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Abstract: The purpose of this work is to analyze the electron–nuclear interactions of the vanadyl-
porphyrin (VP) complexes in oil asphaltenes. Asphaltenes from the Athabasca oil sands were studied
by HYperfine Sublevel CORrelation Spectroscopy (HYSCORE) electron paramagnetic resonance
(EPR). It makes it possible to resolve and interpret complex hyperfine spectra of intrinsic VP with
strong and weak hyperfine interactions between the electron magnetic moment and various nuclear
spins (1H, 14N, 51V). The main parameters of spin-Hamiltonian for the VP spin system are determined.
The axially symmetric structure of the VP complexes is revealed, and the local nuclear environment of
the paramagnetic center is investigated. The results can be used for the study of asphaltene electron–
nuclear structure and asphaltene aggregates with the aim of elucidating asphaltenes’ transformation(s)
under the influence of external treatment.

Keywords: asphaltenes; electron paramagnetic resonance; vanadyl complexes; HYperfine Sublevel
CORrelation Spectroscopy

1. Introduction

The concentration of metalloporphyrins (mainly the nickel and vanadyl porphyrin
(VP) complexes locked in asphaltenes) reach values of ≥1000 ppm in heavy oils [1], allow-
ing efficient extraction of nickel and vanadium from the petroleum. Petroleum VP exhibits
an extremely extensive structural and elemental diversity [2]. The VP molecule can con-
tain various types of substitutions, including alkyl, cycloalkane, and aromatic groups [3],
and is often paramagnetic [4] to be analyzed by electron paramagnetic resonance (EPR)
techniques [5]. It is also known that VP can participate in the asphaltenes aggregation [6].
Information about the amount, properties, and structure of petroleum VP is actively used
not only for the productive removal of metals from the oil source but also to track the
processes of the improved-oil-recovery (IOR) and enhanced-oil-recovery (EOR) [7–11].
It follows that intrinsic petroleum VP can serve as a sensitive signaling molecule(s) to
follow IOR and EOR treatments. However, despite the decades of VP and petroleum
investigations, such tracking, especially with in situ conditions, is still a challenge [12–16].

The main concern of researchers and technologists is to reduce the viscosity of oil
and the amount of asphaltenes aggregates. Deep and effective IOR/EOR implies funda-
mental knowledge of the structure of the oil constituents and establishing a relationship
between their structure and bulk properties. As pointed out above, vanadyl porphyrins are
important oil elements that deserve detailed study.

Approximately half of the vanadium (and nickel) porphyrins can be identified and
quantified by their characteristic ultraviolet (UV) and visible (vis) spectra. The remain-
ing vanadium- and nickel-containing non-porphyrins species have no distinct UV–vis
bands [12]. However, the results of X-ray absorption fine structure (EXAFS) spectroscopy
and X-ray absorption near-edge structure (XANES) spectroscopy indicated that these non-
porphyrins are indeed still bound in a porphyrinic structure without revealing the charac-
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teristic UV–visible absorption. Mass spectroscopy showed that the majority of vanadium
and nickel compounds in asphaltenes existed in the form of porphyrins, including alkyl
porphyrins, sulfur-containing porphyrins, nitrogen-containing porphyrins, and oxygen-
containing porphyrins [7–9]. The porphyrins with O, S, and N atoms should associate more
strongly with the asphaltenes than the less polar components. The porphyrins are generally
believed to be chelate or non-covalently associated with aromatic asphaltene components
by π–π interactions. To sum up, the study of petroleum metal complexes can provide a
useful insight into the source of petroleum accumulation, especially when combined with
classification parameters derived from molecular, isotopic, and bulk parameters [17].

VP and asphaltenes contain magnetic nuclei, such as 1H, 13C, 14N, and 51V, providing
an excellent opportunity for the use of EPR techniques, which are aimed at analyzing the
hyperfine interaction (HFI)—interaction between the electron and nuclear spins, charac-
terized by the parameter A—hyperfine constant [5]. Unfortunately, in oil systems, due
to the broad EPR signals and overlapping of signals of diverse origin(s), it is often quite
problematic to obtain a read out the A-values for 1H, 13C, 14N 14N [18,19]. One should
apply more elaborated EPR techniques sensitive to the small values of A or their tiny
changes during the IOR/EOR treatments. One such approach is the HYperfine Sublevel
CORrelation Spectroscopy (HYSCORE). This method is based on a 3-pulse Electron Spin
Echo Envelope Modulation (ESEEM, see [20,21]) and is described in detail in the section
Materials and Methods. The HYSCORE makes it possible to study nuclei with small mag-
netic moments (having a small value of the gyromagnetic ratio γ), to obtain information
about the type of surrounding ligand, corresponding information about the magnitude
and mechanism (dipole–dipole or contact Fermi) and determine the parameters of the
quadrupole interaction (Q and η) in the case for nuclei with the nuclear spin I > 1/2. The
method can provide information about the presence of equivalent nuclei, as well as distin-
guish two types of HFI: with weak coupling |A| < 2|vLarmor| and with strong coupling
|A| > 2|νLarmor|, where νLarmor is the corresponding Larmor frequency of nuclei. Thanks
to the sensitivity and specificity of the HYSCORE experiment, it is possible to register
signals from the first coordination sphere of the studied complex(es) as well as from the
second nuclear sphere [22].

Previously, few successful attempts had already been made to apply the HYSCORE
to VP investigations. The authors of paper [23] demonstrated the possibility of studying
the thermal stability of vanadyl tetrafinylporphyrins embedded in silicon by tracking the
HFI values of the 13C, 14N, and 29Si nuclei as a function of the annealing temperature. The
interatomic distance calculated from the anisotropic dipole–dipole HFI provides informa-
tion about the geometry of the complex under study. For example, the absolute value
of the HFC V-Si and its sign indicates the formation of a direct chemical bond, meaning
that the coordination ions VO2+ belong to the SiO2 matrix. Therefore, it is established
that VP during the heat treatment is converted into oxygenated VP by the transfer of the
VO2+ ion from the porphyrin ring into the mineral matrix. In [24], HYSCORE spectroscopy
was applied to follow the changes in the chemical environment of VP in oil samples from
various feedstock that have been subjected to hydrotreatment and hydroconversion.

In our paper, for the first time to the best of the authors’ knowledge, we apply
HYSCORE to the intrinsic for the Athabasca asphaltenes VP complexes to obtain informa-
tion about the VP electron–nuclear structure. Though the Athabasca asphaltenes have long
been well studied by various theoretical and experimental tools [25], including conventional
EPR [26] and conventional electron–nuclear double resonance (ENDOR) techniques [27],
the vanadyl porphyrins inside the mentioned constituents were not sufficiently investigated
in this exceptional complex system [28–31], especially by pulsed EPR techniques. In the
course of this work, the main parameters of the spin Hamiltonian (value of the g-factor, the
hyperfine interaction constants of both the isotropic and anisotropic parts) were determined
with high accuracy. The obtained data allow the suggestion of the planar (axial) structure
of vanadyl-porphyrin complexes in asphaltenes.
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2. Materials and Methods

The asphaltenes, extracted from the Athabsca oil sands (Athabasca tar sands, Fort
McMurray, Buffalo, AB, Canada), were provided by Y.M. Ganeeva (Kazan Scientific Centre
of the Russian Academy of Sciences, Kazan, Russia). Table 1 shows some properties of the
initial material. Detailed EPR investigation of asphaltenes is described below in section
Results and Discussion.

Table 1. Content and element analysis of bitumen from Athabasca oil sands.

S, Mass % Asphaltenes, Mass % V, ppm Ni, ppm

4.0 18 250 100

Four-pulse sequence, as shown in Figure 1a, was exploited using stimulated echo
sequence with inverting a 180-degree pulse inserted after the second π/2 pulse. The
application of π pulse leads to a mixing of the nuclear frequencies thanks to the two spin
transitions with mS = ± 1

2 of an S = 1
2 centers. Figure 1b demonstrates the 2 resonance lines

of distinctive nucleus emerging at (ν−, ν+) and (ν+, ν−) in the two-dimensional spectrum.
In cases where the nuclear Zeeman frequency is larger than the hyperfine interaction
value, the lines appear in the right quadrant. Nuclear frequencies can also occur in the left
quadrant for centers with large hyperfine interaction. The HYSCORE spectra become more
complex for nuclear with quadrpole interaction (I > 1) [32].
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Figure 1. (a) Pulse sequence used to acquire two-dimensional signals from electron–nuclear interac-
tions, where NP—nuclear polarization; NC—nuclear coherences; EC—electron coherences; (b) model
of the HYSCORE spectra for an S = 1

2 centers with an anisotropic hyperfine interaction value due to
two I = 1

2 nuclei.

Registration of the two-dimensional time domain spectra carried out by detection of
the echo amplitude as a function of pulse delay between t1 and t2 (meanwhile with stated τ).
The obtained modulation curves are then signal processed by 2D Fourier transformation
analysis to extract the resonance lines on the spectra with two frequencies ν1 and ν2 directed
along the axes. The pulse sequence with each evolution is schematically shown in Figure 1a.
The nuclear spin transitions relating to a distinctive species are revealed most easily by a
spectra model of the type shown in Figure 1b. The counter map is taken as a projection
of the resonance peaks on the frequency layer. Projected points that are symmetrically
located at the diagonals in the spectra for an S = 1

2 species correspond to nuclear spin
transitions for the mS = + 1

2 and − 1
2 electronic levels, correspondingly, (denoted α and β) of

a nonequivalent nucleus [33].
The experiment was carried out on a Bruker Elexsys E580 commercial spectrometer

in the X-band (ν = 9.6 GHz) at a temperature T = 40 K. A flow helium cryostat was
used to achieve stable low temperatures. HYSCORE measurements were made using a
4-pulse sequence π/2–τ–π/2–t1–π–t2–π/2–τ (echo observation) and 4-step phase cycling
(to prevent cross-echoes). The amplitude of the echo (signal) was measured as a function of
the parameters t1 and t2, each of which was successively increased during the measurement
with a step of 16 ns by 128 times. The duration of π/2 and π pulses was 16 and 32 ns,
respectively. The distance between the first and second π/2 pulses was chosen to be



Energies 2022, 15, 6204 4 of 10

τ = 200 ns, which corresponds to the optimal value for preventing “blind spots” effects. For
further analysis, a two-dimensional Fourier transform was performed and processed in
the OriginPro program. The theoretical simulation of EPR spectrum was carried out by
EasySpin Matlab software [34].

3. Results

The studied asphaltenes contain two types of different paramagnetic centers: a vana-
dium complex (S = 1/2 and I = 7/2 for 51V) and an organic free radical (FR, S = 1/2) [35].
Due to the axial symmetry of VO2+ (Figure 2a), the presence of a nuclear spin, and the
powder (disordered) state of the sample, 16 overlapping resonant transitions are observed
in the EPR spectrum due to HFI with 51V. The formation of such splitting for this complex
is associated with the presence of an anisotropic hyperfine interaction between the electron
shell and the magnetic moment of the 51V vanadium nucleus, where the first eight lines are
for parallel, and the remaining eight are for perpendicular orientation. The free radical in
the spectrum appears as an intense single isotropic line that overlaps several transitions
from VO2+. The spectroscopic parameters calculated from the simulation of the EPR spec-
trum (Figure 2b blue line) for each center are shown in Table 2. The EPR spectrum was
described by the axial spin Hamiltonian

Ĥ = g||βBzŜz + g⊥β
(

BxŜx + ByŜy

)
+ A||Ŝzz + A⊥

(
Ŝxx + Ŝyy

)
, (1)

where g|| and g⊥ are the main components of the g tensor, A|| and A⊥ are the main
components of the hyperfine tensor, Bi, Si, and Ii are the projections of the external magnetic
field strength, electronic (S = 1/2), and nuclear (I = 1) spins, respectively, onto the i = {x, y, z}
coordinate axis, and β is the Bohr magneton. As seen from the equation, the direction of
quantities with the index ⊥ correspond to the location in the xy plane, while the quantities
with the index || are directed along the z axis (Figure 2a).
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Figure 2. (a) Schematic representation of a vanadyl porphyrin molecule with the main axis of the
VO2+ complex (see paper [35] for details), (b) EPR spectra of the Athabasca oil sands obtained in the
pulsed mode (exp) with corresponding simulation (sim) in the assumption of the axial symmetry
for 51V. Signals belonging to FR and VO2+ are marked as well as the magnetic field values B1–B4 for
which HYSCORE measurements were performed.

Table 2. EPR spin-Hamiltonian parameters for the intrinsic for asphaltenes VP (VO2) and FR.

g⊥ g|| A⊥ A||

VO2+ 1.9868 1.965 158 MHz 472 MHz

FR giso=2.0038 - -



Energies 2022, 15, 6204 5 of 10

The fitting results (g-factors and hyperfine interaction constants, see Table 2) are in
agreement with the results of previous works [36] on the study of asphaltenes samples
from another oilfield. No HFI with other nuclei can be observed in the EPR spectrum.

The asphaltene sample under study is a powder material (with the orientational disor-
der). As mentioned above, in the HYSCORE spectra, the observation of HFIs from various
magnetic nuclei is expected. In a powder spectrum, where all particle orientations with
respect to the external magnetic field B0 are equally probable, we would observe weakly
unresolved lines with inhomogeneous broadening. However, as seen in Figure 2b for the
EPR spectrum, due to the pronounced anisotropic HFI for VP, it is possible to identify the
canonical positions (perpendicular and parallel directions) for further orientation-selective
measurements by the HYSCORE method. Thus, we get rid of signal broadening due to
angular spread and obtain crystal-like spectra. We have carried out several HYSCORE
measurements that correspond to different orientations of the VP relative to B0. These
positions are marked on the EPR spectrum (Figure 2b).

Figure 3a shows that the decays of the transverse magnetization of the VP with the
modulations (ESEEM) measured in the magnetic field denoted as VO2+ in Figure 2b by
increasing the time τ between π/2 and π pulses. The main condition for the observation of
nuclear modulations is the presence of anisotropic hyperfine interaction of the paramagnetic
center with the surrounding magnetic nuclei. The frequency ν and amplitude (depth) of the
modulation for each center may differ markedly. This may be caused by a different ionic
environment, the degree of anisotropy of the hyperfine interaction, and the orientation
of the center relative to the magnetic field. The oscillation frequency is determined by
νLarmor, which depends on the type of nucleus (the value of the gyromagnetic ratio γ) and
the presence of various interactions (hyperfine or quadrupole).

1 
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Figure 3. (a) The decay curves in time domain of the transverse magnetization of the VP complex
measured in the magnetic field denoted as VO2+ in Figure 2 at two temperatures (50 K and 297 K)
with the corresponding fitting for T = 50 K as a monoexponential function with T2 = 880 ns, (b) The
ESEEM spectrum for T = 50 K in the frequency domain after the Fourier transform.

The Fourier spectrum of the ESEEM signal from the VP is shown in Figure 3b. The
line at 14.8 MHz (Figure 3b) belongs to the 1H hydrogen nuclei (γ/2π = 42.58 MHz/T)
framing the VP. Intense low-frequency resonance lines correspond to vanadium 51V
(γ/2π = 7.05 MHz/T) and nitrogen 14N (γ/2π = 3.077 MHz/T) nuclei. As seen, the ESEEM
spectrum allows us to determine the type of core surrounded by a paramagnetic center. Un-
fortunately, the presence of hyperfine and quadrupole interactions from 14N nitrogen nuclei,
as well as the presence of cross frequencies (the sum and difference typical of a two-pulse
ESEEM), leads to complications of the spectrum. It became difficult to attribute the lines to
certain nuclear transitions unambiguously and read out the values of the electron–nuclear
interactions. HYSCORE measurements can help to resolve emerging problems.

The values of B0 for the HYSCORE measurements (Figure 2b) were chosen as the most
orientationally “pure”, i.e., the centers in canonical orientations should contribute to the
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EPR signal at these B0 values. Nevertheless, it is not possible to achieve precise positioning
due to the fact that the width of each hyperfine transition line has a finite value. In this
work, pulse sequences are used with the duration of the exciting π pulse of 32 ns. Each
individual pulse has its own excitation spectrum in the frequency range. The excitation
range was estimated as the first Fourier harmonic that, for the rectangular pulses used in
this work, was equal to ≈3 MHz (≈1.1 mT). This value is enough to cover the EPR signal
at a certain canonical orientation (perpendicular or parallel).

The studied samples are powders. Consequently, the EPR line broadening mechanism
is caused mainly by an inhomogeneous contribution due to angular dispersion. Overlap-
ping of the pulse excitation spectrum of the hyperfine EPR absorption component and
inhomogeneous line broadening leads to the fact that one effectively detects the HYSCORE
spectra in the intermediate orientation of nanocrystals. The overlap of the pulse excitation
spectrum of most of the EPR spectrum leads (1) to an increase in the signal; (2) to an increase
in the probability of forbidden transitions that enhances HYSCORE.

The HYSCORE spectra in perpendicular orientation (B2 and B3) are shown in Figure 4.
In the right quadrant (+,+), where nuclei with a weak bond (A < 2ν) are present, signals
from nitrogen 14N, vanadium 51V, and hydrogen 1H nuclei were recorded. There are
no additional splittings for 1H and 14N nuclei; however, for 51V, a hyperfine structure is
detected with A = 4.7 MHz. Considering that the EPR spectrum of vanadium exceeds
hundreds of MHz, the unresolved signal from nitrogen indicates that these nuclei belong
to the far environment (for example, the second coordination sphere) of VO2+. In the left
quadrant, there is a signal from one-quantum transitions of nitrogen nuclei with the strong
HFI binding (A = 8.3–8.6 MHz). These signals belong to the near nuclear environment. The
remaining signals located on the right diagonal and marked in gray are artifacts caused by
nonideal π/2 and π pulses.
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In the HYSCORE spectra, signals with weak hyperfine coupling appear in the right
quadrant, where the Larmor frequency is greater than the HFI value A. In the left quadrant,
signals from magnetic nuclei (I > 0) with strong hyperfine coupling are displayed. The
values of the electron–nuclear interaction of their HYSCORE spectra were determined in
accordance with the two-dimensional spectrum and the arrangement scheme depicted in
Figure 2b. The values of vLarmor of magnetic nuclei depend on two main quantities: the
gyromagnetic ratio constant γn, indicating the nature and type of the nucleus, as well as the
magnitude of the external magnetic field B0. Figures 4 and 5 show all Larmor frequencies,
which have different values due to changes in B0.
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(b) B3 = 409 mT (see also Figure 2b).

Hyperfine interaction in HYSCORE spectra can be assigned to two contributions:
the isotropic contact Fermi component, Aiso, and anisotropic dipole–dipole term, Add.
The anisotropic dipole–dipole contribution has an angular dependence. The relationship
between the various HFI components can be expressed as follows

A = Add

(
3 cos2 θ− 1

)
+ Aiso (HFI value) (2)

A|| = 2Add + Aiso (parallel component
)

(3)

A⊥ = −Add + Aiso (perpendiculat component), (4)

where θ is the angle between the directions of B0 and z, r is an interatomic distance between
the magnetic spins.

Figure 5 shows spectra for parallel orientation (B1 and B4). There are no obvious
signs of nitrogen and vanadium nuclei 51V in the right quadrant, except for an intense
signal from 1H. For the left quadrant, the signals from the nitrogen nuclei are still present,
but they are recorded exclusively from two-quantum transitions with the selection rule
∆mI = ±2, located at twice the Larmor frequency of 14N and with a splitting of 2A due to
the additional quadrupole interaction for 14N [35].

The presence of two quantum transitions may indicate a strong quadrupole coupling,
which leads to entanglement of the spin nuclear sublevels. Electronic spin states form
wave functions, which in intermediate orientations form shifted states. The presence of
mixed wave functions is a prerequisite for the occurrence of electronic forbidden transi-
tions and the observation of HYSCORE signals. However, this entanglement due to the
strong quadrupole coupling can lead to forbidden nuclear transitions with a change in the
projection of the nuclear quantum number by two. Additionally, the doubled frequencies
can be caused by the presence of two equivalent nuclei with the same values of hyperfine
interaction near the paramagnetic center under study. Such a structure gives a doubled
frequency in the HYSCORE spectrum.

From Equations (3) and (4), one can determine the values of the isotropic and dipole–
dipole contributions to the 14N HFI as

Aiso =
A|| + 2A⊥

3
=

15.4
2 MHz + 2× 8.6 MHz

3
= 8.3 MHz,

Add =
A|| −A⊥

3
=

7.7 MHz− 8.6 MHz
3

= −0.3 MHz.

HFI isotropic value is determined by the electron density on the nucleus. The elec-
tron density can be calculated theoretically by using density functional theory (DFT), for
example [5], and it depends on the structure of the vanadium complex. From the value
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of the electron–nuclear dipole–dipole interaction (between the electron shell of vanadium
and the nearest nitrogen nuclei), an interatomic distance between the magnetic spins
can be estimated [36] that is, in our case (point–dipole approximation) is r ≈ 2.1 Å. DFT
calculations [5,35] give the value of r = 2.069 Å.

4. Conclusions

In this work, the capabilities of EPR spectroscopy for the analysis of electron–nuclear in-
teractions of intrinsic magnetic species surrounding paramagnetic vanadyl porphyrins for oil
asphaltenes without dilution or other specific sample preparation were studied. The main spec-
troscopic parameters of the spin Hamiltonian (g⊥ = 1.9868, g|| = 1.965, A⊥ = 158 MHz and
A|| = 472 MHz) were determined. The values of the isotropic (Aiso = 8.3 MHz) and dipole–
dipole (Add = −0.3 MHz) contributions with the 14N HFI were determined. From Add,
an interatomic distance between the vanadium and the nearest nitrogen nuclei (r ≈ 2.1 Å)
is estimated.

The HYSCORE method made it possible to resolve the contributions from various
types of hyperfine interaction and determine the values of the hyperfine interaction of the
electron magnetic moment of VP with the surrounding nuclei such as 1H, 14N, and 51V. The
proven approach can be used to study other petroleum systems. The obtained HFI data
can serve as a reference to follow their potential changes under the external treatment.
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