biomass Bioenergy 2020,
142, 105763. [CrossRef]

17. Babazadeh, R.; Ghaderi, H.; Pishvaee, M.S. A benders-local branching algorithm for second-generation biodiesel supply chain
network design under epistemic uncertainty. Comput. Chem. Eng. 2019, 124, 364–380. [CrossRef]

18. Gracia, C.; Marti, B.V.; Estornell, J. An application of the vehicle routing problem to biomass transportation. Biosyst. Eng. 2014,
124, 40–52. [CrossRef]

19. Marti, B.V.; Cortés, I.L.; Salazar-Hernández, D.M. Dendrometric analysis of olive trees for wood biomass quantification in
Mediterranean orchards. Agrofor. Syst. 2014, 88, 755–765. [CrossRef]

20. Casanova-Peláez, P.J.; Palomar-Carnicero, J.M.; Manzano-Agugliaro, F.; Cruz-Peragón, F. Olive cake improvement for bioenergy:
The drying kinetics. Int. J. Green Energy 2015, 12, 559–569. [CrossRef]

21. Zamar, D.S.; Gopaluni, B.; Sokhansanj, S. Optimization of sawmill residues collection for bioenergy production. Appl. Energy
2017, 202, 487–495. [CrossRef]

22. Matindi, R.; Masoud, M.; Hobson, P.; Kent, G.; Liu, S.Q. Harvesting and transport operations to optimise biomass supply chain
and industrial biorefinery processes. Int. J. Ind. Eng. Comput. 2018, 9, 265–288. [CrossRef]

23. Zhu, X.; Yao, Q. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresour. Technol.
2011, 102, 10936–10945. [CrossRef] [PubMed]

24. Plessen, M.G. GPU-accelerated logistics optimisation for biomass production with multiple simultaneous harvesters tours, fields
and plants. Biomass Bioenergy 2020, 141, 105650. [CrossRef]

25. Zhao, N.; You, F. Dairy waste-to-energy incentive policy design using Stackelberg-game-based modeling and optimization. Appl.
Energy 2019, 254, 113701. [CrossRef]

26. Pagani, R.N.; Kovaleski, J.; Resende, L.M. Methodi Ordinatio: A proposed methodology to select and rank relevant scientific
papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 2015, 105, 2109–2135. [CrossRef]

27. Velázquez-Martí, B.; González, E.F.; Cortés, I.L.; Callejón-Ferre, A. Prediction and evaluation of biomass obtained from citrus
trees pruning. J. Food Agric. Environ. 2013, 11, 1485–1494.

28. Chakraborty, A.; Biswal, A.; Pandey, V.; Murthy, C.S.; Rao, P.V.N.; Chowdhury, S. Spatial disaggregation of the bioenergy potential
from crop residues using geospatial technique. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 369–375.
[CrossRef]

29. De Jesus, R.H.G.; de Souza, J.T.; Puglieri, F.N.; Piekarski, C.M.; de Francisco, A.C. Biodigester location problems, its economic–
environmental–social aspects and techniques: Areas yet to be explored. Energy Rep. 2021, 7, 3998–4008. [CrossRef]

30. Enitan, A.; Adeyemo, J.; Swalaha, F.M.; Kumari, S.; Bux, F. Optimization of biogas generation using anaerobic digestion models
and computational intelligence approaches. Rev. Chem. Eng. 2017, 33, 309–335. [CrossRef]

31. Ayoub, N.; Elmoshi, E.; Seki, H.; Naka, Y. Evolutionary algorithms approach for integrated bioenergy supply chains optimization.
Energy Convers. Manag. 2009, 50, 2944–2955. [CrossRef]

32. Sarker, B.R.; Wu, B.; Paudel, K.P. Modeling and optimization of a supply chain of renewable biomass and biogas: Processing
plant location. Appl. Energy 2019, 239, 343–355. [CrossRef]

33. Geng, N.; Sun, Y. Multiobjective Optimization of Sustainable WCO for Biodiesel Supply Chain Network Design. Discrete Dyn.
Nat. Soc. 2021, 2021, 6640358. [CrossRef]

http://doi.org/10.1016/j.apenergy.2017.09.001
http://doi.org/10.1016/j.energy.2012.03.074
http://doi.org/10.1016/j.apenergy.2014.10.074
http://doi.org/10.1016/j.jclepro.2017.03.180
http://doi.org/10.1016/j.enconman.2010.01.015
http://doi.org/10.1016/j.envdev.2017.02.008
http://doi.org/10.3390/en7117640
http://doi.org/10.1016/j.biombioe.2020.105769
http://doi.org/10.1016/j.biombioe.2019.105289
http://doi.org/10.1016/j.biombioe.2020.105763
http://doi.org/10.1016/j.compchemeng.2019.01.013
http://doi.org/10.1016/j.biosystemseng.2014.06.009
http://doi.org/10.1007/s10457-014-9718-1
http://doi.org/10.1080/15435075.2014.880347
http://doi.org/10.1016/j.apenergy.2017.05.156
http://doi.org/10.5267/j.ijiec.2017.9.001
http://doi.org/10.1016/j.biortech.2011.08.121
http://www.ncbi.nlm.nih.gov/pubmed/21974884
http://doi.org/10.1016/j.biombioe.2020.105650
http://doi.org/10.1016/j.apenergy.2019.113701
http://doi.org/10.1007/s11192-015-1744-x
http://doi.org/10.5194/isprs-archives-XLII-3-W6-369-2019
http://doi.org/10.1016/j.egyr.2021.06.090
http://doi.org/10.1515/revce-2015-0057
http://doi.org/10.1016/j.enconman.2009.07.010
http://doi.org/10.1016/j.apenergy.2019.01.216
http://doi.org/10.1155/2021/6640358


Energies 2022, 15, 6136 15 of 15

34. Cui, X.; Kavvada, O.; Huntington, T.; Scown, C.D. Strategies for near-term scale-up of cellulosic biofuel production using sorghum
and crop residues in the US. Environ. Res. Lett. 2018, 13, 124002. [CrossRef]

35. Yu, Z.; Yousaf, K.; Ahmad, M.; Yousaf, M.; Gao, Q.; Chen, K. Efficient pyrolysis of ginkgo biloba leaf residue and pharmaceutical
sludge (mixture) with high production of clean energy: Process optimization by particle swarm optimization and gradient
boosting decision tree algorithm. Bioresour. Technol. 2020, 304, 123020. [CrossRef] [PubMed]

36. Muth, D.; Koch, J.; McCorkle, D.; Bryden, K. A Computational Strategy for Design and Implementation of Equipment That
Addresses Sustainable Agricultural Residue Removal at the Subfield Scale. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference; American Society of Mechanical Engineers: New York, NY, USA, 2012;
Volume 45011, pp. 1287–1294. [CrossRef]

37. Chen, C.-W.; Fan, Y. Bioethanol supply chain system planning under supply and demand uncertainties. Transp. Res. Part E—Logist.
Transp. Rev. 2012, 48, 150–164. [CrossRef]

38. Andrade, R.O.; Yoo, S.G. A Comprehensive Study of the Use of LoRa in the Development of Smart Cities. Appl. Sci. 2019, 9, 4753.
[CrossRef]

39. Khishtandar, S. Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design. Appl. Energy
2018, 236, 183–195. [CrossRef]

40. Naso, D.; Turchiano, B.; Meloni, C. Single and Multi-objective Evolutionary Algorithms for the Coordination of Serial Manufac-
turing Operations. J. Intell. Manuf. 2006, 17, 251–270. [CrossRef]

41. Abrishambaf, O.; Faria, P.; Vale, Z.; Corchado, J.M. Energy scheduling using decision trees and emulation: Agriculture irrigation
with run-ofthe-river hydroelectricity and a pv case study. Energies 2019, 12, 3987. [CrossRef]

42. Kaundinya, D.P.; Balachandra, P.; Ravindranath, N.; Ashok, V. A GIS (geographical information system)-based spatial data
mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of
Tumkur district, India. Energy 2013, 52, 77–88. [CrossRef]

43. De Jesus, R.H.G.; Barros, M.V.; Salvador, R.; de Souza, J.T.; Piekarski, C.M.; de Francisco, A.C. Forming clusters based on strategic
partnerships and circular economy for biogas production: A gis analysis for optimal location. Biomass Bioenergy 2021, 150, 106097.
[CrossRef]

44. Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of sustainable housing
affordability. Omega 2016, 59, 146–156. [CrossRef]

45. Lomazov, V.A.; Lomazova, V.I.; Miroshnichenko, I.V.; Petrosov, D.A.; Mironov, A.L. Optimum planning of experimental research
at the biogas plant. IOP Conf. Ser.—Earth Environ. Sci. 2021, 659, 012111. [CrossRef]

46. Kokkinos, K.; Karayannis, V.; Moustakas, K. Circular bio-economy via energy transition supported by Fuzzy Cognitive Map
modeling towards sustainable low-carbon environment. Sci. Total Environ. 2020, 721, 137754. [CrossRef] [PubMed]

47. Gorokhova, T.; Mamatova, L.; Muterko, H. The development of bioeconomics in Ukraine as an element of transformation
government strategy of sustainable development. Manag. Theory Stud. Rural Bus. Infrastruct. Dev. 2020, 42, 279–288. [CrossRef]

48. Scott, J.; Ho, W.; Dey, P.K.; Talluri, S. A decision support system for supplier selection and order allocation in stochastic,
multi-stakeholder and multi-criteria environments. Int. J. Prod. Econ. 2014, 166, 226–237. [CrossRef]

49. Ren, J.; Manzardo, A.; Toniolo, S.; Scipioni, A.; Tan, S.; Dong, L.; Gao, S. Design and modeling of sustainable bioethanol supply
chain by minimizing the total ecological footprint in life cycle perspective. Bioresour. Technol. 2013, 146, 771–774. [CrossRef]

50. Muir, G.; Hayward, S.; Tripney, B.; Cook, G.; Naysmith, P.; Herbert, B.; Garnett, M.; Wilkinson, M. Determining the biomass
fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies. Waste Manag. 2014, 35, 293–300.
[CrossRef]

51. Geng, N.; Zhang, Y.; Sun, Y. Location optimization of biodiesel processing plant based on rough set and clustering algorithm - a
case study in China. Eng. Rev. 2020, 40, 105–115. [CrossRef]

http://doi.org/10.1088/1748-9326/aae6e3
http://doi.org/10.1016/j.biortech.2020.123020
http://www.ncbi.nlm.nih.gov/pubmed/32088630
http://doi.org/10.1115/detc2012-71430
http://doi.org/10.1016/j.tre.2011.08.004
http://doi.org/10.3390/app9224753
http://doi.org/10.1016/j.apenergy.2018.11.092
http://doi.org/10.1007/s10845-005-6641-3
http://doi.org/10.3390/en12203987
http://doi.org/10.1016/j.energy.2013.02.011
http://doi.org/10.1016/j.biombioe.2021.106097
http://doi.org/10.1016/j.omega.2015.05.013
http://doi.org/10.1088/1755-1315/659/1/012111
http://doi.org/10.1016/j.scitotenv.2020.137754
http://www.ncbi.nlm.nih.gov/pubmed/32172116
http://doi.org/10.15544/mts.2020.27
http://doi.org/10.1016/j.ijpe.2014.11.008
http://doi.org/10.1016/j.biortech.2013.07.119
http://doi.org/10.1016/j.wasman.2014.09.023
http://doi.org/10.30765/er.40.3.11

	Introduction 
	Materials and Methods 
	Bibliometric Review 
	Composition of the Analysis Framework Review 

	Results and Discussion 
	Conclusions 
	Appendix A
	References

